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INTRODUCTION

The world trends in shopping are shifting to-
wards individual online orders, especially as a 
result of the pandemic. This requires further de-
velopment and automation of warehouses. The 
automated warehouses with Automated Guided 
Vehicles are working in real life, however classic 
approach in a delivery order is inseparable, from 
shelf to drop zone. There are optimization meth-
ods described in literature, where the distances are 
minimized by better warehouse space manage-
ment or by joining orders. This article describes 
the new approach that is based on dividing orders 
into smaller parts and pass the parcels between 
multiple robots that cooperates with each other. 
Cooperative planning can bring further develop-
ment and optimization, decreasing the operation 
time within warehouse movement.

Overview

The problem of automated warehouses and 
their optimization is frequently researched. The 
optimization process can be divided into 6 sub-
categories: Mixed-shelves storage; batching, 
zoning, and sorting; dynamic order processing; 
AGV-assisted picking; shelf-moving robots; ad-
vanced picking workstations [1]. The common 
aim of those approaches is to minimize the time 
to get to parcel and to bring it to drop zone while 
minimizing the number of people involved in the 
process. Among those approaches, one is worth 
noticing. In batching, zoning, and sorting, a fur-
ther reduction of the picking effort is enabled, if 
the warehouse is partitioned into disjoint zones. 
Order pickers only pick the part of an order that 
is stored in their assigned zone. Parallel zoning 
enables parallel processing of orders, thus faster 
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order processing [1]. Going one step further, in-
stead of dividing warehouse into zones, packages 
can be left in midway for another agent to pick 
them up. This approach requires cooperation be-
tween agents.

On the other hand, a classical pick and place 
approach does not require cooperation and can 
be performed individually by each agent. Thus 
the contribution of this paper is a cooperative 
algorithm that is compared with an individual 
algorithm.

There is a relevant research stream that is a 
variant of the multi-agent pickup and delivery 
problem (MAPD) [2, 3], which is an extension 
of the broadly studied multi-agent path finding 
(MAPF) or a version of decentralized MADF 
[4, 5]. While the decentralization is similarly ex-
plained and justified in those approaches, the co-
operation is more understood as negotiation when 
selecting orders. None of the solutions found ana-
lyze the possibility of abandoning the order dur-
ing execution so that it can be taken up by another 
agent. All found solutions are of the pickup-and-
delivery type. 

The cooperative algorithm described in this 
paper is based on the Bucket Brigade approach, 
where the main idea is to feed the buckets to an-
other person in a row in order to fight the fire more 
efficiently. This approach is implemented mostly 
in multi agent scheduling [6, 7] and is also used in 
other research fields for energy consumption opti-
mization [8]. Moreover the developed algorithms 
are based on theory from cellular automata [9] for 
movement implementation, topological model for 
costs calculation in world map representation and 
STRIPS or PDDL [10, 11] for implementation of 
planning algorithms. 

The main robotic unit or an agent of auto-
mated warehouse is a AVG (automated guided 
vehicle). In the research of AGVs, the main focus 
is on overcoming uncertainty and fault-tolerance 
[12] or on optimal trajectory planning [13]. As 
new practical developments in sensors and ro-
bot control technology were rapidly adopted, ad-
vanced AGV systems gradually emerged. These 
systems eventually created a new class of (driv-
erless) vehicles called autonomous mobile robots 
(AMRs) [14]. 

Planning in artificial intelligence is the way 
of decision-making actions performed by robots 
to achieve a specific goal. Further division in 
planning methods are into mathematical meth-
ods (exact and heuristics), simulation studies, 

meta-heuristic techniques and deep learning based 
approaches [15]. On the other hand, there is a di-
vision into online (dynamic) [16, 17] and offline 
planning [10, 11, 18]. Since the warehouse model 
assumes autonomous robots, the decisions should 
be made in real time, thus offline planning is not 
applicable. Having this assumption, scheduling is 
also not applicable in this solution. 

The definition of a multi agent system requires 
agents to be autonomous and work in decentral-
ized manner [19]. Moreover, in a multi-agent 
environment, an agent’s behavior can be defined 
as cooperative if the common utility is conscious 
and willingly increased compared to the refer-
ential utility [20] or cooperatively executing the 
same algorithm [21]. 

Contrary to cooperation, there is a wide re-
search on conflicts handling in competitive (usu-
ally solved with game theory [11, 12]) or planning 
in swarm [22]. On the other hand, cooperative al-
gorithms can be found in the traveling salesman 
problem, as the extension with multiple salesmen 
[18, 23]. However this approach is focused on 
route minimization and does not provide for pass-
ing parcels to each other.

Contribution

The planning algorithm is the important part 
of a robots’ artificial intelligence system. The ap-
proach used in the presented paper is based on the 
assumption, that robots are making their own au-
tonomous decisions. There is no central planning 
unit and robots cannot communicate with each 
other. Such hard assumption is in fact formulated 
based on the desire to strive for robots’ autonomy. 
The only one-to-one interaction is the robot colli-
sion avoidance. Additionally, robots have access 
to a global orders list, with states cargo units with 
their location and intended destination. Such ap-
proach is employed in order to test a greatly scal-
able configuration of robots that do not require 
any reconfiguration of the system when robots are 
added or removed. 

Two approaches of robot planning in the do-
main of decentralized autonomous robots are pre-
sented. In the first approach each robot takes a 
cargo and delivers it directly to the final destina-
tion. Such strategy is referred to as the independent 
strategy in this paper. In the cooperative strategy, 
robots are trying to pass cargo to other robots and 
also pick up cargo left by other robots. The physi-
cal construction of warehouse limits the movement 
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of robots, so that collisions and traffic jams occur 
and need to be handled. Additionally, due to the 
nature of the physical model [24] on which the pre-
sented simulation is based, movement in a straight 
line is significantly faster than turning. 

The model of a warehouse on which the simu-
lation is based and two planning algorithms are 
presented in chapter 3, together with the details 
of both strategies. After the set of experiments 
(chapter 4), the paper is summarized with conclu-
sion about the advantages of cooperative plan-
ning algorithm.

PROBLEM FORMULATION

Presented investigations are based on a table-
top model described in [24]. The physical model 
of AMR (Fig. 1) is equipped with a set of encod-
ers for robot and gripper positioning, engines for 
forward and turning movement, and a processing 
unit for orders management according to selected 
planning algorithm. Robots are moving on railway 
tracks and each robot is capable of moving for-
ward and backward. Change of direction is only 
possible when the robots is standing on the turn-
table. Every robot is equipped with a manipulator 

for picking up and dropping of cargo from both 
sides (left and right). Each robot is independently 
programmed using an onboard computer.

The simulation constraints were measured 
form the real model [24]. In particular, the turn-
table design results in slow change of direction 
with respect to fast forward driving. This is due to 
precise 90 degrees rotation positioning. This con-
straint is the basis for designing the cooperating 
algorithm, as it is supposedly advantageous for 
the robot to pass cargo from one table to the next 
table for the next robot to pick it up, rather than 
travel to the destination and spending time chang-
ing direction with each individual parcel. 

Those constraints result in a problem of glob-
al optimization, but to maintain scalability of the 
design, robots are intended to plan their actions 
locally, without any global commands issued by 
the optimization center. 

The aim of the research is to investigate the 
total task competition time and execution time of 
each robot in multi robot environment depending 
on number of robots, chosen algorithm (coopera-
tive / independent) and depending on warehouse 
configuration. The measured quantities are de-
scribed in detail in Chapter 5.

SYSTEM MODELING AND CONTROL

World formulation and warehouse model

The simulation is defined with use of formal 
notation tuple < P, O, W > similar to PDDL or 
STRIPS notation, containing set of predicates P, 
operators O and the world W that is a warehouse 
model. In the simulation world, there is a ware-
house W[XW, YW] of set width XW and height YW. 
The warehouse contains a number of robots R, 
tracks T, storage shelves S, cargos C and destina-
tion D, so W = {R, T, S, C, D}. The warehouse is 
visualized in Figure 2.

There are NC cargos in the cargos set, where 
each cargo has its position in the warehouse, so 
  𝐶𝐶 = {𝐶𝐶1(𝑥𝑥𝐶𝐶1, 𝑦𝑦𝐶𝐶1), 𝐶𝐶2(𝑥𝑥𝐶𝐶2, 𝑦𝑦𝐶𝐶2),… , 𝐶𝐶𝑁𝑁𝐶𝐶(𝑥𝑥𝐶𝐶𝑁𝑁𝐶𝐶, 𝑦𝑦𝐶𝐶𝑁𝑁𝐶𝐶) (1) 

 
 (1)

and xC ∈ XW, yC ∈ YW. Similar definitions are 
formulated for T, S, D and R.

There are also additional parameters. Each 
cargo has a defined desired destination, each ro-
bot has a planning algorithm and each track has 
an occupancy state. This set of parameters are Figure 1. Physical model that inspired research [24]
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defined as world predicates P. The list of predi-
cates is (A and B are predicate’s parameters):
 • TO (CA, DB) - Cargo’s A desired position is B
 • EMPTY (TA) - There is no robot on track A, so 

a robot that would like to go there can do so
 • ON_SHELF (CA, SB) - Cargo A is on shelf B 
 • CARRYING (RA, CB) - Robot A is carrying 

cargo B 
 • ALGORITHM (RA, B) - Robot’s A planning al-

gorithm is defined as B 

Topological model

For the purpose of planning of the shortest 
paths by each robot, a graph representation of the 
world is needed. Therefore the cellular automata 
world is translated into a weighted graph (Fig. 3). 
The size of the graph and number of shelves loops 
are adjustable and dependent upon warehouse W 
size (XW, YW). Nodes T and P are represented sepa-
rately for better graph readability. 

Tracks connection is straightforward to rep-
resent in graph form. Two main challenges are 
the turntable and the procedure of cargo pick-
ing / dropping. The turntable is designed in such 
way, that passing straight ahead is fast, however 
turning 90°  is time consuming because it requires 

additional actions and proper positioning. This is 
why the turntable track was split into 4 nodes with 
small cost of going straight gs and high cost of turn-
ing gt. The package handling is designed in such way, 
that the task of package picking / dropping requires 
navigation to node adherent do track node. The cost 
is a sum of positioning time gp and manipulator op-
eration time gm. In order to create an easier, non-di-
rectional graph, the edge value is set to average of 
those two time measures as (gp + gm)/2. 

The edge weights of graph g were experimen-
tally measured from physical model’s operation 
time [24] and are set to: 90° turn gt = 22; cargo 
handling = 9 (where positioning gp = 5 and ma-
nipulation gm = 4); move forward to next track gf 
= 1; turntable straight ahead gs = 1. Weights are 
measured in unit cycles and are proportional to 
task execution time.

Operations

Robots are capable of performing the follow-
ing primary operations O: 
 • MOVE(RA, TB, TC) – Move robot A form track 

B to track C.
 • PICK_CARGO(RA, CB) – Pickup cargo B by 

robot A

Figure 2. Exemplary warehouse model W = {R, T, S, C, D}

Figure 3. Warehouse graph model of a single shelf loop
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 • DROP_CARGO(RA, DB) – Drop cargo that is 
transported by robot A to a destination D

 • TRY_DROP_RIGHT (RA) – Drop cargo to the 
right of robot A if the shelve on the right of 
robot position is empty, that is for any C, ¬ON 
SHELF(C, S(xRA + 1, yRA)) (symbol ¬ means 
negation). 

Primary operations are grouped into tasks. A 
generation of a task requires the robot to plan a 
sequence of primary operations. The following 
planning tasks are available:
 • GOTO_PICK(RA, CB) – Find a plan for pick-

ing up cargo B by robot A
 • GOTO_DROP (RA, DB) – Find a plan for deliv-

ering a cargo to delivery B by robot A
 • RETURN_TO_ORIGIN (RA) – Find a plan to 

return to a starting position
 • DROP_RIGHT (RA, CB) – Find the place to 

drop a cargo B on the available shelf
 • WITHDRAWL_MOVE(RA) – In case of dead-

lock, perform an evasive maneuver having 
a random number of steps, to make sure the 
deadlock with other robot is resolved 

Planning algorithms

At this point of model development, each ro-
bot can be programmed to use one of two planning 
strategies: an individual (Table 1) or cooperative 
(Table 2) strategy. Both algorithms are highlight-
ed with use of pseudocode. The most important 
part of each algorithm is the planning part with 

path finding algorithm with resulting path P. Its 
aim is to find a set of coordinates of tracks
 

 
 𝑃𝑃 = [𝑇𝑇(𝑥𝑥0, 𝑦𝑦0), 𝑇𝑇(𝑥𝑥1, 𝑦𝑦1), 𝑇𝑇(𝑥𝑥2, 𝑦𝑦2), … , 𝑇𝑇(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)] (2) 

 
 (2)

that connects the source with destination, depend-
ing on how the source T(x0, y0) and destination T 
(xi, yi) is defined.

Both algorithms share two collision avoid-
ance parts with checking if track T indicated by 
next element of P is occupied. In case that a robot 
tries to move to occupied track, there is a coun-
ter set to random number of cycles that immobi-
lizes robot. If the move is not possible after this 
time, the robot stops executing the current plan 
and tries to find another path. The random num-
ber of cycles should prevent deadlocks. If two 
robots try to head to the opposite directions and 
decide to wait the same amount of time, they will 
both chose different paths and a collision may oc-
cur in a different place. In case of random time, 
one robot will likely head in another direction 
while the robot that waits longer will be able to 
proceed. This is also the reason why the waiting 
time for robots with cargo are higher (5-10) than 
for robots without cargo (1-5), because delivering 
is more important than finding cargo. Addition-
ally, withdrawal maneuvers are incorporated, for 
cases when robots are unable to resolve a conflict 
of movement. In such a case, each robots drives 
away from its destination by a random number of 
steps, and then plans the task at hand again. 

The main difference between algorithms is 
that a robot with individual strategy finds cargo 

Table 1. Algorithm 1 individual algorithm
Require: Rn(xRn, yRn), Cm(xCm, yCm), Dm(xDm, yDm)
Ensure: (xCm, yCm) = (xDm, yDm)

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

For given n find m that indicates Cm closest to Rn
GOTO_PICK(Rn, Cm) : Find shortest path P1 from (xRn, yRn) to (xCm + 1, yCm)
for each element i of P1 do
    if TP1i ≠ empty then
        wait (random(1–5) cycles)
        Go to: 1
    else
        MOVE(Rn, T(xRn, yRn), T(P1i))
    end if
end for
PICK_CARGO(Rn, Cm)
GOTO_DROP(Rn, Dm) : Find shortest path P2 from (xRn, yRn) to (xDm − 1, yDm)
for each element i of P2 do
    if TP2i ≠ empty then
        wait (random(5-10) cycles)
        Go to: 12
    else
        MOVE(Rn, T(xRn, yRn), T (P2i ))
    end if
end for
DROP CARGO(Rn, Dm)
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and delivers it to the ultimate destination, while 
a robot with cooperative strategy heads to one al-
ley and shift cargo from left to right, similar to 
bucket brigade strategy described before. This is 
introduced in Algorithm 2 as a function of finding 
the coordinate xa of alley with maximum occupied 
shelves on left and empty shelves on right and a 
function of finding closest empty shelve coordi-
nate ye on the right of the robot. In the case that 
there is no empty shelves on the right, robot tries 
to switch alleys to the right. In case of every shelve 
occupied, it moves to the most right alley with a 
drop zone, where drop zone is always empty. 

EXPERIMENTAL SETUP

Simulation of the presented setup has been im-
plemented in Python, with a graphical user inter-
face (GUI) designed in Tkinter library. The ware-
house is modelled as a world W[XW, YW] imple-
mented as an array of cells. Each cell can hold any 
object derived from the Cell() class. Those objects 
represent robots (blue), robots with cargo (pink), 
tracks (black), storage shelves (yellow), cargos 
(red) and destinations (purple). All objects imple-
ment a virtual method run(), the execution of which 
calculates the action of a cell depending on neigh-
boring cells and its current state. Each simulation 

step executes run() methods of all the cells. Cargo 
objects may only occupy a cell previously occu-
pied by a storage shelve or destination, while pick-
ing up of a cargo changes the visualization to a 
shelve in place of the picked up cargo. When cargo 
is picked up, the robot remembers the reference to 
the picked up cargo object and removes this object 
from the world. If cargo is dropped on to a shelve, 
it’s reference is copied to the world in place of a 
shelve. If cargo is dropped to a destination, the 
destination adds this reference to its own list of all 
cargo dropped to this destination. 

Robot logic is implemented in its run() meth-
od. When planning of action is needed, a series of 
tasks is placed in Task queue. Once a new task is 
taken out of this queue, a task planning routine is 
invoked, and places a series of primary operations 
in Moves queue. Therefore, each time, the run() 
method is executed, one move is taken from the 
Moves queue and executed. Additionally, moves 
have different execution times in real world. There-
fore, an additional counter is used to implement 
moves taking more than one simulation iteration. 

An example of the initial state of the ware-
house is presented on Figure 4 and is of size 11 × 7 
that results in 6 alleys and 5 tables (5 + 6 = 11) and 
each table with 5 places to put package (5 + 2 = 7). 
Robots are parked at the bottom-left side, desti-
nations are in the rightmost alley (marked purple) 

Table 2. Algorithm 2 cooperative algorithm
Require: Rn(xRn, yRn), Cm(xCm, yCm), Dm(xDm, yDm)
Ensure: (xCm, yCm) = (xDm, yDm)

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

Find alley xa with max( Σ ON SHELF (C*, S(xa−1,*)) – Σ ON_SHELF (C*, S(xa+1,*)))
Find m that indicates first Cm with xCm = xa − 1
GOTO_PICK(Rn, Cm) : Find shortest path P1 from (xRn, yRn) to (xCm + 1, yCm)
for each element i of P1 do
    if TP 1i ≠ empty then
        wait (random(1–5) cycles)
        Go to: 1
    else
        MOVE(Rn, T(xRn, yRn), T(P1i))
        end if
end for
PICK_CARGO(Rn, Cm)
TRY_DROP_RIGHT (Rn) : Find ye with ¬ON_SHELF (C(xa +1, ye)), S(xa + 1, ye))
if TRY_DROP_RIGHT (Rn) failed then
    repeat with xa = xa + 2
end if
GOTO_DROP (Rn, Dm): Find shortest path P2 from (xRn, yRn) to (xa, ye)
for each element i of P2 do
    if TP2i ≠ empty then
        wait (random(5-10) cycles)
        Go to: 17
    else
        MOVE(Rn, T(xRn, yRn), T (P2i))
    end if
end for
DROP CARGO(Rn, (xa, ye))
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and all shelves are occupied by cargo addressed to 
particular destinations (numbers on red).

Once simulation is started, robots execute their 
planning algorithm and start moving. Figure 5 pres-
ents a state in which robot 3 has picked up cargo 
addressed to destination 3, robot 2 picked cargo 
addressed to address 1 and robot 1 has already 
dropped its cargo and is driving to pick up another. 

When all cargo is transferred to its destina-
tions, robots return to their parking positions, all 
cargo are in their destinations and all shelves are 
empty (Fig. 6)

EXPERIMENTAL RESULTS

The presented strategies have been tested 
using multiple simulation runs for two different 
warehouse configurations presented in Figure 7. 
Configuration 1 has 5 columns of tables with 10 
positions in each column (resulting in W = (11, 
12)), while configuration 2 has 10 columns of 
tables with 5 positions in each column (resulting 
in W = (21, 7)). In both configurations, drop off 
destinations are located on the right end of the 
warehouse (12 in setup 1 and 6 in setup 2). In 

Figure 4. Initial set up of the warehouse containing cargo for delivery to destinations

Figure 5. Initial set up of the warehouse containing cargo for delivery to destinations

Figure 6. Final state of the simulation with all shelves empty, and all cargo in destinations
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each simulation run, all tables are filled with car-
go having a random destination. Due to this intro-
duced randomness, each simulation is repeated 10 
times for different setups and for different number 
of robots. A minimum of 1 robot and a maximum 
of 5 robots working at the same time is assumed 

Results are investigated based on the follow-
ing quantities. First, total time Ttotal needed to dis-
tribute all cargo is computed and is represented 
by the number of simulation steps needed to 

complete the whole distribution task. Sec-
ondly, average robot execution time TR is quanti-
fied as the average number of moves (cycles) per-
formed in the warehouse by each robot and a total 
robot execution time of all robots TRtotal is quanti-
fied the same way but for all robots combined. 

Thirdly, energy wastage factor %EU is defined as 
factor of empty runs, that is the percentage of step 
performed without cargo on board. 

In the presented results, there is a separate 
plot for each warehouse setup: configuration 1 (5 
× 10) and configuration 2 (10 × 5). In each plot 
the robots’ algorithms are compared. Each ware-
house configuration was solved for different num-
ber of robots in warehouse: RN = {1,..., 5}. Each 
experiment was repeated multiple times, thus the 
plots present average numbers. Each obtained test 
result is presented for each configuration and an 
average function that shows the trend.

For configuration 1 the cooperative strategy 
surpasses the independent strategy in the total 
time needed for the completion of the distribution 

Figure 7. Initial set up of the warehouse containing cargo for delivery to destinations(a) Configuration 1: 
warehouse of size 5 × 10 (W = (11, 12)), (b) Configuration 2: warehouse of size 10 × 5 (W = (21, 7))
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task (Fig. 8). In the optimal case of 4 robots  in 
Configuration 1, the cooperative strategy re-
sulted in a 30% decrease of the time needed for 
the completion of the whole task. However, the 
greater the number of robots, the smaller the gain 
from addition of another robot. This congestion 
effect increases faster with the number of robots 
in Configuration 2, where for 5 robots Ttotal time is 
smaller if robots work in the independent mode. 
Additionally, because in Configuration 1 only 5 
corridors are available for the robots working in 
a cooperative mode, a greater number of robots 
was not tested, as it would result in a permanent 
inactivity of the “sixth” robot. Additionally, small 
number of robots in Configuration 1 results in 
shorter total time for the independent strategy. 
Leaving cargo on shelves when few or no robots 
are available to pick cargo from the other side, re-
quires the available robot to perform unnecessary 
drop and pick operations. 

The average robot operation time signifies 
an optimum number of working robots in some 
cases (Fig. 9), especially in case of the indepen-
dent strategy. Configuration 1 also seems to be 
unfavorable for the independent strategy, as the 

average robot cycles usage increases rapidly with 
the number of robots.

Naturally, the total robots execution time TRto-

tal increases when more robots are working on the 
task. However, for the independent strategy, TRtotal 
increases more rapidly with respect to the coop-
erative strategy (Fig. 10). For Configuration 2, 
the cooperative strategy needs at least 4 robots to 
surpass the independent strategy with respect to 
total execution time TRtotal. All experimental data 
presented in Figures 8–10 are presented in Table 
3 for better comparison.

When the energy wastage defined by the 
number of moves performed without cargo is 
concerned, in Configuration 2, the cooperative 
strategy significantly outperforms the indepen-
dent strategy, and in the worst case (setup 1 for 
3–5 robots), the cycles wastage is the same for 
both strategies (Fig. 11). Those results also sug-
gest, that in the cooperative strategy robots are 
naturally spending less time travelling for cargo 
and more time actually delivering cargo to either 
tables being closer to the final drop off destina-
tion or to the final destinations itself. In general 
the presented results show, that when only few 
robots are working (as compared to the size of the 

Figure 8. Total time Ttotal to complete the whole distribution task (a) Configuration 1, (b) Configuration 2
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Figure 9. Average robot operation time TR by individual robots in the warehouse

Figure 10. Total execution time TRtotal for all robots
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warehouse), it is better to use the individual strat-
egy, as using the cooperative strategy requires 
more iterations to complete all tasks. For a me-
dium number of robots working in the warehouse, 
the total cost is similar, but if the increasing num-
ber of robots causes congestion and collisions, it 
is better to use the cooperative strategy

CONCLUSIONS

The paper examined a possibility of non-
communicating robots cooperation in a ware-
house parcel transportation system. Individual 
strategies, in which robots deliver parcels di-
rectly to the designated destinations are always 
possible. However, such systems need additional 

optimization to select the number of robots that 
matches the size of the warehouse and prevents 
congestion. On the other hand it is possible to 
devise cooperative strategies, in which robots co-
operate without directly communicating with one 
another. Obviously, such strategies must incorpo-
rate additional knowledge about the warehouse 
setup. In the presented example it was assumed 
that a global orders list allows for corridor reser-
vation, parcels are always transported in one gen-
eral direction, and that shelves are approachable 
from both sides, enabling parcels to be dropped 
by one robot and picked up by another robot on 
the other side of the shelve. When such assump-
tions are made, non-communicating robots may 
have higher efficiency by working in a coopera-
tive fashion. 

Figure 11. Empty runs %EU for all robots

Table 3. Summary of experimental data presented in the Figures 7–9

Parameter
(a) Configuration 1 (b) Configuration 2

RN 1 2 3 4 5 1 2 3 4 5

Ttotal (Fig. 8)
Ind 5145 3441 3000 2756 2820 5657 3776 3285 3172 3134

Coop 4621 2961 2364 1853 1957 9436 4670 3764 2944 2736

TR  (Fig. 9)
Ind 1156 867 887 906 1198 1443 966 873 875 1041

Coop 1130 834 593 531 671 1848 1097 864 708 787

TRtotal (Fig. 10)
Ind 1156 1734 2661 3624 5990 1443 1932 2619 3500 5205

Coop 1130 1668 1779 2124 3355 1848 2194 2592 2832 3935
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An additional advantage of the presented 
cooperative strategy is that it selects an optimal 
number of cooperating robots. This selection is 
naturally performed based on the global orders 
list reservation mechanism. When all corridors 
are reserved, an additional robot returns to its 
parking location. 

Future work should investigate whether it is 
possible to enhance the logic of a robot in such a 
way, that changes in strategies are made only on 
the basis of observations the robot can make (fre-
quency of collisions for example). Such a robot 
could switch between the individual and coopera-
tive strategies automatically, adapting to the cur-
rent conditions in the warehouse. 
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