
403

INTRODUCTION

Short production cycle times and the ne-
cessity to deliver products that meet technical 
specifications at the lowest possible cost pres-
ent challenges for enterprises. Delivering parts 
that are crucial for the safety of machinery and 
equipment requires special attention. Personnel 
working in visual inspection are flexible, easy 
to train, and creative, but at the same time, they 
constitute a cost for the enterprise, become fa-
tigued during long hours of work, and operate 
slower than vision systems [1, 2]. On the other 
hand, quality control systems, while essential 

for ensuring high-quality products and services, 
also come with significant implementation and 
maintenance costs, including hardware, soft-
ware, and other operational expenses [3]. Qual-
ity involves more than just the final inspection of 
a product; it encompasses the entire production 
process. Even a small oversight or lapse in atten-
tion at any stage can lead to defects, disrupting 
production and making it more difficult to up-
hold consistent high standards efficiently [4, 5]. 
The quality control process should be economi-
cally justified, ensuring that the costs involved 
do not outweigh the benefits of maintaining high 
product standards [6, 7].

Application of Neural Networks for Defect Detection in Rotationally 
Symmetric Components

Andrzej Chmielowiec1*, Paweł Żurawski2, Sylwia Sikorska-Czupryna1, Leszek Klich1, 
Patryk Organiściak3

1 Faculty of Mechanics and Technology, Rzeszow University of Technology, ul. Kwiatkowskiego 4, 37-450 
Stalowa Wola, Poland

2 Doctoral School of the Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, 
Poland

3 Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, ul. Wincentego Pola 2, 
35-959 Rzeszów, Poland

* Corresponding author’s e-mail: achmie@prz.edu.pl

ABSTRACT
Industrial quality control systems in mass production facilities must exhibit a very high level of defect detection 
efficiency. The continuous increase in quality control and process automation requirements is leading companies 
to increasingly experiment with artificial intelligence methods to boost efficiency. One potential application area 
for AI is visual inspection, which is an essential element of almost every quality control process. In this article, we 
propose the use of neural networks for the visual inspection of rotationally symmetric components. The presented 
method leverages the existence of symmetry to represent images in a polar coordinate system and to implement 
the learning process on data modified in this way. An undeniable advantage of the proposed algorithm is also the 
transition from a two-dimensional to a one-dimensional representation, which significantly reduces the demand 
for memory resources and the required computational power. This is particularly important in mass production 
processes, where the time for data analysis is relatively short. The high repeatability of images due to the mass 
production nature makes this model exceptionally effective, allowing not only to confirm the presence of defects 
but even to locate them. The obtained results are compared with the results achieved using a convolutional neural 
network operating on two-dimensional images.

Keywords: defect detection; quality control; neural networks; computer vision; mass production.

Received: 2024.08.22
Accepted: 2024.10.19
Published: 2024.11.01

Advances in Science and Technology Research Journal, 18(8), 403–415
https://doi.org/10.12913/22998624/194891
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology 
Research Journal



404

Advances in Science and Technology Research Journal 2024, 18(8), 403–415

In some cases, delivering a single defective 
product to a customer can result in multimillion 
penalties. Detecting such defects requires the 
withdrawal of the entire series of products from 
the market at the manufacturer’s expense and 
the payment of compensation. An example is the 
detection of malfunctioning airbags by Takata, 
which could have led to servicing as many as 
100 million cars. Consumers, upon discovering 
a defective product, can assert their rights based 
on national regulations and directives, such as 
the EU Directive 85/374/EEC, often resulting in 
multimillion-dollar compensations [8].

Vision systems in large-scale production ap-
plications offer several advantages over visual 
inspection, including faster product inspection, 
increased defect detection effectiveness, real-time 
data analysis capability, and the prevention of hu-
man errors [9–12].

In modern industrial enterprises, vision sys-
tems are integrated with tracking and control 
systems for production parameters. This integra-
tion is realized through systems such as TQM 
and MES, which increasingly use machine learn-
ing [13] alongside standard statistical methods 
[14]. Additionally, the use of vision systems for 
industrial quality control measurements is con-
tinuously advancing. Therefore, this process is 
increasingly supported by artificial intelligence 
algorithms. Modern production lines are equipped 
with a significant amount of automation and elec-
tronics that provide information on operating pa-
rameters and the technical conditions of machines 
and equipment. These algorithms can correlate 
this information with production efficiency and 
quality thanks to advanced vision systems. Infor-
mation exchange between the vision system and 
other systems such as ERP, MES, TQM, and TPM 
is also possible [15]. Although computer vision-
based vision systems are still the most popular 
in industrial environments, AI-based algorithms, 
including deep learning and convolutional neural 
networks, are gaining prominence. The accuracy 
of such algorithms is close to 100%, which per-
fectly aligns with the expectations of large-scale 
production [12]. Moreover, the integration of 
machine learning and AI is further advanced by 
improving traditional methods, such as feature-
based image stitching, as demonstrated in the 
study by Schlagenhauf et al., where an innovative 
stitching algorithm for rotationally symmetric 
components was developed [16].

Therefore, quality control plays a key role in 
production processes, ensuring the detection of 
defects and non-conformities before products are 
put into use [17, 18]. Traditional visual inspection 
methods, involving human factors, are labour-in-
tensive, prone to errors, and suffer from the limi-
tations of human perception. In recent years, ad-
vanced machine learning techniques, especially 
neural networks, have revolutionized the quality 
control process, offering automated, accurate, and 
scalable solutions for defect detection [19].

Neural networks, inspired by the architec-
ture of biological neurons, exhibit unparalleled 
ability in pattern recognition and data classifi-
cation [20, 21], making them an ideal tool for 
defect identification in quality control process-
es. Through deep learning, neural networks can 
learn distinctive features of defects from large 
training datasets and detect them in new exam-
ples with high precision [22]. Architectures such 
as Convolutional Neural Networks (CNN) [23] 
and ResNet [24] have revolutionized image rec-
ognition and object detection, enabling effective 
model training on large datasets.

A particular challenge in quality control is 
the inspection of symmetrical components, where 
detecting minor deviations from the correct form 
is crucial. Traditional methods often prove insuf-
ficient in identifying subtle defects hidden within 
repetitive patterns [25]. Neural networks, with 
their ability to capture complex dependencies in 
data, present a promising solution for automated 
defect detection in symmetrical components [26].

Machine learning and AI has recently be-
come a crucial tool for surface defect detection 
in industries, gaining significant attention from 
researchers and professionals [27, 28]. Cum-
bajin et al. identifies that metal surfaces are the 
most frequently studied, representing 62.71% of 
the research, with image classification being the 
most common problem type. It also highlights the 
widespread use of performance-enhancing tech-
niques like transfer learning (83.05%) and data 
augmentation (59.32%), especially when datasets 
are small or difficult to obtain. Ameri et al. high-
lights that techniques like transfer learning and 
data augmentation are essential for improving 
performance, especially when dealing with lim-
ited or hard-to-obtain datasets. Pyramid networks 
and CNN models are frequently employed, with 
metal surfaces being the most studied, represent-
ing the majority of the research.



405

Advances in Science and Technology Research Journal 2024, 18(8), 403–415

The use of machine learning (ML) and deep 
learning (DL) is an effective approach for detect-
ing and predicting defects, particularly within the 
context of Industry 4.0, where data-driven tech-
niques enhance automation and predictive main-
tenance [29]. Awtoniuk et al. applied neural net-
works to detect defects in engine head castings, 
using data collected during the production stage, 
rather than data related to the final products, such 
as images. The authors explain that choosing 
measurements during the production process al-
lows for an assessment of the casting immediate-
ly after the process is completed, eliminating the 
need for additional quality checks, such as X-ray 
or microscopic examinations [30]. The Oborski 
et al. study presents the development of an intelli-
gent visual quality control system based on Con-
volutional Neural Networks (CNNs) within the 
requirements of Industry 4.0. This system inte-
grates machines, operators and process monitor-
ing, enabling the automation of information flow 
between the management and production levels. 
The algorithm achieved precision of (99.82%) in 
defect identification, demonstrating the potential 
for quality control automation in complex pro-
duction environments [31].

Wen et al. discuss a machine vision system de-
signed for inspecting the surface quality of bear-
ing rollers using Convolutional Neural Networks 
(CNNs). The paper outlines the challenges of de-
tecting defects such as scratches, corrosion, and 
missing material, comparing the proposed ma-
chine vision system with traditional methods. The 
results demonstrate that the system achieves higher 
accuracy, with precision scores of about 93% and 
a recall rate of around 90%, outperforming tradi-
tional inspection methods, which achieved preci-
sion scores between 86.40% and 86.94% [32].

Hena et al. focused on the detection of flaws in 
aluminium components using digital X-ray radiog-
raphy. They applied machine learning with k-di-
mensional trees to evaluate defects according to the 
ASTM 2973-15 standard. This approach enabled 
the effective detection, classification, and grading of 
defects in aluminium castings, supporting automat-
ed quality control decisions in manufacturing [33].

Engine components are often a focus of quality 
control research. In the study by Abagiu et al., at-
tention was given to the cylinder chambers within 
engine blocks, specifically targeting machining de-
fects on the cylinder walls. The system was devel-
oped to automatically detect these defects during 
production, replacing manual inspection. The CNN 

model, using RGB images, achieved an accuracy 
of 100% [34]. Yoon et al. applied machine and 
deep learning methods to detect defects on piston 
rods and steering racks using impact response tests. 
The analysis focused on shifts in natural frequen-
cies, achieving 100% accuracy in identifying de-
fects. They used time and frequency domain data, 
extracted through Fast Fourier Transform (FFT), 
and employed feature vectors such as resonance 
frequencies and energy to train PCA, SVM, and 
BiLSTM models. This approach promises effec-
tive automated quality control in manufacturing 
[35]. Oeckl et al. in their study found that the use 
of computed tomography (CT) allowed the detec-
tion of piston defects with very high precision. This 
enabled early detection of problems, such as inter-
nal porosity, with an accuracy of less than 0.1 mm. 
The results also showed that integrating the CT sys-
tem into the manufacturing process contributed to 
a significant improvement in quality control and 
a reduction in the number of defective components 
[36]. Utami & Leni in their study focused on using 
a Convolutional Neural Network (CNN) to detect 
piston damage based on digital images. The dataset 
consisted of 285 images classified into three cat-
egories: pistons with defects (Defected1), pistons 
with oil stains (Defected2), and normal pistons. The 
CNN model achieved an accuracy of 72.2% during 
training and 68.9% during validation, with preci-
sion and recall values around 70% [37]. The study 
by Brambilla et al. presented in this document fo-
cuses on the quality control of circularly symmetric 
components (CSC), such as bearings, clutch discs, 
gears, and washers, using vision-based algorithms. 
The authors compared traditional feature-based 
methods, such as Fourier and signal processing 
techniques, with deep learning (DL) approaches 
(MobileNetV2, ResNet50). The results demon-
strated high accuracy for both methods, with DL 
models achieving over 99% accuracy [38].

This article presents a comprehensive study 
on the application of various neural network 
architectures for defect detection in rotation-
ally symmetrical components. Key aspects such 
as data preparation, neural architecture design, 
training processes, and performance evaluation 
will be discussed. Particular emphasis will be 
placed on comparing classical image process-
ing methods [39, 40] with modern deep learn-
ing techniques in the context of defect detection. 
Additionally, the effectiveness of knowledge 
transfer between different domains [41] will 
be examined to enhance model performance in 



406

Advances in Science and Technology Research Journal 2024, 18(8), 403–415

scenarios with limited training data, to effective-
ly identify even subtle visual defects [42]. Case 
studies and experimental results will be present-
ed, illustrating the effectiveness of the proposed 
methods in real-world production scenarios.

MATERIALS AND METHODS

A large part of the products produced in various 
types of factories are characterized by symmetries 
of various kinds. A special case is products that are 
invariant due to rotation by a certain preset angle 
about a certain axis. Sometimes this can be only one 
angle, sometimes there are several such angles, and 
sometimes rotation by any angle keeps the product 
invariant. Thus, if the product is represented by a set 
of points A = {Pi ∈ R3}, an ∈ d the function 

 
f: R3 → 

R2 × V is used to represent these points, then by ro-
tational symmetry we will mean the property f(Pi) = 
f(Pi'), where  Pi' is formed from Pi by rotation about 
a given angle. The above definition is quite abstract, 
but in this article all attention will be focused on im-
ages of rotationally symmetric objects, which will 
allow us to demonstrate its operation from the prac-
tical side. An example of a rotationally symmetric 
product is shown in Figure 1. If rays are routed from 
the centre of symmetry of such an object at differ-
ent angles, it is possible to reconstruct the image on 
each ray separately. Such rays can then be grouped 
into stacks, which will form images with a height 
given by the number of rays combined. This method 
will be used as part of the preparation of input data 
for the machine learning model.

Assume that the point P = (x, y) after perform-
ing a rotation by an angle α goes to the point P = 
(xʹ, yʹ) as shown in Figure 2. The new point Pʹ  
is surrounded by four points Q1, Q2, Q3  and Q4, 
where the imaging function f is defined. Since the 
action takes place directly on the pixels of the fin-
ished image, we can refer to the f function as the f: 
R2 → V, where V is the given color space. In this 
case, the points Qi have the following properties:
 • Q1 = (x1, y1), f(Q1) = (v1): the nearest pixel to 

the left-down from Pʹ,
 • Q2 = (x1, y2), f(Q2) = (v2): the nearest pixel to 

the left-up from Pʹ, 
 • Q3 = (x2, y2), f(Q3) = (v3): the nearest pixel to 

the right-up from Pʹ,
 • Q4 = (x2, y1), f(Q4) = (v4): the nearest pixel to 

the right-down from Pʹ.

where x1 = xʹ, x2 = xʹ , y1 = yʹ , y2 = yʹ, 
and  vi' define the color of the point. For the co-
ordinates thus given, we determine the distances 
dx = xʹ – x1 and dy = yʹ – y1, which define the 
horizontal and vertical distances of point Pʹ  from 

 Q1, respectively. The imaging value of a point Pʹ 
is calculated as the weighted sum of the imaging 
for the four surrounding points Q1:

 f(P') = f(Q1) · (1– dx)(1– dy) + f(Q2) · (1 – dx)dy + 
 + f(Q3) · dxdy + f(Q4) · dx(1 – dy) (1)

If the values of the imaging function are de-
termined for all points of the ray, a ray image will 
be created, with dimensions of one pixel per ray 
length. Such images can then be grouped together 
to form input datasets for the machine learning 
model. Examples of conversions in which all 
radial images have been assembled side by side 
horizontally are shown in Figure 3. They clearly 

Figure 1. Piston part as an example of a rotationally 
symmetric semi-finished product

Figure 2. Scheme for determining the new value 
of a point after performing a rotation by a given α 

angle based on the values in neighboring points Q1, 
Q2, Q3 and Q4



407

Advances in Science and Technology Research Journal 2024, 18(8), 403–415

show how rotational symmetry contributes to 
making the image more regular.

Data preparation and vector generation process

In order to automate the process of generating 
vectors for machine learning models, each defect 
found in the input image was manually marked 
with the colour green RGB = (0, 255, 0). Figure 4 
illustrates how the images were modified to mark 
the defect. The colour used to mark the defect is 
not present in any of the original images and can be 
used to read the position of the defect on individual 
rays. In doing so, it is important to remember that 
the process of determining the colours for individ-
ual rays is approximative in nature. In practice, this 
means only that after transformation, the colour of 
the defect may differ slightly from the base colour 
RGB = (0, 255, 0). Therefore, the OpenCV library 
and the HSV palette were used for identification, 
for which the condition was assumed that a given 
point contains a defect if its colour meets the condi-
tion H∈[50; 70]

 
and 

 
S + V ≥ 255. If this condition 

is satisfied, the intensity of the defect is expressed 
by the relation . It should be noted here that for 
the OpenCV library, the HSV palette values are in 
the following ranges: H ∈ [0; 180], S, V ∈ [0; 255].

Images of pistons with defects and images of 
pistons with defects marked in green were taken 
as input for the process of generating machine 
learning vectors. Thus, each image was provided 
in two versions: the original version and the ver-
sion with a marked defect (see Figure 4). Then, 
using the implemented software, sets of vectors 
were generated for machine learning. Each vec-
tor consisted of an input tensor containing image 
data and an output tensor containing information 
about the location of the defect. For the purpose 
of verifying the effectiveness of specific machine 
learning methods, it was decided to group indi-
vidual rays into so-called stacks of 1, 2, 4, 8, 16 
and 32 rays. Therefore, individual tensors repre-
sented stacks of rays of a given size. These tensors 
were developed in two input variants (grayscale 
palette and HSV palette) and one output variant 
(intensity of defect in grayscale palette). Figures 

Figure 3. Examples of extracting rays from an image and assembling them horizontally as new images

Figure 4. An image of a piston with a visible defect (a) and an image in which the defect was manually marked with 
the green color RGB = (0, 255, 0) (b) to automate the process of generating vectors for the machine learning model



408

Advances in Science and Technology Research Journal 2024, 18(8), 403–415

Figure 5. Stacks numbered 0 to 33, which group 16 rays each from the sample image

Figure 6. Stacks numbered from 0 to 16, which group 32 rays each from the sample image

5 and 6 graphically show example tensors for ray 
stacks of size 16 and 32, respectively. In them, 
it can be seen that in areas where there is a de-
fect, the tensor named Defect intensity is clearly 
white, while in areas where there is no defect it 
remains black. For both the grayscale and HSV 
formats, an identical number of individual rays 
composed of 512 pixels was prepared. These rays 
were determined based on 63 images from the 
quality control process. The images were selected 
due to the defect they represented, which was the 
presence of a chip originating from the machining 
process. The extracted rays formed stacks of size 
1. Subsequently, the rays were combined to create 
stacks of sizes 2, 4, 8, 16 and 32. Table 1 provides 
information on the number of machine learning 
vectors depending on the stack size. This table 
also indicates the number of vectors containing 
defects. The increase in the percentage of vectors 

Table 1. The number of vectors in the dataset 
depending on the size of the rays’ stack, along with the 
number of vectors containing defects in both the gray 
format and the HSV format

Ray stack 
size

Number of 
stacks

Number of 
stacks with 

defects

Percent of 
stacks with 

defects
1 103 320 5312 5.1%

2 51 660 2712 5.2%

4 25 830 1420 5.5%

8 12 915 763 5.9%

16 6 489 437 6.7%

32 3 276 271 8.3%

with defects is due to the fact that stacking creates 
objects containing a significant number of defect-
free rays. This is therefore a natural effect that oc-
curs as a result of combining individual rays.



409

Advances in Science and Technology Research Journal 2024, 18(8), 403–415

Model architecture and operation

The primary goal when designing the architec-
ture of the machine learning model was to achieve 
a classification that divides objects into two catego-
ries: defective and non-defective. The objects to be 
classified were individual pixels located within a giv-
en stack of rays. Typical machine learning models 
responsible for classification assume that the input 
data will be assigned to one of several predefined 
classes. However, in this case, it was decided to 
build a model that classifies each pixel individually, 
with the assumption that the input to the model is 
the entire set of pixels. This means that we are deal-
ing with a situation where each pixel is classified 
individually, but neighbouring pixels (within the 
selected stack of rays) are also taken into account.

The main idea of the machine learning model 
architecture is presented in Figure 7. The first part 
of the model consists of affine narrowing transfor-
mations, followed by a linear expansion transforma-
tion, and the entire process is concluded with a sig-
moid function. The linear layers are supplemented 
with additional components as needed to prevent 
overfitting and the introduction of values that do 
not correspond to the pixel classification process. 
For example, the model for grayscale data uses the 
ReLU (Rectified Linear Unit) function, while the 
model for HSV data utilizes BatchNorm1d (Batch 
Normalization 1D), the ReLU function, and drop-
out. The implementation details of both versions of 
the model are discussed further in the results section.

RESULTS

The rays grouped into stacks were converted 
into numerical form and saved in compressed 
NumPy archive files (NPZ). These served as input 

values for neural network models. Additionally, 
as described earlier, for each input tensor, an out-
put tensor was developed that contained informa-
tion about the location of production defects. The 
output tensors were also converted into numerical 
form and saved in NPZ format. The process of 
preparing tensors for rays defined in grayscale is 
illustrated with the example code provided below.
# Loading data set.
dataset = np.load(‘dataset_

gray_0001.npz’)
# Input data.
data = dataset[‘data’]
# Output target.
target = dataset[‘target’]
# Input tensor preparation.
X_tensor = torch.tensor(data, 

dtype=torch.float32)
X_tensor = X_tensor.view(-1,
 ray_stack_size*512)
# Output tensor preparation.
scaler = MinMaxScaler()y_scaled = 

scaler.fit_transform(target.re-
shape(-1, 1)).reshape(target.shape)

y_tensor = torch.tensor(y_
scaled, dtype=torch.float32)

y_tensor = y_tensor.view(-1,
 ray_stack_size*512)

The preparation of tensors for the HSV colour 
palette is very similar, with the difference that the 
hue value has three independent components (an 
additional tensor dimension is added).

The neural network model for grayscale ray 
stacks was designed based on four linear (Linear) 
and activation (ReLU) layers, along with a Sig-
moid layer at the output. After creating the model, 
it is trained on the training data using the MSE Loss 
function and the Adam optimizer. The training data 
for the network comprises 80% of all vectors. The 
following code illustrates the definition of the neu-
ral network model used for grayscale rays.
class MultiOutputNeuralNetwork(nn.Module: 
 def __init__(self, ray_stack_size):
  super(MultiOutputNeuralNetwork, 
	 		self).__init__()
	 		self.flatten	= nn.Flatten()
	 	 self.fc1	= nn.Linear(ray_  
   stack_size*512, 128)
	 	 self.fc2	= nn.Linear(128,
  self.fc3	= nn.Linear(64, 32)
	 	 self.fc4	= nn.Linear(32,   
   ray_stack_size*512)
	 	 self.relu = nn.ReLU()
	 	 self.sigmoid	=	nn.Sigmoid()

Figure 7. The architecture of the machine learning 
model and its key components consist of narrowing 
affine transformations L1, L2, and L3, an expanding 

affine transformation L4, and the sigmoid function S1



410

Advances in Science and Technology Research Journal 2024, 18(8), 403–415

 def	forward(self, x):
 x = self.flatten(x)
 x = self.relu(self.fc1(x))
 x = self.relu(self.fc2(x))
 x = self.relu(self.fc3(x))
 x = self.sigmoid(self.fc4(x))
 return x

In the case of the HSV palette, the complexity 
of the model was increased by adding additional 
layers and multiplying the number of neurons. 
Additionally, to prevent overfitting, dropout was 
applied during the training phase, which random-
ly zeros out some of the input units at each update 
step of the training process. The introduced nor-
malization of tensors before each of the input lay-
ers improves the learning quality, stabilizes, and 
accelerates the training process. Similar to the 
grayscale case, the training data also constituted 
80% of the total available data. The following 
code snippet illustrates the neural network archi-
tecture developed for the HSV palette.
class MultiOutputNeuralNetwork(nn.Module):
  def __init__(self, ray_stack_size):\  
   super(MultiOutputNeuralNetwork,  
    self).__init__()
			 self.flatten	= nn.Flatten()
			 self.fc1	= nn.Linear(ray_stack_size 
    * 512 * 3, 256)
			 self.bn1 =	nn.BatchNorm1d(256)
			 self.fc2	= nn.Linear(256, 128)
			 self.bn2	=	nn.BatchNorm1d(128)
			 self.fc3	= nn.Linear(128, 64)
			 self.bn3	=	nn.BatchNorm1d(64)
			 self.fc4	= nn.Linear(64, 32)
			 self.fc5	=     
    nn.Linear(32,ray_stack_size * 512)
			 self.relu = nn.ReLU()
			 self.dropout = nn.Dropout(0.5)
			 self.sigmoid	=	nn.Sigmoid()
  def	forward(self, x):
    x = self.flatten(x)
  x = self.relu(self.bn1(self.fc1(x)))

  x = self.dropout(x)
  x = self.relu(self.bn2(self.fc2(x)))
  x = self.dropout(x)
  x = self.relu(self.bn3(self.fc3(x)))
  x = self.dropout(x)
  x = self.relu(self.fc4(x))
  x = self.sigmoid(self.fc5(x))
  return x

The neural network model for grayscale was 
designed as a simplified architecture compared to 
the HSV model. The data inputs have a size of 
512 · ray_stack_size, where ray_stack_size de-
notes the number of rays in a single tensor. The 
linear layers fc1 – fc4 are four layers with differ-
ent numbers of neurons in each layer (128, 64, 32, 
512) · ray_stack_size. The ReLU activation func-
tion is placed after each of the first three linear lay-
ers, and Sigmoid on the output layer. The output 
is a tensor with dimensions 512 · ray_stack_size.

For the HSV palette, the input data has a size 
of 3·512 · ray_stack_size. There are five linear 
layers fc1 – fc5 with different numbers of neurons 
in each layer: (256, 128, 64, 32, 512) · ray_stack_
size. Batch normalization is applied after each of 
the first three linear layers. Regularization with 
dropout at a rate of 0.5 is applied after each of the 
first three linear layers. The activation function is 
ReLU after each of the first four linear layers, and 
Sigmoid in the output layer. The output is a tensor 
with dimensions 512 · ray_stack_size.

All computations were performed on a com-
puter equipped with an AMD Ryzen 5 5600H 
processor (6 cores and 12 threads) and 32 GB 
of RAM. The calculations utilized the resources 
of the CPU, and the computational power of the 
GPU was not used. The implementation of both 
models was done using the PyTorch library ver-
sion 2.1.1+cu118. The total memory and time 
resources consumed by the developed mod-
els during training are presented in Table 2 and 

Figure 8. Graphs showing the computational resource usage by the model for grayscale and HSV models 
depending on the ray stack size: a) RAM usage, b) training time per epoch for the dataset specified in Table 1



411

Advances in Science and Technology Research Journal 2024, 18(8), 403–415

illustrated in Figure 8. The memory demand of 
the HSV model is always 4.9 times greater than 
that of the grayscale model for the given stack 
size of rays. Moreover, for both models, a two-
fold increase in the stack size results in a fourfold 
increase in memory consumption. The relation-
ship between the reserved memory and the ray 
stack size for both models is depicted in Figure 
8a). It should be noted that the vertical axis is on 
a logarithmic scale. The average training time per 

epoch for each model was also measured during 
the research. However, it is difficult to establish 
similar general patterns for time consumption as 
those observed for memory usage. The average 
training time for the examined models is illustrat-
ed in Figure 8 b). It is worth highlighting here that 
for the grayscale model, the computation time for 
a stack consisting of a single ray is longer than 
for stacks consisting of two and four rays. This is 
most likely due to optimizations implemented by 
numerical libraries. Nevertheless, it indicates that 
such details should be taken into account when 
developing solutions where computational effi-
ciency is of particular importance.

Figure 9 presents the learning process graphs 
of the model for different stack sizes of rays gen-
erated based on grayscale. The graphs show the 
learning accuracy as a function of the number of 
epochs. As can be observed, the highest accuracy 
was achieved for stacks composed of one ray and 
reaching 99.88%. It is also noteworthy that the 
learning process is exceptionally fast, with the 
model achieving very good accuracy after just a 

Table 2. Computational resource usage by the model 
for grayscale and HSV models depending on the ray 
stack size

Ray 
stack 
size

RAM requirement [MB] Epoch training time [s]

Gray HSV Gray HSV

1 0.35 1.73 8.397 14.631

2 1.41 6.92 6.419 17.119

4 5.64 27.65 7.004 25.531

8 22.52 110.56 10.617 49.782

16 90.04 442.12 20.784 116.546

32 360.09 1768.23 49.212 202.119

Figure 9. Graphs of learning accuracy as a function of the number of epochs for different ray stack sizes using 
grayscale imaging



412

Advances in Science and Technology Research Journal 2024, 18(8), 403–415

few epochs. It should also be noted that for ray 
stacks of size 32, the proposed neural network ar-
chitecture is completely ineffective, as the mod-
el’s accuracy stabilizes at 92.61%. Models oper-
ating based on the grayscale format exhibit very 
good convergence and provide stable results after 
just twenty epochs for stacks of 1, 2, 4, 8, and 16 
rays. In the case of a stack with 32 rays, stabiliza-
tion occurs after approximately 30 epochs.

Figure 10 presents the learning process graphs 
of the model for different stack sizes of rays based 
on the HSV palette. Similar to the previous pal-
ette, the graphs show the learning accuracy as a 
function of the number of epochs. Analysing the 
graphs clearly shows that the learning process 
was significantly extended compared to the model 
for tensors defined based on the grayscale palette. 
The best learning result was achieved for double 
ray stack, where the model exhibited an accuracy 
of 99.91%. However, it should be emphasized 
that for stacks of sizes 1, 2, and 4 rays, a very 
similar accuracy result was obtained. It should be 
noted, however, that for almost all tested cases 

(except for the stack of 4 rays), there is a signifi-
cant difference between the validation loss and 
the training loss, which may indicate overfitting 
of the model. In this context, it is also difficult 
to determine a specific number of epochs neces-
sary to train the model, as there is no convergence 
between the validation loss and the training loss. 
Additionally, considering the significantly greater 
resources consumed by the HSV model compared 
to the model operating in the grayscale format, 
its use in this particular case does not seem to be 
particularly appropriate.

Additionally, two other types of neural net-
works were compared. The first was an RNN 
(Recurrent Neural Network). It employed the 
architecture of a standard fully connected feed-
forward neural network. RNN is a type of neu-
ral network designed to process sequences of 
data. RNNs have feedback loops for at least one 
layer of neurons. The key feature of RNNs is 
that they have internal states (memory) that al-
low them to retain information about previous 
steps in the sequence. The algorithm used the 

Figure 10. Graphs of learning accuracy as a function of the number of epochs for different ray stack sizes using 
HSV imaging



413

Advances in Science and Technology Research Journal 2024, 18(8), 403–415

parameter batch_size = 20, meaning that the data 
are taken in batches of 20. The network was built 
with hidden state vectors of size hidden_size = 
200 and num_layers = 15. The Sigmoid function 
was used as the activator. The optimizer for this 
network was the Adam algorithm, and the best 
results were obtained for a training process con-
sisting of 20 epochs. This neural network model 
achieved an accuracy of 99.75%.

The second neural network model used was 
an LSTM (Long Short-Term Memory) network, 
which is used for processing sequential data. 
The number of units in the hidden layer was set 
to hidden_size = 700, and the number of LSTM 
layers was set to num_layers = 30. Binary Cross 
Entropy Loss was used as the loss function with 
the Adam optimizer. The accuracy of this neural 
network model was 99.74%.

CONCLUSIONS

The model built for grayscale is characterized 
by simplicity and efficiency due to the relatively 
small number of neurons it comprises. As a re-
sult, training is fast and requires minimal compu-
tational and memory resources. The architecture 
of the model improves the generalization of new 
data and reduces the risk of overfitting. However, 
the downside of this model is the lack of colour 
information, which may limit its ability to recog-
nize colour-related features, making it less effec-
tive in tasks where colour is a key aspect. This 
model can be used even on computational plat-
forms with highly limited resources. A particu-
larly potential application is in small integrated 
circuits mounted directly on optical devices.

The model for the HSV palette uses 3 chan-
nels (Hue, Saturation, Value), which allows for 
capturing more complex colour-related features. 
Therefore, it can be more effective in tasks re-
lated to detection, classification, or segmentation, 
where colour plays a crucial role. It also allows 
for better colour selection during the learning pro-
cess. The model is more complex, enabling better 
capture of nuances in the input data. This comes 
at the cost of requiring more computational and 
memory resources, but the usage is still relatively 
smaller compared to a typical convolutional net-
work for processing complete images. It should 
be emphasized, however, that this model requires 
modifications to ensure convergence between the 

validation loss and the training loss, which will 
eliminate the overfitting effect.

Experiments conducted on both models de-
scribed above, as well as experiments performed 
on RNN and LSTM, show that the best accu-
racy is achieved when training models on small 
number of rays. This is particularly interesting 
because such images are completely unreadable 
to the human eye. It is evident, therefore, that 
a neural network can achieve very high accura-
cy on data that are very problematic for human 
analysis. The achieved level of model accuracy 
is so high that the proposed method can make a 
significant contribution to enhancing the effec-
tiveness of quality control systems in mass pro-
duction facilities.

REFERENCES

1. Smith S.J. and Adendorff K. Advantages and lim-
itations of an automated visual inspection system. 
The South African Journal of Industrial Engineer-
ing, 2011, 5(1). https://doi.org/10.7166/5-1-423

2. Pillet M., Baudet N., Maire J.L. The visual inspec-
tion of product surfaces. Food Quality and Prefer-
ence, 2012, 27, 153-160. https://doi.org/10.1016/j.
foodqual.2012.08.006

3. Chmielowiec A., Sikorska-Czupryna S., Klich 
L., Woś W. and Kuraś P. Optimization of quality 
control processes using the NPGA genetic algo-
rithm. Advances in Science and Technology Re-
search Journal, 2024, 18(7), 264–276. https://doi.
org/10.12913/22998624/193195

4. Daneshjo N., Malega P. and Drábik P. Techniques 
for production quality control in the global com-
pany. Advances in Science and Technology Re-
search Journal, 2021, 15(1), 174–183. https://doi.
org/10.12913/22998624/131558

5. Imai M. Der Schlüssel zum Erfolg der Japaner im Wet-
tbewerb. Langen Müller, 1992, München, German.

6. Burghardt A., Kurc K., Szybicki D., Muszyńska M. 
and Szczęch T. Monitoring the parameters of the 
robot-operated quality control process. Advances in 
Science and Technology Research Journal, 2017, 
11(1). http://dx.doi.org/10.12913/22998624/68466

7. Huang S. and Pan Y. Automated visual inspection 
in the semiconductor industry: A survey. Com-
puters in industry, 2015, 66, 1–10. http://dx.doi.
org/10.1016/j.compind.2014.10.006

8. Davies A. Defective products and product recall 
issues for businesses. Pitmans LLP, 2014.

9. Minwoo P. and Jongpil J. Design and implemen-
tation of machine vision-based quality inspection 



414

Advances in Science and Technology Research Journal 2024, 18(8), 403–415

system in mask manufacturing process. Sustain-
ability, MDPI, 2022, 14(10): 6009. https://doi.
org/10.3390/su14106009

10. Seitz H. Quality inspection with AI vision. Vision 
& Sensors. System Integration, 2023.

11. Akundi A., Reyna M. A machine vision based 
automated quality control system for product di-
mensional analysis. Procedia Computer Science, 
2021, 185, 127-134. https://doi.org/10.1016/j.
procs.2021.05.014

12. Lewis J. Machine vision system counts, identifies 
and verifies highly-regulated objects. Vision sys-
tem design, 2018.

13. Chmielowiec A., Klich L., Woś W., Błachowicz A. 
Implementation of the Maintenance Cost Optimiza-
tion Function in Manufacturing Execution System. 
In J. Filipe, M. Śmiałek, A. Brodsky, and S. Ham-
moudi, editors. Enterprise Information Systems, 
Cham, Springer Nature Switzerland. 2023, 133–154, 
http://dx.doi.org/10.1007/978-3-031-39386-0_7

14. Chmielowiec A. and Klich L. Application of python 
libraries for variance, normal distribution and Wei-
bull distribution analysis in diagnosing and operat-
ing production systems. Diagnostyka, 2021, 22(4), 
89– 105. http://dx.doi.org/10.29354/diag/144479

15. Sioma A. Vision system in product quality control 
systems. Applied sciences, 2023, 13(2), 751. https://
doi.org/10.3390/app13020751

16. Schlagenhauf T., Brander T. and Fleischer J. A 
stitching algorithm for automated surface inspec-
tion of rotationally symmetric components. CIRP 
Journal of Manufacturing Science and Technolo-
gy, 2021, 35, 169–177. https://doi.org/10.1016/j.
cirpj.2021.05.013

17. Baranovskyi D., Myamlin S., Bulakh M., Podo-
sonov D., Muradian L. Determination of the filler 
concentration of the composite tape. Applied Scienc-
es, 2022, 12(21), 11044. https://doi.org/10.3390/
app122111044

18. Baranovskyi D., Bulakh M., Michajłyszyn A., 
Myamlin S., Muradian L. Determination of the risk 
of failures of locomotive diesel engines in main-
tenance. Energies, 2023, 16(13), 4995. https://doi.
org/10.3390/en16134995

19. Qi X., Chen G. Y., Li G., Cheng X. and Li C. Apply-
ing neural-network-based machine learning to addi-
tive manufacturing: Current applications, challeng-
es, and future perspectives. Engineering, 2019, 5(4), 
721–729. https://doi.org/10.1016/j.eng.2019.04.012

20. Vladov S., Yakovliev R., Bulakh M., Vysotska V. Neural 
network approximation of helicopter turboshaft engine 
parameters for improved efficiency. Energies, 2024, 
17(9), 2233. https://doi.org/10.3390/en17092233

21. Bulakh M., Klich L., Baranovska O., Baida A., 
Myamlin S. Reducing traction energy consump-
tion with a decrease in the weight of an all-metal 

gondola car. Energies, 2023, 16(18), 6733. https://
doi.org/10.3390/en16186733

22. Ren S., He K., Girshick R., Sun J. Faster R-CNN: 
towards real-time object detection with region 
proposal networks. Advances in Neural Informa-
tion Processing Systems, 2015, 91-99. https://doi.
org/10.48550/arXiv.1506.01497

23. LeCun Y., Bottou L., Bengio Y., Haffner P. Gradi-
ent-based learning applied to document recognition. 
Proceedings of the IEEE, 1998, 86(11), 2278–2324. 
http://dx.doi.org/10.1109/5.726791

24. He K., Zhang X., Ren S., Sun J. Deep residual learn-
ing for image recognition. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition 
(CVPR), 2016, 770–778. http://dx.doi.org/10.1109/
CVPR.2016.90

25. Xie X. A review of recent advances in surface de-
fect detection using texture analysis techniques. 
Electronic Letters on Computer Vision and Image 
Analysis, 2008, 7(3), 1–22. https://doi.org/10.5565/
rev/elcvia.268

26. García Peña D., García Pérez D, Díaz Blanco I. 
and Marina Juárez J. Exploring deep fully-con-
volutional neural networks for surface defect 
detection in complex geometries. The Interna-
tional Journal of Advanced Manufacturing Technol-
ogy, 2024, 134(a), 97–111. https://doi.org/10.1007/
s00170-024-14069-7

27. Ameri R., Hsu C. and Band S. A systematic review 
of deep learning approaches for surface defect detec-
tion in industrial applications. Engineering Applica-
tions of Artificial Intelligence, 2024, 130, 107717. 
http://dx.doi.org/10.1016/j.engappai.2023.107717

28. Cumbajin E., Rodrigues N., Costa P., Miragaia R., 
Frazão L., Costa N., Fernández-Caballero A., Car-
neiro J., Buruberri L. and Pereira A. A systematic re-
view on deep learning with CNNs applied to surface 
defect detection. Journal of Imaging, 2023, 9(10), 
193. https://doi.org/10.3390/jimaging9100193

29. Johanesa T.V.J., Equeter L. and Mahmoudi S. A. 
Survey on AI applications for product quality con-
trol and predictive maintenance in industry 4.0. 
Electronics, 2024, 13(5), 976.

30. Awtoniuk M., Majerek D., Myziak A. and Gajda C. 
Industrial application of deep neural network for 
aluminium casting defect detection in case of unbal-
anced dataset. Advances in Science and Technology 
Research Journal, 2022, 16(5), 120–128. https://doi.
org/10.12913/22998624/154963

31. Oborski P. and Wysocki P. Intelligent visual quality 
control system based on convolutional neural net-
works for holonic shop floor control of industry 4.0 
manufacturing systems. Advances in Science and 
Technology Research Journal, 2022, 16(2), 89–98. 
https://doi.org/10.12913/22998624/145503



415

Advances in Science and Technology Research Journal 2024, 18(8), 403–415

32. Wen S., Chen Z. and Li C. Vision-based surface 
inspection system for bearing rollers using convo-
lutional neural networks. Applied Sciences, 2018, 
8(12), 2565. https://doi.org/10.3390/app8122565

33. Hena B., Ramos G., Ibarra-Castanedo C. and 
Maldague X.. Automated defect detection through 
flaw grading in non-destructive testing digital x-ray 
radiography. NDT, 2024, 2(4), 378–391. https://doi.
org/10.3390/ndt2040023

34. Abagiu M. M., Cojocaru D., Manta F. and Marin-
iuc A. Detecting machining defects inside engine 
piston chamber with computer vision and machine 
learning. Sensors, 2023, 23(2), 785. https://doi.
org/10.3390/s23020785

35. Yoon Y., Woo J. and Oh T. A study on the applica-
tion of machine and deep learning using the impact 
response test to detect defects on the piston rod 
and steering rack of automobiles. Sensors, 2022, 
22(24), 9623. https://doi.org/10.3390/s22249623

36. Oeckl S., Gruber R., Schön W., Eberhorn M., Baus-
cher I., Wenzel T. and Hanke R. Process integrat-
ed inspection of motor pistons using computerized 
tomography. Microelectronic Systems: Circuits 
Systems and Applications, 2011, 277–286. http://
dx.doi.org/10.1007/978-3-642-23071-4_26

37. Utami L. P. and Leni D. Modelling piston damage 
detection using a convolutional neural network based 
on digital image. International Journal of Multidisci-
plinary Research and Literature, 2024, 3(2), 172–183. 
https://doi.org/10.53067/ijomral.v3i2.189

38. Brambilla P., Conese C., Fabris D. M., Chiariotti P. 
and Tarabini M. Algorithms for vision-based quality 
control of circularly symmetric components. Sensors, 
2023, 23(5), 2539. https://doi.org/10.3390/s23052539

39. Gonzalez R. C. and Woods R. E. Digital image pro-
cessing. Prentice Hall, Upper Saddle River, 2008.

40. Szeliski R. Computer Vision - Algorithms and Appli-
cations. Texts in Computer Science. Springer, 2011.

41. Tan C., Sun F., Kong T., Zhang W., Yang C., Liu C. A 
survey on deep transfer learning. In: Artificial Neural 
Networks and Machine Learning – ICANN, Cham. 
Springer International Publishing, 2018, 270–279. 
https://doi.org/10.1007/978-3-030-01424-7_27

42. Bergmann P., Löwe S., Fauser M., Sattlegger D., Ste-
ger C. Improving unsupervised defect segmentation 
by applying structural similarity to autoencoders. In 
Proceedings of the 14th International Joint Confer-
ence on Computer Vision, Imaging and Computer 
Graphics Theory and Applications, SCITEPRESS 
- Science and Technology Publications, 2019, 372–
380. http://dx.doi.org/10.5220/0007364503720380


