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INTRODUCTION

Brain tumor treatment primarily involves sur-
gical resection of the tumor. The surgical treat-
ment to remove the brain tumor depends on the 
location of the tumor, nature of the lesion and its 
size [1,2]. Modern surgical techniques allow more 
precision in such operations, which is crucial for 
further successful treatment. A factor that increas-
es the chances of survival for patients treated via 
surgery is early diagnosis of the cancerous pro-
cess. According to the researchers [2,3,4], by way 
of better detection of cancer foci, large positive 
changes can be expected in screening, especially 
for less common cancers, as well as for patients 
who have already been treated. 

Cancer diagnosis and cancer treatment are 
two areas that are developing very rapidly. Sev-
eral experts [5-8] hold the opinion that artificial 
intelligence is revolutionizing medical research 
and is playing an increasingly important role in 
transforming cancer care. The usefulness of arti-
ficial intelligence (AI) in oncology is notably due 
to its ability to process huge amounts of data. Im-
age data has become one of the primary sources 
of patient information in diagnostics, with a par-
ticular focus on cancer diagnosis [9-10]. Medi-
cal imaging accounts for almost 90 percent of all 
healthcare input data, however, deriving a diagno-
sis from medical image data is very difficult. This 
is because such data often contain very subtle 
changes that are difficult to grasp, and hundreds 
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of images need to be reviewed to generate a full 
diagnosis. The greatest value of computer-aided 
diagnosis lies in the speed and efficiency of can-
cer detection. 

The second pillar of artificial intelligence 
algorithm performance is the ability to learn in-
dependently [11-13]. The accelerating growth of 
computational power, the increasing development 
of machine learning methods, and the broadening 
of access to diverse medical data have revolution-
ized AI applications in oncology. Many studies 
underline the improved accuracy and effective-
ness of AI-based systems in interpreting medical 
images, but more research is needed to under-
stand its full potential and limitations. 

Convolutional neural networks (CNNs) are a 
class of machine learning methods, remarkably 
effective in image data analysis [14-24]. CNNs 
can instantly identify cancer foci and assist the 
doctor in the process of cancer diagnosis. In the 
hands of a doctor, they can become a powerful 
assistant, speeding up his/her work and improv-
ing its quality. It will also become increasingly 
better at predicting who might get sick, as well as 
at more accurately diagnosing the tumor that has 
already occurred and in foretelling the prognosis 
of the patients. The approach to patients will be 
much more individualized as a result.

Neural networks have found applications in 
the treatment of various conditions beyond im-
age-based diagnosis [25-27]. For instance, in arti-
cle [28], neural networks were employed to diag-
nose osteoporosis using vibroarthrography, dem-
onstrating their potential in analyzing non-visual 
medical data for diagnostic purposes. Another 
intriguing application is the detection of pulmo-
nary nodules based on local variance analysis and 
probabilistic neural networks, which highlights 
the versatility of these systems in identifying and 
diagnosing complex medical conditions through 
sophisticated data analysis techniques [29].

The literature offers a wealth of research on 
ensemble methods, ranging from simpler ap-
proaches like soft and hard voting, to more ad-
vanced techniques such as weighted majority 
voting. In the latter, the predicted values are mul-
tiplied by pre-determined weights, with the pri-
mary focus of research being on how to assign 
these weights. In our study, we introduce a novel 
algorithm called F1-WMV, which determines the 
weights based on the F1-score, offering a new ap-
proach to this challenge [30].

This paper is structured as follows. Firstly, re-
lated state-of-the-art works and basic concepts are 
presented in Section 2. Next, Section 3 contains a 
description of the material and methods that were 
employed. In Section 4, several well-known CNN 
models are assessed for recognising brain tumors 
using MRI image data. Subsequently, the ensem-
ble CNN models were built. Finally, the results 
obtained, their comparison and conclusions are 
presented. Section 5 includes a summary of our 
research and a brief description of future intended 
research.

RELATED WORKS

The literature review has shown that a num-
ber of promising AI-based systems for brain tu-
mor detection are currently being developed. 
These studies are summarized in Table 1.

The works [31, 34, 35, 36] present the use-
fulness of data augmentation to improve the per-
formance of CNN models. Sadoon and Ali [32] 
proposed a novel 28-layer CNN model for brain 
tumor classification. In their study, the MRI im-
ages were pre-processed and augmented to im-
prove the accuracy of the model. The number of 
slices after augmentation was 15320. The authors 
achieved very high accuracies of 96.5%, 96.6% 
and 99.1% for glioma, meningioma and pitu-
itary, respectively, while the overall accuracy of 
the model was 96.1%. The authors of the article 
likely achieved better accuracy results through 
the use of augmentation, a technique not em-
ployed in our study. By expanding their dataset 
through augmentation, they were able to enhance 
the model’s performance, which may explain the 
observed improvement in accuracy.

In [34], the database from Nanfang Hospital 
and General Hospital, Tianjin Medical University 
was investigated using augmentation techniques. 
The research demonstrated that data expansion 
techniques significantly boost accuracy, achiev-
ing an improvement of up to 96.56%. The final 
accuracy, after applying augmentation, exceeds 
the results we achieved. However, the pre-aug-
mentation value is comparable to our outcomes. It 
is also worth noting that in our study, the training 
set was divided into three distinct subsets, which 
may have contributed to weaker model learning.

The study conducted by Saeedi et al. [35] in-
troduced a novel model using the brain tumour da-
taset, which was compared with an auto-encoder 
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and six other established machine-learning tech-
niques. Initially comprising 3264 images, the da-
taset was expanded through augmentation to 9792 
samples, with 90% designated for training. The 
model was tested over 100 epochs with a batch 
size of 16 and obtained an accuracy of 96.47%. 

Sharma and Nandal [36] investigated the 
combination of the following methods: modified 
ResNet50, transfer learning and augmentation. 
Using a modified ResNet50 involved feature ex-
traction and contour cropping of the brain, they 
achieved 92% accuracy – surpassing competitive 
frameworks.

In the works [31,37], the authors investigated 
the impact of data augmentation on brain tumor 
segmentation. In [31], Wang et al. first obtained 
Dice scores of 75.70%, 88.98%, and 72.53% for 
the BraTS 2018 dataset. The use of data augmen-
tation increased the results to 77.70%, 89.56% and 
73.04%, respectively. The work [37] proposed a 
new method of segmentation of brain tumours. 
They combined the CNN and fuzzy K-means algo-
rithms. Their algorithm was tested on the BRATS 
database and achieved an accuracy of 98.64%.

Ensemble techniques were investigated in 
[33,38]. Dogan and Birant [33] proposed a novel 
approach to ensemble learning called Weighted 
Majority Voting Ensemble, and introduced a 
novel algorithm for determining weights. In the 
evaluation of this method, experiments were 
conducted across 28 widely recognized data-
sets. The findings indicated that this approach 
outperformed existing methods in 27 out of 28 
cases, demonstrating significant improvements 
in ensemble learning efficacy. The benefits of the 
ensemble method were also illustrated by Kang 
et al. [38]. The authors assessed a set of pre-
trained networks and chose the top three based 
on their performance. These top-performing net-
works were combined into a single ensemble of 
deep features, which were then used as input for 

various classifiers to produce the final prediction. 
The results of their experiments showed that the 
proposed method brought the expected results.

In the preceding paragraphs, a variety of ex-
periments on brain tumors and ensemble methods 
were discussed. The authors aimed to enhance the 
Weighted Majority Voting method by introducing 
an innovative approach to weight determination. 
This new approach distinguishes itself from exist-
ing methods by utilizing the F1-Score, which had 
not been previously applied for this purpose. The 
proposed solution has the potential to become a 
valuable tool for researchers, applicable to other 
datasets and explorations with different machine 
learning techniques.

MATERIAL AND METHODS

Study material

The MRI image data was collected from 233 
patients at the Nanfang Hospital and General Hos-
pital, Tianjin Medical University between 2005 
and 2010. The dataset contained 3064 axial, cor-
onal and sagittal plane images with T1-weighted 
contrast, and included three types of brain tumor: 
glioma, meningioma and pituitary. Their numbers 
were 1426, 708 and 930 slices, respectively. The 
images, with a resolution of 512×512, were origi-
nally saved in the MATLAB data format (.mat 
file). Each row, labeled with the patient ID, con-
tained the following fields describing a tumor [55]: 
 • cjdata.label – tumor label: 1 – meningioma,  

2 – glioma, 3 – pituitary, 
 • cjdata.PID – patient ID,
 • cjdata.image – a matrix (array) containing im-

age data, 
 • cjdata.tumorBorder – a vector of point coordi-

nates on tumor border, 
 • cjdata.tumorMask – a binary image represent-

ing tumor region.

Table 1. Previous related works and performance comparison in terms of overall accuracy
Author Database Accuracy

Wang et al. [31]

Sadoon and Ali [32]

Dogan and Birant [33]

Badža and Barjaktarović [34]

Saeedi et al. [35]

Sharma et al. [36]

Fooladi et al. [37]

Kang et al. [38]

BraTS 2018

Nanfang Hospital

tested on 28 dataset

Nanfang Hospital

Nanyang Hospital

Brain-mri-images

MRI scans of glioma

BT-small-2c

89.56%

96.1%

90.17%

96.56%

96.47%

92.0%

98.64%

94.12%
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The procedure of creating the image dataset 
from a MATLAB file was performed in Python 
[39] and consisted of the following steps: 

Algorithm 1: Creating the image dataset 
Input: the MATLAB (.mat) file
Output: the labelled image dataset

1. For each row of the MATLAB file:
− Extract a tumor label,
− Extract an array containing image data, 
− Convert array values into the range between 

0 and 255,
− Create an image from the array using the 

function Image.fromarray(array), 
2. Return the labelled image dataset.

Figure 1 shows exemplary axial, coronal and 
sagittal slices of three types of brain tumor [39].

Model evaluation

The performance of classification models can 
be assessed by utilizing confusion matrices. Here, 
the size of the confusion matrix is equal to c×c, 
where c is the number of classes, and the diagonal 
of the matrix displays the numbers nij, i = 1, 2, …, 
c, of correctly classified elements for class i. The re-
maining fields contain the numbers of misclassified 
elements in relation to their actual and predicted la-
bels. The sum of all values nij, j = 1, 2, …, c,  is equal 
to the number of all elements N [40]. The confusion 
matrix is interpreted using the following terms:
 • True Positive (TP) for a class – a diagonal 

value of the corresponding row and column, 
 • False Positive (FP) for a class – the sum of 

values of the corresponding column except for 
that of the diagonal value,

Figure 1. Axial, coronal and sagittal MRI slices of three types of brain tumor: 
(a) glioma, (b) meningioma, (c) pituitary
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 • False Negative (FN) for a class – the sum of 
values of the corresponding row except for 
that of the diagonal value.

 • True Negative (TN) for a class – the sum of 
values of all columns and rows except for that 
of the values of the corresponding row and 
column. 

A three-class confusion matrix is given in Ta-
ble 2. Thus, TPB = n22, FPB = n12 + n32, FNB = n21 
+ n23, TNB = n11 + n13 + n31 + n33.

The base evaluation metrics for class k are de-
fined using the confusion matrix and the follow-
ing evaluation metrics: accuracy, precision, recall 
and F1-score. They are defined as follows:

Accuracy is the rate of correctly classified el-
ements to the class  among all elements:

  

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘
 . (1) 

 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
, (2) 

 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
 , (3) 

 𝐹𝐹1𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑘𝑘 =
2

1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘

+ 1
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘

 . (4) 

 𝐴𝐴 = 𝜑𝜑(𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥),… , 𝑓𝑓𝑚𝑚(𝑥𝑥)) (5) 

 𝐴𝐴 = 1
𝑚𝑚∑ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑚𝑚

𝑖𝑖=𝑖𝑖  (6) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ (𝑓𝑓1(𝑥𝑥) = 𝐴𝐴)𝑚𝑚
𝑖𝑖=1  (7) 

 𝐴𝐴 = ∑ 𝛼𝛼𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥),∑ 𝛼𝛼𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1  (8) 

 𝛼𝛼𝑖𝑖(𝑥𝑥) = −∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑅𝑅𝑃𝑃𝑎𝑎2𝑝𝑝𝑖𝑖,𝑖𝑖𝑐𝑐
𝑖𝑖=1 , 𝑃𝑃 = 1,2,… ,𝑚𝑚 (9) 

 𝛼𝛼𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑃𝑃(𝑒𝑒))

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑗𝑗(𝑒𝑒))𝑚𝑚
𝑗𝑗=1

 (10) 

 𝑃𝑃(𝑥𝑥) =
{
 

 𝛼𝛼1𝑝𝑝1,1(𝑥𝑥) 𝛼𝛼1𝑝𝑝1,2(𝑥𝑥) ⋯𝛼𝛼1𝑝𝑝1,𝑐𝑐(𝑥𝑥)
𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) 𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) ⋯𝛼𝛼2𝑝𝑝2,𝑐𝑐(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚1(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚2(𝑥𝑥) … ⋮

𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚3(𝑥𝑥)
 (11) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐
𝑖𝑖=1   (12) 

, (1)

Precision is the rate of correctly classified ele-
ments to the class k among all elements assigned 
to this class by a model:

 

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘
 . (1) 

 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
, (2) 

 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
 , (3) 

 𝐹𝐹1𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑘𝑘 =
2

1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘

+ 1
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘

 . (4) 

 𝐴𝐴 = 𝜑𝜑(𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥),… , 𝑓𝑓𝑚𝑚(𝑥𝑥)) (5) 

 𝐴𝐴 = 1
𝑚𝑚∑ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑚𝑚

𝑖𝑖=𝑖𝑖  (6) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ (𝑓𝑓1(𝑥𝑥) = 𝐴𝐴)𝑚𝑚
𝑖𝑖=1  (7) 

 𝐴𝐴 = ∑ 𝛼𝛼𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥),∑ 𝛼𝛼𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1  (8) 

 𝛼𝛼𝑖𝑖(𝑥𝑥) = −∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑅𝑅𝑃𝑃𝑎𝑎2𝑝𝑝𝑖𝑖,𝑖𝑖𝑐𝑐
𝑖𝑖=1 , 𝑃𝑃 = 1,2,… ,𝑚𝑚 (9) 

 𝛼𝛼𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑃𝑃(𝑒𝑒))

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑗𝑗(𝑒𝑒))𝑚𝑚
𝑗𝑗=1

 (10) 

 𝑃𝑃(𝑥𝑥) =
{
 

 𝛼𝛼1𝑝𝑝1,1(𝑥𝑥) 𝛼𝛼1𝑝𝑝1,2(𝑥𝑥) ⋯𝛼𝛼1𝑝𝑝1,𝑐𝑐(𝑥𝑥)
𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) 𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) ⋯𝛼𝛼2𝑝𝑝2,𝑐𝑐(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚1(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚2(𝑥𝑥) … ⋮

𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚3(𝑥𝑥)
 (11) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐
𝑖𝑖=1   (12) 

 (2)

Recall is the rate of correctly classified elements 
to the class k among all elements of this class:
  

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘
 . (1) 

 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
, (2) 

 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
 , (3) 

 𝐹𝐹1𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑘𝑘 =
2

1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘

+ 1
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘

 . (4) 

 𝐴𝐴 = 𝜑𝜑(𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥),… , 𝑓𝑓𝑚𝑚(𝑥𝑥)) (5) 

 𝐴𝐴 = 1
𝑚𝑚∑ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑚𝑚

𝑖𝑖=𝑖𝑖  (6) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ (𝑓𝑓1(𝑥𝑥) = 𝐴𝐴)𝑚𝑚
𝑖𝑖=1  (7) 

 𝐴𝐴 = ∑ 𝛼𝛼𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥),∑ 𝛼𝛼𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1  (8) 

 𝛼𝛼𝑖𝑖(𝑥𝑥) = −∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑅𝑅𝑃𝑃𝑎𝑎2𝑝𝑝𝑖𝑖,𝑖𝑖𝑐𝑐
𝑖𝑖=1 , 𝑃𝑃 = 1,2,… ,𝑚𝑚 (9) 

 𝛼𝛼𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑃𝑃(𝑒𝑒))

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑗𝑗(𝑒𝑒))𝑚𝑚
𝑗𝑗=1

 (10) 

 𝑃𝑃(𝑥𝑥) =
{
 

 𝛼𝛼1𝑝𝑝1,1(𝑥𝑥) 𝛼𝛼1𝑝𝑝1,2(𝑥𝑥) ⋯𝛼𝛼1𝑝𝑝1,𝑐𝑐(𝑥𝑥)
𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) 𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) ⋯𝛼𝛼2𝑝𝑝2,𝑐𝑐(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚1(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚2(𝑥𝑥) … ⋮

𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚3(𝑥𝑥)
 (11) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐
𝑖𝑖=1   (12) 

 (3)

F1 score is a harmonic mean of recall and 
precision:

  

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘
 . (1) 

 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
, (2) 

 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
 , (3) 

 𝐹𝐹1𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑘𝑘 =
2

1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘

+ 1
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘

 . (4) 

 𝐴𝐴 = 𝜑𝜑(𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥),… , 𝑓𝑓𝑚𝑚(𝑥𝑥)) (5) 

 𝐴𝐴 = 1
𝑚𝑚∑ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑚𝑚

𝑖𝑖=𝑖𝑖  (6) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ (𝑓𝑓1(𝑥𝑥) = 𝐴𝐴)𝑚𝑚
𝑖𝑖=1  (7) 

 𝐴𝐴 = ∑ 𝛼𝛼𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥),∑ 𝛼𝛼𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1  (8) 

 𝛼𝛼𝑖𝑖(𝑥𝑥) = −∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑅𝑅𝑃𝑃𝑎𝑎2𝑝𝑝𝑖𝑖,𝑖𝑖𝑐𝑐
𝑖𝑖=1 , 𝑃𝑃 = 1,2,… ,𝑚𝑚 (9) 

 𝛼𝛼𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑃𝑃(𝑒𝑒))

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑗𝑗(𝑒𝑒))𝑚𝑚
𝑗𝑗=1

 (10) 

 𝑃𝑃(𝑥𝑥) =
{
 

 𝛼𝛼1𝑝𝑝1,1(𝑥𝑥) 𝛼𝛼1𝑝𝑝1,2(𝑥𝑥) ⋯𝛼𝛼1𝑝𝑝1,𝑐𝑐(𝑥𝑥)
𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) 𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) ⋯𝛼𝛼2𝑝𝑝2,𝑐𝑐(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚1(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚2(𝑥𝑥) … ⋮

𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚3(𝑥𝑥)
 (11) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐
𝑖𝑖=1   (12) 

 (4)

Evaluation metrics computed for each class can 
be combined using macro- or micro averaging to 
describe overall performance of a model [13, 39]. 

The classification models were evaluated us-
ing k-fold cross-validation, ensuring the stability 
of the classification results. In this approach, the 
data is divided into k subsets, where each subset is 
used once as a validation set, while the remaining 
k-1 subsets are used as a training set. This process 
is repeated k times, and the evaluation metrics are 
averaged [41, 42]. In our study, we tested k value of 
10, which are commonly used in similar research. 

It is important to note that a smaller k results in 
higher variance of the classification error, while a 
larger k increases the model’s bias. A compromise 
is usually needed, with k values of 5 or 10 being 
most common. For k = 10, the classification error 
rate is stable [43].

CNN models

 Convolutional Neural Networks (CNNs) are 
an advanced type of artificial intelligence. They 
are used especially in spatial processing (i.e. im-
ages and videos). By way of their construction, 
they enable automatic and adaptive learn hierar-
chical data representations. Hence, employment 
of CNNs enables extremely effective image rec-
ognition. Typically, CNNs use three types of lay-
ers: convolutional, pooling and fully connected. 
The main goal of the convolutional layer is to ex-
tract relevant information from the image, such as 
edges, textures and more sophisticated patterns. 
The key to this algorithm effectiveness is the use 
of a filter (sometimes called a ‘kernel’), which 
moves over data, generating a splot operation. 
Another important process occurring during the 
learning phase of CNN exploitation is the dimen-
sion reduction of feature maps, which is imple-
mented in the pooling layer. The method chooses 
the maximum value from the feature maps, re-
ducing the data and increasing the robustness of 
the model. The last layer – fully connected (also 
called ‘dense’), is responsible for the final clas-
sification. Each neuron in each layer is connected 
to every neuron in the previous layer, allowing 
global integration of the extracted features [44].

VGG16 stands out as one of the most widely 
employed pre-trained convolutional neural net-
works for image classification. According to its 
creators, the model can classify 1000 images 
across various categories with an impressive ac-
curacy of 92.7%. This high level of accuracy is 
largely attributed to the use of small convolution-
al filters (3×3) with a stride of 1. Although such 
parameters demand significant computational 
power, this challenge is mitigated because the 
model has already undergone pre-training. The 

Table 2. A three-class confusion matrix with distinguished class B
Class Predicted class A Predicted class B Predicted class C

Actual class A n11 (TNB) n12 (FPB) n13 (TNB)

Actual class B n21 (FNB) n22 (TPB) n23 (FNB)

Actual class C n31 (TNB) n32 (FPB) n33 (TNB)
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name VGG16 reflects the 16 convolutional layers 
that form the core of its architecture [45]. In the 
literature, VGG16 is confirmed to be effective for 
tumour diagnosis. The authors of the study [46] 
reported about 95% accuracy in detecting brain 
tumours via MRI scans. This result could lay the 
groundwork for further research into ensemble 
methods, potentially enhancing diagnostic accu-
racy and model robustness.

The VGG19 network closely resembles 
VGG16, with the primary distinction being the 
number of convolutional layers. VGG19 includes 
19 convolutional layers, three more than its pre-
decessor. This increase in layers leads to a higher 
number of parameters to be trained, thereby en-
hancing the network’s capability to capture and 
represent more complex features [45]. In the pa-
per [47], the authors achieved a very high accu-
racy rate of 99.5% with the VGG19 model, based 
on brain tumour assessment. This impressive re-
sult holds promising potential for further devel-
opment of this research into ensemble methods. 

InceptionV3 is a pre-trained convolutional 
neural network created by engineers at Google. 
This model secured victory in the 2015 “ImageNet 
Large-Scale Visual Recognition Challenge (ILS-
VRC)” for achieving the highest accuracy in image 
classification. The remarkable accuracy of Incep-
tionV3 is due to its use of multiple convolution-
al layers, each employing different kernel sizes. 
These kernels are notably small, with dimensions 
such as (1×1, 3×3, 5×5). The authors opted to use 
the third version of Inception due to its improved 
capacity compared to earlier iterations. Despite its 
enhanced capabilities, InceptionV3 maintains a 
similar speed to the previous versions, making it 
an efficient choice for complex tasks [48]. 

ResNet152V2 and ResNet50V2, named af-
ter their “Residual Network” architecture, were 
introduced in 2016 as advanced versions of 
the original ResNet model. The number 152 in 
ResNet152V2 signifies that the model comprises 
152 layers, while ResNet50V2 is characterized by 
its 50 layers. Both networks achieve outstanding 
performance by employing compact filter sizes of 
1×1, 3×3, and 1×1. 

InceptionResNetV2, developed by Google re-
searchers in 2016, represents an extension of the 
established Inception and InceptionV3 models. 
This network integrates multiple filter sizes (1×1, 
3×3, 5×5) to optimize both model complexity 
and computational efficiency, aiming for superior 
performance outcomes. The article [49] indicates 

that the Inception ResNetV2 network achieved an 
accuracy of 93.4%, making it a strong candidate 
for applying ensemble methods to further im-
prove performance.

DenseNet201, developed by researchers at 
Facebook, was introduced for commercial use 
in 2017. It aims to enhance the earlier DenseNet 
model. The designation “201” in its name indi-
cates the number of layers implemented in the 
model. This network family is designed specifi-
cally for image object recognition. The article 
[50] achieved an accuracy of 88% during tests on 
the test dataset. Therefore, it is worth investigat-
ing whether the use of ensemble methods could 
help achieve better results when combined with 
other models.

The Xception network was proposed by Fran-
çois Chollet in 2017. It utilizes depth-wise sepa-
rable convolutions, a technique introduced by the 
author. Compared to Inception, Xception has a 
simpler structure, which facilitates its implementa-
tion and improves its efficiency. The authors chose 
to use this network in their research based on sci-
entific studies showing that Xception outperforms 
Inception on the ImageNet dataset [51, 52].

MobileNetV2 is a neural network developed 
by Google and introduced in 2018. The network 
consists of approximately 3 million parameters 
and features around 53 layers. Key innovations 
include the use of depth-wise separable convolu-
tions, which reduce the number of required com-
putations and enhance performance. In the article 
[52], a comparison of three networks for detect-
ing brain tumors is presented, with MobileNet 
emerging as the most effective. Consequently, the 
authors of the article have decided to include the 
MobileNet model in their exploration of ensem-
ble methods. 

Ensemble models 

Ensemble learning is a machine learning tech-
nique that improves classification performance 
by combining multiple models. With this method, 
individual models exchange each other’s best re-
sults for each class, resulting in greater overall ac-
curacy compared to a single model [53]. The main 
aspects of ensemble methods are the following: 
 • improved stability and accuracy – employing 

ensemble methods reduces the standard varia-
tion and enhances effectiveness of use, 

 • combining patterns – once predictions have 
been acquired from each model, the results are 
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combined in a determined way according to 
the chosen ensemble technique, 

 • diversity of models – this method employs dif-
ferent types of models or dissimilar hyperpa-
rameters during training. Due to this, the models 
might commit different mistakes, but by com-
bining the models, the errors can be reduced.

In academic literature, various ensemble 
methods are extensively discussed. Among these, 
the more widely recognized techniques include 
bagging, boosting, stacking, voting and blending. 
For our study, we specifically employed the vot-
ing method exclusively.

Formally, we assume that we have m base 
models: f1, f2, f3, …, fm. The final prediction 

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘
 . (1) 

 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
, (2) 

 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
 , (3) 

 𝐹𝐹1𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑘𝑘 =
2

1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘

+ 1
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘

 . (4) 

 𝐴𝐴 = 𝜑𝜑(𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥),… , 𝑓𝑓𝑚𝑚(𝑥𝑥)) (5) 

 𝐴𝐴 = 1
𝑚𝑚∑ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑚𝑚

𝑖𝑖=𝑖𝑖  (6) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ (𝑓𝑓1(𝑥𝑥) = 𝐴𝐴)𝑚𝑚
𝑖𝑖=1  (7) 

 𝐴𝐴 = ∑ 𝛼𝛼𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥),∑ 𝛼𝛼𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1  (8) 

 𝛼𝛼𝑖𝑖(𝑥𝑥) = −∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑅𝑅𝑃𝑃𝑎𝑎2𝑝𝑝𝑖𝑖,𝑖𝑖𝑐𝑐
𝑖𝑖=1 , 𝑃𝑃 = 1,2,… ,𝑚𝑚 (9) 

 𝛼𝛼𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑃𝑃(𝑒𝑒))

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑗𝑗(𝑒𝑒))𝑚𝑚
𝑗𝑗=1

 (10) 

 𝑃𝑃(𝑥𝑥) =
{
 

 𝛼𝛼1𝑝𝑝1,1(𝑥𝑥) 𝛼𝛼1𝑝𝑝1,2(𝑥𝑥) ⋯𝛼𝛼1𝑝𝑝1,𝑐𝑐(𝑥𝑥)
𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) 𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) ⋯𝛼𝛼2𝑝𝑝2,𝑐𝑐(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚1(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚2(𝑥𝑥) … ⋮

𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚3(𝑥𝑥)
 (11) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐
𝑖𝑖=1   (12) 

 
might be expressed using the rule (5): 

 

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘
 . (1) 

 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
, (2) 

 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
 , (3) 

 𝐹𝐹1𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑘𝑘 =
2

1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘

+ 1
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘

 . (4) 

 𝐴𝐴 = 𝜑𝜑(𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥),… , 𝑓𝑓𝑚𝑚(𝑥𝑥)) (5) 

 𝐴𝐴 = 1
𝑚𝑚∑ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑚𝑚

𝑖𝑖=𝑖𝑖  (6) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ (𝑓𝑓1(𝑥𝑥) = 𝐴𝐴)𝑚𝑚
𝑖𝑖=1  (7) 

 𝐴𝐴 = ∑ 𝛼𝛼𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥),∑ 𝛼𝛼𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1  (8) 

 𝛼𝛼𝑖𝑖(𝑥𝑥) = −∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑅𝑅𝑃𝑃𝑎𝑎2𝑝𝑝𝑖𝑖,𝑖𝑖𝑐𝑐
𝑖𝑖=1 , 𝑃𝑃 = 1,2,… ,𝑚𝑚 (9) 

 𝛼𝛼𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑃𝑃(𝑒𝑒))

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑗𝑗(𝑒𝑒))𝑚𝑚
𝑗𝑗=1

 (10) 

 𝑃𝑃(𝑥𝑥) =
{
 

 𝛼𝛼1𝑝𝑝1,1(𝑥𝑥) 𝛼𝛼1𝑝𝑝1,2(𝑥𝑥) ⋯𝛼𝛼1𝑝𝑝1,𝑐𝑐(𝑥𝑥)
𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) 𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) ⋯𝛼𝛼2𝑝𝑝2,𝑐𝑐(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚1(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚2(𝑥𝑥) … ⋮

𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚3(𝑥𝑥)
 (11) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐
𝑖𝑖=1   (12) 

 (5)

where: the φ is an aggregation function, and x is 
the input data [54]. 

‘Soft voting’ is regarded as one of the most 
straightforward and widely adopted ensemble 
methods. This technique involves combining pre-
dictions from multiple classifiers by averaging 
their outputs. The aggregation function can be 
succinctly expressed via equation (6):

 

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘
 . (1) 

 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
, (2) 

 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
 , (3) 

 𝐹𝐹1𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑘𝑘 =
2

1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘

+ 1
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘

 . (4) 

 𝐴𝐴 = 𝜑𝜑(𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥),… , 𝑓𝑓𝑚𝑚(𝑥𝑥)) (5) 

 𝐴𝐴 = 1
𝑚𝑚∑ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑚𝑚

𝑖𝑖=𝑖𝑖  (6) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ (𝑓𝑓1(𝑥𝑥) = 𝐴𝐴)𝑚𝑚
𝑖𝑖=1  (7) 

 𝐴𝐴 = ∑ 𝛼𝛼𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥),∑ 𝛼𝛼𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1  (8) 

 𝛼𝛼𝑖𝑖(𝑥𝑥) = −∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑅𝑅𝑃𝑃𝑎𝑎2𝑝𝑝𝑖𝑖,𝑖𝑖𝑐𝑐
𝑖𝑖=1 , 𝑃𝑃 = 1,2,… ,𝑚𝑚 (9) 

 𝛼𝛼𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑃𝑃(𝑒𝑒))

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑗𝑗(𝑒𝑒))𝑚𝑚
𝑗𝑗=1

 (10) 

 𝑃𝑃(𝑥𝑥) =
{
 

 𝛼𝛼1𝑝𝑝1,1(𝑥𝑥) 𝛼𝛼1𝑝𝑝1,2(𝑥𝑥) ⋯𝛼𝛼1𝑝𝑝1,𝑐𝑐(𝑥𝑥)
𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) 𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) ⋯𝛼𝛼2𝑝𝑝2,𝑐𝑐(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚1(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚2(𝑥𝑥) … ⋮

𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚3(𝑥𝑥)
 (11) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐
𝑖𝑖=1   (12) 

 (6)

Another popular approach is ‘majority voting’ 
(also known as ‘hard voting’), which involves ag-
gregating predictions from multiple base models 
by selecting the class c that receives the highest 
number of votes among them. Formally, the deci-
sion-making process can be summarized as:

 

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘
 . (1) 

 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
, (2) 

 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
 , (3) 

 𝐹𝐹1𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑘𝑘 =
2

1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘

+ 1
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘

 . (4) 

 𝐴𝐴 = 𝜑𝜑(𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥),… , 𝑓𝑓𝑚𝑚(𝑥𝑥)) (5) 

 𝐴𝐴 = 1
𝑚𝑚∑ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑚𝑚

𝑖𝑖=𝑖𝑖  (6) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ (𝑓𝑓1(𝑥𝑥) = 𝐴𝐴)𝑚𝑚
𝑖𝑖=1  (7) 

 𝐴𝐴 = ∑ 𝛼𝛼𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥),∑ 𝛼𝛼𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1  (8) 

 𝛼𝛼𝑖𝑖(𝑥𝑥) = −∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑅𝑅𝑃𝑃𝑎𝑎2𝑝𝑝𝑖𝑖,𝑖𝑖𝑐𝑐
𝑖𝑖=1 , 𝑃𝑃 = 1,2,… ,𝑚𝑚 (9) 

 𝛼𝛼𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑃𝑃(𝑒𝑒))

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑗𝑗(𝑒𝑒))𝑚𝑚
𝑗𝑗=1

 (10) 

 𝑃𝑃(𝑥𝑥) =
{
 

 𝛼𝛼1𝑝𝑝1,1(𝑥𝑥) 𝛼𝛼1𝑝𝑝1,2(𝑥𝑥) ⋯𝛼𝛼1𝑝𝑝1,𝑐𝑐(𝑥𝑥)
𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) 𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) ⋯𝛼𝛼2𝑝𝑝2,𝑐𝑐(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚1(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚2(𝑥𝑥) … ⋮

𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚3(𝑥𝑥)
 (11) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐
𝑖𝑖=1   (12) 

 (7)

‘Weighted sum’ is a method where the prob-
ability returned by models is multiplied by their 
weights. There are a number of ways of deter-
mining the coefficients in applying this method, 
among others, RRMSE, Bagging and AdaBoost 
[41, 42]. The general formula is: 

 

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘
 . (1) 

 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
, (2) 

 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝑇𝑇𝑘𝑘
 , (3) 

 𝐹𝐹1𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑘𝑘 =
2

1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘

+ 1
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘

 . (4) 

 𝐴𝐴 = 𝜑𝜑(𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥),… , 𝑓𝑓𝑚𝑚(𝑥𝑥)) (5) 

 𝐴𝐴 = 1
𝑚𝑚∑ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑚𝑚

𝑖𝑖=𝑖𝑖  (6) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ (𝑓𝑓1(𝑥𝑥) = 𝐴𝐴)𝑚𝑚
𝑖𝑖=1  (7) 

 𝐴𝐴 = ∑ 𝛼𝛼𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥),∑ 𝛼𝛼𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1  (8) 

 𝛼𝛼𝑖𝑖(𝑥𝑥) = −∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑅𝑅𝑃𝑃𝑎𝑎2𝑝𝑝𝑖𝑖,𝑖𝑖𝑐𝑐
𝑖𝑖=1 , 𝑃𝑃 = 1,2,… ,𝑚𝑚 (9) 

 𝛼𝛼𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑃𝑃(𝑒𝑒))

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑤𝑤𝑗𝑗(𝑒𝑒))𝑚𝑚
𝑗𝑗=1

 (10) 

 𝑃𝑃(𝑥𝑥) =
{
 

 𝛼𝛼1𝑝𝑝1,1(𝑥𝑥) 𝛼𝛼1𝑝𝑝1,2(𝑥𝑥) ⋯𝛼𝛼1𝑝𝑝1,𝑐𝑐(𝑥𝑥)
𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) 𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) ⋯𝛼𝛼2𝑝𝑝2,𝑐𝑐(𝑥𝑥)
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where: αi is the coefficient assigned to fi model. 

In literature, very sophisticated ways to com-
bine outputs can be found. One is an adaptive 
weighted voting fusion recognition algorithm 
based on entropy [41]. This algorithm depends on 
calculating the entropy of each sample x. Here, 

we assume that pi,j  is the posterior probability 
output for i classifier and j class, Hence, we can 
calculate the entropy with the rule: 
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Herein, the pi value is the measure of uncertainty 
of classifier i. In our paper, we also propose apply-
ing fusion weight techniques. Thus, the previously 
determined coefficient are process by formula (10): 
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To determine the final predictions for  sample, 
we need to multiply weights by appropriate prob-
ability according to the formula (11): 
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Finally, we are able to determine the class 
affiliation. The process depends on selecting the 
classes with the highest probability. The formal 
course of action follows rule (12): 
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𝑗𝑗=1

 (10) 

 𝑃𝑃(𝑥𝑥) =
{
 

 𝛼𝛼1𝑝𝑝1,1(𝑥𝑥) 𝛼𝛼1𝑝𝑝1,2(𝑥𝑥) ⋯𝛼𝛼1𝑝𝑝1,𝑐𝑐(𝑥𝑥)
𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) 𝛼𝛼2𝑝𝑝2,1(𝑥𝑥) ⋯𝛼𝛼2𝑝𝑝2,𝑐𝑐(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚1(𝑥𝑥)

⋮
𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚2(𝑥𝑥) … ⋮

𝛼𝛼𝑚𝑚𝑝𝑝𝑚𝑚3(𝑥𝑥)
 (11) 

 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝑥𝑥𝑐𝑐 ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐
𝑖𝑖=1   (12)   (12)

A novel three-steps approach, called a 
‘Weighted Majority Voting Ensemble’ (WMVE) 
that relies on incorrect classifications was pre-
sented in [33]. In applying this approach, in the 
initial phase, the classifiers are trained on the 
test dataset. In the second stage, classifiers un-
dergo training using the validation set, with ini-
tial weights set uniformly to one. The weights of 
classifiers that accurately predict the class label 
of an instance are then adjusted based on the ra-
tio of classifiers making incorrect predictions to 
the total number of classifiers. For example, for 
three classifiers f1(x), f2(x), f3(x), y{0,1} and their 
outputs 0, 0, 1, the actual class is 1. The weights 
are α1 = 1, α2 = 1, α3 = 1 + 2/3 = 1.67. Next, the 
final result is obtained by applying equation (8).

Proposed CNN ensemble model

The proposed classifier combines a few classifi-
ers based on the weighted majority voting approach. 
Weight parameters were added to base classifiers 
according to their performance given by F1-score 
metrics. For this purpose, F1-scores of each class 
computed on the validation set were assigned to 
each classifier. Next, these scores were multiplied 
by the corresponding predicted class-probabilities 
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of each base classifier. The weighted average was 
subsequently assigned to each class and the class 
with highest score result was selected. The whole 
procedure can be written as follows:

Algorithm 2. F1-weighted majority voting 
Input: the labelled image dataset X
Output: the final predicted class for each testing 
sample x in the test set
Initial values and control parameters:

m – number of machine learning models,
c – number of brain tumor classes,
k – number of folds.

# Phase 1. Compute F1-scores 
1. Choose m base machine learning classifiers f1, 

f2, f3, …, fm.
2. Read the labelled image dataset X containing 

data of c classes of brain tumor.
3. Split X into train, validation and test sets. 
4. For each model fi, i = 1, …, m:

4.1. Compute F1-score denoted by Fij for each 
class j, j = 1, …, c on the validation set us-
ing k-fold cross-validation.

# Phase 2. Predict the labels in the test set
5. For each testing sample x in the test set: 

5.1. For each model fi, i = 1, …, m:
 Compute class probabilities  for  on the el-

ement x. 
5.2. For each class j, j = 1, …, c:
 Compute the F1-weighted average pre-

dicted value 

 

 
𝑝𝑝𝑝𝑝𝑗𝑗 = ∑ 𝐹𝐹𝑖𝑖𝑗𝑗𝑝𝑝𝑖𝑖𝑗𝑗𝑚𝑚

𝑖𝑖=1 . 
 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥) = 𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑓𝑓𝑥𝑥(𝑝𝑝𝑝𝑝𝑗𝑗). 

5.3. Determine the class with the largest pvj,  j, j = 
1, …, c for the testing sample x using the rule 

 

 
𝑝𝑝𝑝𝑝𝑗𝑗 = ∑ 𝐹𝐹𝑖𝑖𝑗𝑗𝑝𝑝𝑖𝑖𝑗𝑗𝑚𝑚

𝑖𝑖=1 . 
 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥) = 𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑓𝑓𝑥𝑥(𝑝𝑝𝑝𝑝𝑗𝑗). 

6. Return the final predicted classes for testing 
samples in the test set. 

Computing environment

All research was done using the Python pro-
gramming language with the aid of Jupiter note-
books. The following libraries were exploited: 
 • keras – for preparing previously pre-trained 

networks, 
 • matplotlib – to generate plots, 
 • scikit-learn – with the aim of using evaluating 

metrics,
 • tenserflow – to enable the use of GPUs. 

The training was carried out on a computer 
with the following specifications: 
 • Processor – Intel Core i5-9400F, 
 • GPU – RTX 2060Ti,
 • RAM – 16 GB DRR4.

EXPERIMENTS AND RESULTS 

In our research, we investigated several CNN 
classification models, as well as ensemble mod-
els. Table 3 and Table 4 contained the CNN model 
characteristics and hyperparameter values used in 
our experiments. 

The brain tumor dataset BraTS including 3064 
axial, coronal and sagittal plane images, was divid-
ed as follows. The test set contained 20% of the to-
tal number of samples and was randomly selected. 
The remaining 80% was used to create training and 
validation sets (Table 5). In our experiments, we 
applied k-fold cross-validation with k = 10.

Table 6 and Table 7 show a comparison of 
the performance of examined CNN classification 
models using 10-fold cross-validation. The best 
results obtained for the experiment are bolded.

We found that the accuracy ranged from 
86.84% to 94.99% and from 85.46% to 92.73% 
for the training and test sets, respectively. This 
confirms the very high effectiveness of the CNN 
models when applied to brain tumor detection. 
The highest accuracy was achieved by apply-
ing the ResNet50V2 model, the lowest – by the 
VGG19 model.

Table 3. CNN models characteristics

Model Number of 
parameters

Number of 
trainable 

parameters
VGG16

VGG19

Xception

InceptionV3

ResNet50V2

DenseNet201

InceptionResNetV2

ResNet152V2

MobileNetV2

DenseNet121

27,561,795

32,871,491

87,972,395

59,553,571

90,675,715

66,492,995

82,650,339 

125,442,563

44,203,075

32,729,667

12,847,107

12,847,107

67,110,915

37,750,787

67,110,915

48,171,011

28,313,603

67,110,915

41,945,091

25,692,163

Table 4. Hyperparameter values
Parameter Value

Image size

Optimization method

Learning rate

Number of epochs

Batch size

Dense Layer activation function

Output Layer activation function

Loss function

250 x 250 x 3

RMSprop

2·10-5

30

16

relu

softmax

categorical_crossentropy
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Table 5. Splitting dataset – training and test sets
Brain tumor type Training (10-fold cross-validation) Test Total

Glioma

Meningioma

Pituitary

1140

565

744

286

143

186

1426

708

930
Total 2449 615 3064

Table 6. Comparison of CNN models: experimental results of application upon the training dataset (10-fold 
cross-validation)

Model
Accuracy Loss

Mean Std Mean Std

VGG16 0.8934 0.0026 0.2651 0.0051

VGG19 0.8684 0.0048 0.3213 0.0066

Xception 0.9405 0.0027 0.1604 0.0078

InceptionV3 0.9168 0.0056 0.2155 0.0137

ResNet50V2 0.9499 0.0058 0.1518 0.0164
DenseNet201 0.9487 0.0033 0.1377 0.0063

InceptionResNetV2 0.9167 0.0040 0.2233 0.0102

ResNet152V2 0.9441 0.0040 0.1701 0.0123

MobileNetV2 0.9441 0.0027 0.1588 0.0139

DenseNet121 0.9385 0.0055 0.1623 0.0101

Table 7. Comparison of CNN models: experimental results of application upon the validating dataset (10-fold 
cross-validation) 

Model
Accuracy Loss

Mean Std Mean Std

VGG16 0.8828 0.0196 0.3036 0.0366

VGG19 0.8546 0.0303 0.3611 0.0580

Xception 0.9089 0.0151 0.2814 0.0525

InceptionV3 0.8910 0.0213 0.3189 0.1052

ResNet50V2 0.9273 0.0106 0.2644 0.0616
DenseNet201 0.9147 0.0196 0.2357 0.0518

InceptionResNetV2 0.8881 0.0207 0.3213 0.0706

ResNet152V2 0.9016 0.0212 0.3845 0.0741

MobileNetV2 0.8987 0.0156 0.2945 0.0102

DenseNet121 0.9110 0.0193 0.2369 0.0521

Table 8 presents the basic evaluation metrics: 
precision, recall and F1-score. All examined CNN 
models achieved high outcomes, exceeding 80%. 
Summarizing, the highest scores were achieved 
by five models: ResNet50V2, DenseNet201, 
ResNet152V2, MobileNetV2 and DenseNet121. 

We assumed that the CNN models used to 
build the ensemble model can be selected with re-
spect to the best scores for each of the brain tumor 
types. Table 9 presents the confusion matrices of 
the examined CNN models. Abbreviations G (gli-
oma), M (meningioma), P (pituitary) are used for 

clarity, being the short form of the corresponding 
labels. Accordingly, the highest result of 97% was 
achieved in pituitary classification and the lowest 
result of 83% in meningioma classification.

Finally, the examined ensemble mod-
els combined three classifiers: MobileNetV2, 
ResNet50V2 and ResNet152V2. The following 
ensemble methods were built for this purpose: 
soft voting, hard voting, entropy, WMVE [33] 
and the proposed Algorithm 2. Table 10 show ba-
sic evaluation metrics obtained by the examined 
ensemble CNN models. The models were trained 
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Table 10. Basic evaluation metrics obtained by the examined ensemble CNN models on the test set
Ensemble model Accuracy Precision Recall F1 score

Soft voting 0.9414 0.9326 0.9313 0.9317

Hard voting 0.9349 0.9260 0.9220 0.9234

Entropy 0.9381 0.9378 0.9381 0.9369

WMVE 0.9397 0.9391 0.9397 0.9387

F1-WMVE 0.9414 0.9411 0.9414 0.9402

Table 8. Basic evaluation metrics obtained by application of the examined CNN models upon the validating set 
(10-fold cross-validation)

Model Precision Recall F1 score

VGG16 0.8776 0.8738 0.8724

VGG19 0.8592 0.8510 0.8425

Xception 0.9016 0.9020 0.9120

InceptionV3 0.9017 0.8951 0.8953

ResNet50V2 0.9203 0.9187 0.9182

DenseNet201 0.9211 0.9179 0.9169

InceptionResNetV2 0.8987 0.8930 0.8912

ResNet152V2 0.9088 0.9061 0.9055

MobileNetV2 0.9141 0.9122 0.9110

DenseNet121 0.9119 0.9026 0.9072

Table 9. Confusion matrices of the examined CNN models (10-fold cross-validation), expressed as percentages
VGG16 VGG19 Xception InceptionV3

G M P G M P G M P G M P

G 88.89 10.09 2.02 G 89.91 8.16 1.93 G 82.37 6.75 0.8 G 89.91 9.12 0.96

M 17.01 74.85 8.14 M 2.82 63.27 8.49 M 10.09 74.26 5.65 M 13.25 81.10 5.65

P 1.21 2.70 96.10 P 3.37 2.29 94.34 P 1.34 4.58 84.08 P 1.35 3.36 95.29

ResNet50V2 DenseNet201 InceptionResNetV2 ResNet152V2
G M P G M P G M P G M P

G 93.86 5.70 0.4 G 93.86 5.0 1.14 G 90.70 8.25 1.05 G 91.32 7.87 0.88

M 11.50 82.67 5.84 M 12.73 81.80 5.47 M 15.08 78.03 6.89 M 12.36 81.11 6.53

P 0.94 3.23 95.83 P 1.07 2.68 96.24 P 1.62 2.70 95.68 P 0.81 2.42 96.77
MobileNetV2 DenseNet201

G M P G M P

G 95.26 4.56 0.18 G 93.86 5.0 1.14

M 17.02 77.16 5.47 M 12.73 81.80 5.47

P 1.21 3.09 96.24 P 1.07 2.68 9.24

on the training set. The results are presented as 
applied upon the independent test set.

We found that there was a significant im-
provement for all evaluation metrics when the 
ensemble approach was applied. The worst re-
sults, above 93% for all metrics, were obtained 
by utilizing the simple hard voting classifier. Soft 
voting and our proposed method gave the same 
accuracy of 94.14%, but the proposed method 

gave the best results – exceeding 94% for preci-
sion, recall and F1-score.

CONCLUSIONS

The objective of our work has been success-
fully achieved, and our experiment demonstrates 
that the F1-WMVE algorithm yielded satisfactory 
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results, outperforming classical methods such as 
soft and hard voting, entropy and WMVE. It is 
worth noting that the literature reviewed achieved 
higher results on the same dataset through aug-
mentation. The proposed method may serve as a 
foundation for further research, such as expand-
ing the dataset using augmentation techniques. 
The results can be summarized as follows:
1) All examined CNN models achieved high eval-

uation metrics. The highest scores (exceeding 
90%) were achieved utilizing ResNet50V2, 
DenseNet201, ResNet152V2, MobileNetV2 
and DenseNet121.

2) The application of the ensemble approach re-
sulted in an increase of the evaluation metrics 
by an average of 2%.

3) The highest results were achieved by employ-
ing the proposed ensemble model. All evalua-
tion metrics exceeded 94%. 

In our experiments, the ensemble model com-
bined the three best models as discerned in evalu-
ating each class of brain tumor. Further experi-
ments will be conducted on the selection of base 
models and the application of F1-score.
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