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INTRODUCTION

Developing new technologies mainly in-
volves computers, processors, networks, roboti-
sation and automation. Expenditures on devices 
using IoT (internet of things) technology are 
constantly increasing, but this is especially vis-
ible in the vehicle industry, both manned and 
unmanned. The transport and logistics sector 
eagerly uses the option of effective collection, 
processing, and active exchange of data, where 
the most crucial thing is streamlining processes 
and ensuring security and fast service. Over the 
last two or three years, the influence of AI has 
become increasingly visible in these activities. 
Its potential lies in supporting business develop-
ment in almost every sector of the economy, and 

not at high costs. In some industries, deep learn-
ing, as the most advanced type of machine learn-
ing, can contribute to an increase in enterprise 
revenues by up to 9% [1]. In turn, the benefit to 
the economy from implementing AI solutions 
may contribute USD 15.7 trillion to the global 
economy by 2030, which is more than the current 
production of China and India combined [2].

The development of the unmanned aerial 
vehicle (UAV) market, i.e. vehicles using low-
altitude spaces (up to 120 m), has also been in-
tensive for several years. The unmanned aircraft 
sector is becoming the most dynamic sector of the 
global aviation industry [3]. Currently, drones op-
erating in the airspace at so-called low altitudes 
are controlled mainly by enthusiasts of modern 
technologies. However, increasingly bold actions 
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taken by many countries to integrate aviation, 
telecommunications, and satellite technologies 
in the near future will ensure the dynamic devel-
opment of the commercialisation of UAVs that 
perform autonomous flights. This is intended to 
make the U-space concept more realistic - a space 
in which remotely controlled, automatic and, in 
the future, autonomous flying platforms will safe-
ly perform operations thanks to precise air traffic 
management. Only the dynamic development of 
airspace management technologies and the paral-
lel development of research on the applications 
of 5G technology, blockchain, and easy availabil-
ity of satellite data open up new opportunities for 
drones and a chance to transition from recreation-
al to entirely professional commercial applica-
tions. The automation of services provided using 
drones, which is already the subject of legislative 
work, will result in rapid progress, and UAVs will 
become one of the key elements of IoT, especially 
if we take into account autonomous flights. With 
improved flight endurance, payload, and sensor 
miniaturisation, while their technical capabilities 
and measurement range increase dramatically, the 
volume of collected data also increases dramati-
cally. The developed AI technology allows you 
to organise terabytes of data and provides access 
to them for all interested parties - GCS operator, 
pilot, data analysis specialist. It also introduces 
mechanisms to replace time-consuming, error-
prone manual analysis of monitored areas. Instead 
of uploading high-resolution images to a server 
or processing them on the drone, artificial intel-
ligence algorithms are used to sample the images 
and capture only relevant features such as edges, 
etc. These features can then be sent to a server, 
requiring much less bandwidth and consuming 
much less power. This is precisely what the use 
of AI in UAVs is intended for - developing an au-
tomated and intelligent method of acquiring, pro-
cessing and analysing data. Thanks to this, drones 
can operate autonomously in a complex and dy-
namically changing environment. As a result, the 
development of autonomy will significantly in-
crease the effectiveness of UAV operations and 
safety in the airspace and on the ground.

The most popular industries using UAVs and 
AI include agriculture, construction, monitoring 
and control services (e.g., verification of criti-
cal infrastructure conditions). What they have 
in common is the ability to solve complex prob-
lems quickly. Today’s UAVs are engaged in much 
more serious activities than taking photos from a 

height. A wide range of options for installing com-
ponents on UAVs, such as thermal cameras, night 
vision devices, cameras, daylight cameras, direct 
image transmission, and many others, create virtu-
ally unlimited conditions for uniform services to 
use. Today, we know that they work not only in ci-
vilian applications but also in military operations. 
The conflict in Ukraine showed how much drones 
have brought changes on the battlefield. The Rus-
sian-Ukrainian war is the first drone war on such 
a scale in which both the so-called FPV (first per-
son view) drones are used, surveying machines 
and classic military UAVs, including the so-called 
loitering munitions. Military operations occur on 
land, air, radio, information and cyberspace. Con-
ducting effective military operations is becoming 
increasingly complicated and depends on consid-
ering more and more elements simultaneously.

The paper is organised into the following 
sections. The first section introduces the broad 
subject of unmanned aerial vehicles. The second 
section reflects on an extensive survey of artifi-
cial intelligence techniques used to address many 
challenges regarding UAV applications. The third 
section presents the motivation for undertaking 
this topic and the contribution to its develop-
ment. The following section introduces the sys-
tem concept. The fifth section describes the two 
compared algorithms: Yolo v5 and Yolo v8. The 
following section presents the network training 
method, and the results and analyses of the ex-
periments conducted are presented in the seventh 
section. Section eight provides conclusions, and 
the last section recommends future work for fur-
ther research and development. 

RELATED WORK

The importance of real-time AI applications 
in UAVs has been investigated since the growth 
of the computing power of edge-class devices. 
Many research articles and applications in the in-
dustry have been reviewed, e.g. in [4], presenting 
the latest developments periodically. This process 
has even been sped up along with the ongoing 
Russia-Ukraine war, where the importance of 
navigation methods based on video and AI has 
been considered a crucial tool in the navigation of 
military UAVs during GNSS signal jamming by 
either party of the conflict. 

Several frameworks have been developed for 
both indoor and outdoor autonomous applications. 
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In papers [5–7] system for people and object de-
tection in cluttered indoor environments was pro-
posed. In the paper [8] the conceptual framework 
for moving object detection based on a vision sys-
tem was presented. In paper [9] a real-time system 
for small object detection from remote sensing im-
ages taken by UAVs was presented. 

The systems that implement different arti-
ficial intelligence algorithms dedicated to de-
tecting people, various objects, and obstacles 
or dedicated to monitoring strategy areas (e.g. 
country borders) are usually based on multi-
spectral video streams, commonly on visual and 
infrared ranges. An example of a vision system 
for monitoring a strategic area (airport) for detec-
tion of dangerous objects on the runway is pre-
sented in the paper [10], another system based 
on the vision system was presented in the paper 
[11], this system was used to identify water bod-
ies from satellite images. The vision systems 
are mainly used to detect objects or people in 
open space; in the event that other objects ob-
scure the wanted object, the thermal imaging 
systems are used. An example of such a system 
was presented in the papers [12–17]. The papers  
[12–14] presented systems dedicated to hu-
man detection, while papers [15–17] presented  
a fire detection system.

The most common AI model, frequently com-
pared in different papers with other Neural Net-
work models, is Yolo (You Only Look Once [18]). 
Yolo was initially introduced and developed on 
the PC platform [18]. Thanks to the model per-
formance optimisation in the following Yolo ver-
sions [19], the growth of computing power, and 
the lowering of the energy demand for comput-
ing, off-board object detection and recognition 
were switched to onboard ones. Nowadays, real-
time object recognition is crucial for seamless op-
erations (e.g. without waiting/hanging of UAVs 
in mid-air) and delivers higher fight efficiency. 
Thus, current applications prefer on-board object 
detection and recognition with the use of AI mod-
els, which bring real-time results, e.g. presented in 
papers [20–25]. In particular, the Yolo v5 model  
(a modified Yolo v5s) and its application in object 
detection and classification in UAV have been in-
vestigated in [26]. A comprehensive review of the 
performance of object detection using different 
CNN architectures has been provided in [27]. Hy-
brid models with preliminary object detection on-
board and off-board object classification are also 
considered applicable in the case of environments 

with UAV communication links that are stable, 
solid and of high bandwidth and low latency [28].

A quick review of the Yolo models, their ver-
sions, and crucial features is presented below.Yolo 
v1 - an initial version of the model that treats object 
detection as a regression problem, predicting spa-
tially separated bounding boxes and class probabili-
ties with a single neural network. YOLO v1 is now-
adays considered outdated. It also captures compre-
hensive object representations and generalises bet-
ter than DPM and R-CNN on datasets like Picasso 
and People-Art. Yolo v2, also known as Yolo9000, 
implemented a 19-layered “Darknet-19” architec-
ture and enhanced the accuracy and performance of 
the v1 version. It incorporates anchor boxes (single 
size) in its internal structure and a new loss func-
tion. The basis of this loss function involves calcu-
lating the sum of squared errors between the pre-
dicted bounding boxes and class probabilities and 
the corresponding values in the ground truth. Yolo 
v3 introduced improved detection and recognition 
accuracy with 3 distinct bounding box sizes and  
a “Darknet-53” internal architecture. Additional 
“feature pyramid networks” (FPN) increased Yolo 
v3’s performance in detecting and recognising small 
objects. Yolo v4 is an unofficial branch of Yolo v3 
with improved FPN. It also incorporates a CSPNet 
(Cross Stage Partial Network), a variant of the 
ResNet architecture, bringing better performance. 
Yolo v4 uses the CIoU loss function, which is suitable 
for imbalanced data sets used during model training.  
Yolo v5, launched in 2020, is an open-source ver-
sion of Yolo with various cross-platform imple-
mentations. It employs EfficientNet and Efficient-
Det architectures and introduces dynamic anchor 
boxes and a new pooling layer, SPP (Spatial 
Pyramid Pooling). Yolo v5 has much better gen-
eralisation capabilities than the former versions. 
Yolo v6 was introduced in 2022 and incorporated 
EfficientNet-L2 architecture and dense anchor 
boxes. Yolo v7 employs diverse aspect ratio an-
chor boxes, which reduce the occurrence of incor-
rect positive detections. Yolo v8, the most recent 
version, uses a robust fusion of anchor-free ob-
ject detection and integrates multiple algorithms. 
During the project’s development, not many facts 
about this model were known.

MOTIVATION AND CONTRIBUTION

The motivation for performing this proj-
ect was the problematic situation observed on 
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the Polish-Belarusian border. Attempts to ille-
gally cross it, especially at night, were common 
and complex to detect due to the dense forests 
in northeastern Poland. In such a situation, con-
ducting effective operations by border services 
becomes increasingly complicated and depends 
on considering an increasing number of factors 
simultaneously. The growing level of complexity 
means that the basis for effective action is to have 
the appropriate so-called situational awareness. 
ISR (intelligence, surveillance and reconnais-
sance) capabilities and subsequent target iden-
tification are the basis for conducting effective 
operations in complex and unknown terrain. In-
formation’s quantity, quality and timeliness deter-
mine the ability to prevent and combat upcoming 
threats. Only the correct perception of reality and 
events in relation to time and space, and the sig-
nificance of these events and their effects, enables 
an appropriate and effective response.

The ability to install various sensors on the 
drone perfectly predisposes it to the role of a 
tool improving situational awareness. A prop-
erly equipped drone can provide support as an 
observation and reconnaissance element. In 
this situation, the ideal solution to monitor the 
indicated area is to use an unmanned aircraft 
equipped with a thermal imaging camera and  
a software module supported by AI algorithms, 
which would allow detection and reporting even in 
poor visibility conditions. However, the detection 
of objects in images depends on the algorithm’s 
effectiveness, the quality of the collected data, and 
the computing power of the data processing unit.

The challenges in AI methods for image pro-
cessing in UAV applications, particularly the 
constraints of limited resources such as com-
puting power and energy, are significant. These 
challenges highlight the need for innovative 

solutions and classify the problem as typical,  
AI-enabled edge computing. 

The current development of the Yolo applica-
tions focuses on classical, full-colour images and 
their processing. There are barely any available 
applications that use aerial thermal imaging, so 
the work is innovative in this context and presents 
a niche, still a new area of research, particularly in 
the context of edge computing and obtained cer-
tainties. Thermal imaging represents different im-
age quality when compared to regular images and 
has different colour spaces and dynamics; thus, 
the application of the existing examples, models, 
and knowledge is not straightforward.

CONCEPT OF THE SYSTEM

The project aimed to develop an unmanned 
aerial system intended to monitor border areas in 
terms of uncontrolled crossing of state borders by 
unauthorised persons in prohibited locations. The 
assumption of the project was to develop and con-
struct a UAV system capable of flying above the tree 
line and detecting human silhouettes in challeng-
ing environmental conditions, i.e. with limited vis-
ibility resulting from operations in forest areas. For 
this reason, image processing techniques, particu-
larly machine learning technology, were assumed.  
The image is obtained from a FLIR thermal imag-
ing camera mounted on an unmanned aerial plat-
form. Data and image processing solutions have 
been implemented to recognise people in a given 
area and determine their location. The unmanned 
aerial platform was designed in the configuration 
of a VTOL (vertical take-off and landing) aircraft 
with a reconfigurable mechanical and functional 
structure (Fig. 1). This effect was achieved by a hy-
brid combination of a conventional airframe and a 

Figure 1. A tilt-rotor VTOL aircraft
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four-rotor aircraft, with rotors mounted on nacelles.  
The transition mechanism from vertical to hori-
zontal flight and vice versa involves changing the 
angular position of individual gondolas (Fig. 2). 

A tilt-rotor VTOL aircraft has specific prop-
erties - thanks to the reconfigurable mechanical 
structure, it is able to take off and land vertically 
without a runway, unlike a classic airframe. This is 
a vital feature because the plane retains the aerody-
namic properties of a classic airframe and thus can 
perform flights over long distances at high speeds 
and, at the same time, doesn’t need a runway for 
take-off and landing [29, 30]. The specificity of the 
system’s operation, which involves fast movement 
along the state border, as well as the need to hover 
in order to detect potential intruders and perform 
vertical take-off and landing in a small area, make 
the VTOL aircraft an ideal carrier of the thermal 
detection module. The VTOL aircraft is designed 

to perform long-distance flights and can perform 
autonomous missions and transport cargo located 
in a specially designed cargo bay. An example 
of a practical application may be the delivery of 
medical supplies to injured people in hard-to-
reach areas. In our case, the cargo compartment 
was adapted to accommodate the installation of 
a thermal imaging human detection module (Fig. 
3), consisting of a FLIR thermal camera, a gim-
bal, a Herelink V2 long-range transmission sys-
tem and a dedicated NVIDIA Jetson Xavier NX 
single-board computer. The technical parameters 
of the VTOL aircraft are presented in Table 1.

EDGE COMPUTING

The current technical parameters of basic 
computing units used on unmanned vehicles and 

Figure 2. Transition mode: a) front-rear rotors configuration (where: CoG – centre of gravity,  
δt – deflection of the rotor nacelle, fi – i-th rotor force (i = 1,…,4), α – angle of attack, θ – pitch angle, 

xb – coordinate x in the body reference frame, xw – coordinate x in the wind reference frame,  
xv – coordinate x in the inertial reference frame with the origin in the CoG), b) tilt mechanism

Figure 3. Cargo compartment with thermal imaging module 
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the possibilities of using a data link limit the ef-
ficiency of real-time analysis of high-resolution 
data on board an unmanned aircraft. Lower-reso-
lution sensors or high-resolution data streams are 
used and filtered to reduce processing time so that 
the algorithm provides the result in real-time.

Nowadays, a solution with remote power 
computing is considered outdated and limited 
as it introduces high latency, low range in video 
transmission, and low reliability in unstable wire-
less transmission. Thus, the development of in-
UAV AI data processing is becoming more attrac-
tive. Low-powered, GPU-enabled hardware solu-
tions and effective object recognition models like 
YOLO step in and help design and implement AI 
applications in the edge layer. Those devices are 
referenced as edge AI processors (coprocessors).

Time is a critical parameter for UAV appli-
cations in missions requiring quick response, 
which is why we are discussing the use of edge 
computing. Edge computing is a data processing 
method in which computation, analysis, and data 
processing occur on end devices such as compact, 
single-board computers rather than sending data 
to the cloud or data centre. In the case of artifi-
cial intelligence, edge computing allows for data 
processing (in practice in lower quality) in real-
time and outside the server room, directly on end 
devices. This is particularly useful in applications 
that require quick response, such as image recog-
nition, detection of objects in camera images, or 
detection of objects based on acoustic signals or  
a laser beam.The use of edge computing means 
faster processing of current information, intelli-
gent, distributed data storage, continuous opera-
tion even in conditions of loss of connection with 
the base station, greater data security, and lower 
data processing delays. 

The NVIDIA Jetson platform is the most 
known and popular, merging good flexibility 
(software-based models that are easy to upgrade, 
compared, e.g., to FPGA) and performance, e.g. 
Jetson Xavier NX delivers up to 21 TOPS with up 
to 20 W power consumption. Still, this computing 
power, even very high, is unsuitable for model 
training. It is performed in the supervised learning 
model and later imported from the PC/Mainframe 
to the edge AI processor. The weight of such hard-
ware, including heatsinks and cabling, is up to 0.5 
kg, so it is unsuitable for integration with minia-
ture UAVs. Still, it can be successfully integrated 
with larger versions, e.g., the DJI Matrice 300 or 
the VTOL aircraft designed and presented in this 
paper. Note that the edge AI processor is usually 
separate from the central flight controller, so it is 
an additional payload to the UAV.

The concept of our system is based on a FLIR 
thermal camera, VTOL aircraft and neural net-
works deployed on the NVIDIA Jetson Xavier 
NX platform to achieve real-time human silhou-
ette recognition in hard-to-reach environments. 
In our case, software based on Python scripts and 
the OpenCV library was developed and imple-
mented for data acquisition and processing. The 
OpenCV library was employed as a fallback op-
tion following the initial implementation of the 
YOLO object detection framework. In particular, 
OpenCV’s blob detection algorithms were uti-
lized to identify and analyse objects within the 
image data, providing a robust alternative for fea-
ture extraction in scenarios where YOLO’s per-
formance was suboptimal. The programs that are 
created enable effective downloading of images 
from the FLIR thermal imaging camera and au-
tomatically save them at intervals during aircraft 
flights, which are run on the Jetson Xavier NX 
onboard computer. The real-time preview func-
tion, via written scripts and the Herelink system, 
allows pilots to precisely monitor and adjust the 
flight trajectory, directly impacting the quality of 
the collected data (Fig. 4).

Thermal imaging allows us to carry out mis-
sions in low-visibility conditions such as dark-
ness, smoke, and, of course, trees and bushes. 
The FLIR Vue is compact size and low weight 
which make it a suitable choice for our appli-
cations. The sensor resolution 640 × 512 and 
image frequency 8.3 Hz in PAL standard was 
used. The camera feed was directly streamed in 
real-time through analogue-digital signal vid-
eo converter to USB port in NVIDIA Jetson.  

Table 1. Technical parameters of the VTOL aircraft
Parameter Value (unit)

Mass 5 [kg]

Maximum load weight 1.5 [kg]

Minimum horizontal speed 10 [m/s]

Cruising speed 19–21 [m/s]

Maximum speed 30 [m/s]

Flight time 105 [min]

Wing area 64.8 [dm2]

Wing span 2880 [mm]

Length 1600 [mm]

Propeller diameter and pitch 16 × 8 [inch]
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The NVIDIA Jetson platform, known for its pow-
erful AI computing capabilities, processes frames 
from thermal cameras on the fly, performing par-
allel calculations on the GPU. Unlike other micro-
computers, such as the Raspberry Pi, the NVIDIA 
Jetson Xavier includes a GPU as a standard feature 
and offers more RAM. Both the GPU and RAM 
are crucial for image processing and the use of 
AI algorithms. All gathered data about detections 
were transmitted to a web server using an LTE 
module connected to NVIDIA Jetson Xavier NX. 
The ground operator could monitor the mission in 
real-time and check information about detections 
on an interactive map on the website (Fig. 5). 

The system prototype was first tested on the 
DJI S900 multi-rotor, which was used to collect a 
dataset for training the network. In general, multi-
rotors are stable and precise, but they are charac-
terised by short flight times (~ 20 min), which are 

unsuitable for the intended application. Studies 
show that fixed-wing UAVs seem to be a much 
better choice regarding flight time and application 
for planned missions.

ALGORITHMS 

This project focused on employing advanced 
machine learning techniques to recognise human 
silhouettes in thermal images obtained from a 
thermal imaging camera. A central aspect of the 
research was the application of an algorithm suit-
able for real-time image processing needs. YOLO 
(You Only Look Once) was selected for this pur-
pose and recognised as a leading tool in dynamic 
image analysis (Fig. 6).

The specific nature of thermal images, 
where object contrast and characteristics differ 

Figure 4. Overall system block diagram

Figure 5. Block diagram of image processing system
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significantly from images captured by standard 
RGB cameras, posed a substantial challenge. 
Therefore, selecting an algorithm capable of ef-
fectively operating under these unique conditions 
was crucial. YOLO was chosen due to its ability 
to analyse dynamic images in real-time, which 
is essential for applications requiring immediate 
system responses, such as public safety monitor-
ing. Its unique architecture allows simultaneous 
prediction of multiple object attributes (such as 
location, class, and occurrence probability) in a 
single network pass, significantly accelerating 
the image analysis process.

This section covers a detailed comparison of 
two versions of the YOLO algorithm: YOLOv5 
and YOLOv8. Each version has a different struc-
ture, directly affecting its performance and ef-
fectiveness in various applications. The analysis 
involves training both algorithm versions on the 
same input data set and comparing the results.

Network training 

This section describes the process of acquir-
ing datasets, the process of training the network 
itself and comparing their performance.

Details of UAV mission

During collecting images for dataset, some 
assumptions associated with parameters of UAV 
mission must have been conducted. From the 
operational side of using the UAV system, the 
main aim was to fly as high altitude as possible, 
to cover as possible the biggest recorded area in 
a time unit, keeping high detectability of human 
on the ground. Flights on higher altitudes on this 
quality type of thermal camera provide prob-
lems with human detection, due to the fact that 
human looks like little point in a circle shape, 
which can be anything hotter place. Performing 
flights at lower altitudes than 30–40 meters can 
be conducted, but the operational risk increases. 
That risk is associated with possible disturbing 
of flight by the humans on the ground or might 
be restricted due to the obstacles like trees. The 
aim was to conducting flights in a specific area 
for strategic borders (over fields and forest), so 
that condition must have been achieved. 

In these flight conditions, the images for da-
taset were collecting. Figure 7 shows the mock 
area from satellite view, where flights were con-
ducted. It is an area with some trees (red arrow) 

Figure 6. The network architecture of YOLOv5
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and grassland (blue arrow). Also the path of 
flight is marked by the orange line. The green 
shadows indicates the usable areas covered by 
the camera. Flights weren’t conducted in real 
conditions on a border, only in a simulated area, 
which was enough for our purposes. Performing 
flights in the areas near borders which must be 
guarded, and for which the system was invented, 
is mainly restricted for military and borderline 
guard use only, and flights can be only conduct-
ed by them approval. Also the failsafe and dam-
age-tolerant operational aspects of flight weren’t 
for this moment the subject of consideration due 
to the complexity and military issues. UAVs are 
used nowadays in such conditions in a manual 
piloting modes and aspects of safety operation 
are invented, used and guarded from the open-
access by the military [31].

Datasets

The data annotation process was conducted us-
ing tools available on the Roboflow platform. Ro-
boflow is an online platform that facilitates working 
with large image datasets, allowing for easy anno-
tation and conversion into formats compatible with 
and required by YOLO algorithms. Additionally, 
Roboflow streamlines the workflow by providing 
features for dataset management, versioning, and 
augmentations, making it an essential tool for de-
veloping and optimizing computer vision models.

As part of developing an artificial intelligence 
model to detect human thermal signatures using a 

thermal imaging camera, a decision was made to 
gather a dataset independently. This dataset, in-
tended to facilitate effective neural network train-
ing, consists of ten thousand video frames ob-
tained from a thermal imaging camera. Data col-
lection occurred in a forest area, using a DJI S900 
drone equipped with a thermal imaging camera 
and an NVIDIA Jetson onboard computer. 

During a series of several-minute flights at 
altitudes of 30–40 meters above ground level, 
video recordings were made emphasising the 
diversity of shots. This height has been desig-
nated empirically during test flights with specific 
camera settings, including camera resolution.  
The manoeuvres performed by the drone aimed to 
capture the presence of actors in various configura-
tions and camera tilt angles, which contributed to 
increasing the accuracy and versatility of the future 
neural network model. These diverse configurations 
ensured that the dataset encompassed a wide range 
of scenarios, enhancing the model’s robustness and 
its ability to generalise to different environments.

Upon completion of the data collection phase, 
the recorded video material was segmented into 
individual frames. This prepared dataset served as 
the foundation for further work on developing and 
training the neural network designed to detect hu-
man thermal signatures in thermal images. The seg-
mentation process involved meticulous extraction 
of frames to ensure that each contained relevant 
information for training purposes. This compre-
hensive dataset enabled the neural network to learn 

Figure 7. Satellite view of the mock area, where test flights were conducted
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intricate details and variations in thermal signa-
tures, thereby improving its detection capabilities.

Moreover, using advanced equipment such 
as the DJI S900 drone and the NVIDIA Jetson 
computer facilitated high-quality data acquisi-
tion, providing a reliable basis for the subsequent 
training process. Integrating these technologies 
was crucial for achieving the precision required 
for effective thermal imaging and human detec-
tion in varied and challenging conditions (Fig. 8).

Training process

This study meticulously compares the train-
ing and validation outcomes of two advanced 

object detection models: YOLOv5s (Fig. 10) 
and YOLOv8s (Fig. 9). Both models were rig-
orously evaluated on an identical dataset under 
consistent settings to ensure a robust compari-
son of their performance metrics. YOLOv5s and 
YOLOv8s models were trained on the same im-
ages with a resolution of 640 × 640 pixels. The 
training sessions were conducted on an NVIDIA 
GeForce RTX 4070 Ti GPU, ensuring optimal 
performance. The YOLOv8s model was trained 
for 400 epochs with a batch size of 16. The early 
stopping mechanism was configured with a pa-
tience value of 100, and training was stopped 
after 87 epochs due to a lack of improvement 

Figure 8. An example of collected video footage with a) a person on the path b) a person hidden among the trees

Figure 9. YOLOv8 metrics: a) precision b) recall 
c) mAP_0.5 d) mAP_0.5:0.95

Figure 10. YOLOv5 metrics: a) precision b) recall 
c) mAP_0.5 d) mAP_0.5:0.95
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over the last 100 epochs. Similarly, the YO-
LOv5s model underwent 400 training epochs, 
employing the default batch size. The EarlyS-
topping mechanism, set with a patience value 
of 15, prompted the termination of training after 
64 epochs due to no observed improvement over 
the last 15 epochs.

Neural networks comparisons

During YOLO training, the following three 
key metrics were observed, which allow us to 
assess the quality of the model’s object detec-
tion: mAP (mean Average Precision), precision, 
and recall. The meaning of the individual indica-
tors is as follows:
 • mAP (mean Average Precision): This metric 

considers both precision and recall across all 
object classes in your dataset. It essentially sum-
marises the model’s overall detection accuracy. 
A higher mAP indicates better performance.

 • Precision: This metric focuses on the pro-
portion of correctly identified objects.  
It tells you how many of the model’s detec-
tions were true positives (objects it identified 
correctly) and not false positives (objects it in-
correctly identified).

 • Recall: This metric focuses on the complete-
ness of the detections. It tells you what per-
centage of actual objects in the image the 
model actually detected (true positives) and 
didn’t miss (false negatives).

After investigating the YOLOv8 and YO-
LOv5 algorithms, the comparison of the per-
formance metrics is as follows. Both models 
achieved real-time inference speeds, but YO-
LOv5 was faster, YOLOv8 reached mAP_50-95 
of 0.483, and YOLOv5 reached mAP_50-95 of 
0.447. The comparison of YOLOv5 and YOLOv8 
performance metrics is shown in Table 2.

Based on Table 2, several conclusions re-
garding the performance comparison between 
YOLOv5 and YOLOv8 models can be drawn. 
Firstly, YOLOv8 features a more complex ar-
chitecture, reflected in its higher number of lay-
ers (168) compared to YOLOv5 (157). Despite 
this, YOLOv5 achieves higher precision (0.901) 
compared to YOLOv8 (0.864), suggesting that 
YOLOv5 generates fewer false positives and is 
more effective at precise object detection. 

It is also noteworthy that YOLOv5 surpasses 
YOLOv8 in terms of recall, achieving a value of 
0.931 compared to 0.885 for YOLOv8. Higher 

recall indicates a better ability to detect actual ob-
jects, which is crucial in object detection tasks. 

When analysing the mAP50 metric, YO-
LOv5 again achieves a slightly higher score 
(0.949) compared to YOLOv8 (0.939). The 
mAP50 metric refers to the mean Average Pre-
cision at an Intersection over a Union (IoU) 
threshold of 50%, which is significant for as-
sessing model performance under moderately 
stringent matching criteria.

However, YOLOv8 shows an advantage in 
the mAP50-95 metric, achieving a value of 0.483 
compared to 0.447 for YOLOv5. The mAP50-
95 metric evaluates the Average Precision across 
various IoU thresholds, suggesting better overall 
model fitting and effectiveness in diverse detec-
tion scenarios for YOLOv8.

The comparison of YOLOv5 and YOLOv8 
model performance, presented in Table 2, is 
also reflected in the graphs in Figures 8 and 9. A 
characteristic feature of these graphs is the rap-
id convergence of metrics in the first few dozen 
epochs, indicating the effectiveness of the train-
ing for both models at an early stage. Notably, 
YOLOv5 demonstrates its strengths in certain 
aspects of object detection, while YOLOv8 
shows advantages in different areas, highlight-
ing its adaptability across varying detection sce-
narios. These visual trends emphasize the dis-
tinct advantages each model offers, as outlined 
in the corresponding table and detailed analysis.

In summary, YOLOv5 is characterised by 
higher precision and recall, making it more ef-
fective in precise object detection. On the other 
hand, YOLOv8, despite slightly lower precision 
and recall, exhibits better results in the mAP50-
95 metric, which may indicate its better overall 
fitting and adaptability in various detection situ-
ations. Examples of detection results using the 
YOLOv8 algorithm with various human identifi-
cation certainties are shown in Figure 11.

Table 2. Comparison of YOLOv5 and YOLOv8 
performance metrics

YOLOv5 YOLOv8

Optimal Result: Epoch 64 Optimal Results: Epoch: 87

Number of Layers: 157 Number of Layers: 168

Precision (P): 0.901 Precision (P): 0.864

Recall (R): 0.931 Recall (R): 0.885

mAP50: 0.949 mAP50: 0.939

mAP50-95: 0.447 mAP50-95: 0.483
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CONCLUSIONS 

UAVs are a technology in constant develop-
ment. Platform parameters are being improved, 
and new components are being integrated into the 
platforms, which requires the cooperation of vari-
ous technology providers to create the value chain. 
They are also a synergistic and complementary 
technology with other technologies, taking advan-
tage of their capabilities, such as telecommunica-
tions and network capacity (5G), communications 
and satellite imaging. Thanks to them, drone tech-
nologies can improve their capabilities and effi-
ciency, stimulate further development, and offer 
new, previously unknown solutions, contributing 
to the growth of the data-driven economy. 

In the near future, technological development 
will undoubtedly be able to equip UAVs with an 
energy source, allowing for longer flights and 
operations in difficult weather conditions. Still, 
it will undoubtedly not replace manned flights. 
At the same time, it can provide significant sup-
port, especially considering elements such as the 
speed of inclusion in activities, services, aviation 

infrastructure, or the economic factor. The possi-
bilities of using UAVs are basically limited only 
by technological conditions, both in terms of the 
devices themselves and the control systems. De-
veloping an effective UAV control system - for ex-
ample, based on head movement, eye movement, 
focusing on a selected point of goggles, and mon-
ocular - seems to be a challenge that is already 
within reach of current technological possibilities.

The article presents the possibilities of using 
artificial intelligence to construct a mobile secu-
rity surveillance system. For this purpose, ther-
mal imaging technology was used for remote 
sensing in combination with artificial intelli-
gence. In this research work, the thermal YOLO 
object detection system was proposed as a smart 
human silhouette sensing system that should re-
main effective in all weather and harsh environ-
mental conditions using an end-to-end YOLO 
deep learning framework. The system has been 
trained on large-scale thermal newly gathered 
novel datasets comprising more than 10,000 dis-
tinct thermal frames. The study further included 
deploying deep learning architecture on the edge 

Figure 11. Thermal imaging with YOLOv8 algorithm detection, identifying a human at: a) 81% b) 80% c) 72% 
d) 80% confidence
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and mobile devices, which can be interpreted as 
optimising a small network variant. In conclu-
sion, selecting the most appropriate model de-
pends on the application’s specific requirements. 
The YOLOv8s model is preferable in scenarios 
demanding higher adaptability in various detec-
tion situations. In contrast, the YOLOv5s model 
may be more suitable for applications where 
detection accuracy and lower computational 
demands are paramount. After extensive test-
ing and analysis, YOLOv5 was chosen as the 
optimal tool for the project. This decision was 
based on several key factors. YOLOv5 demon-
strated better adaptability to the specific nature 
of thermal images, resulting in higher accuracy 
in detecting human silhouettes. Additionally, 
lower computational requirements and greater 
ease of implementation and customisation to the 
project’s specific needs were significant factors 
influencing the final choice. 

Due to the constantly growing demand 
for fast transmission of encrypted data (5G),  
the dynamically expanding world of sensors (IoT), 
the demand for the highest level of security on the 
Internet (Block-chain), the need for rapid data pro-
cessing to improve the quality of transport and the 
development of new technologies, AI mechanisms 
in the processing of Big Data sets seem to be the 
future of unmanned systems development.

We should expect the use of drones to be in-
creasingly common in civilian applications but 
also on the modern battlefield, especially the 
so-called drone swarms and the growing use of 
AI. This article shows the advantages and one 
of the practical applications of a VTOL aircraft. 
Another application for which the VTOL air-
craft is being prepared is the configuration of  
a master drone transferring smaller, quieter drones 
over much longer distances and releasing them 
only above the targets. Targets may be precisely 
defined places where light points are dropped, the 
so-called beacons, marking an evacuation path 
for rescue services undertaking activities in de-
manding environmental conditions. The amount 
of data collected (especially image data) by a 
swarm of drones during a single mission will be 
so huge that it will exceed the operator’s current 
analytical capabilities and the capacity of com-
munication systems. Therefore, the implementa-
tion of technologies enabling their autonomous 
operation and the extensive use of decision sup-
port systems using AI will be crucial. Despite 
these promising results, it will still be interesting 

to experiment with other machine learning and 
training algorithms and different types of edge 
computing devices, including using the following 
versions of Yolo beyond v8 and their structure 
modifications to obtain better certainties.

Acknowledgements

The project was financed from state budget funds 
allocated by the Minister of Education and Science 
under the “Student scientific groups create innova-
tions” program - grant no. SKN/SP/570644/2023. 
This work was also partially financed by a grant 
from SUT – a subsidy for maintaining and develop-
ing the research potential in 2024.

REFERENCES

1. Chui M., Manyika J., Miremadi M., Henke N., 
Chung R., Nel P., Malhotra S. Notes from the 
AI frontier insights from hundreds of use cases. 
Discussion paper, 2, McKinsey Global Institute, 
McKinsey&Company, April 2018.

2. Wieczorek S., Ludwig S., Büttner L., Bauer M.R., 
Markovič P. Forecast of changes in business admin-
istration driven by digitalization. open journal of 
business and management, July 2021; 9(4), https://
doi.org/10.4236/ojbm.2021.94092

3. Conejero J.M., Brito I.S., Moreira A., Cunha J., 
Araújo J. Modeling the Impact of UAVs in Sus-
tainability. In: Proceedings of the 24th International 
Requirements Engineering Conference Workshops 
(REW), Beijing, China, 12–16 September 2016. 
https://doi.org/10.1109/REW.2016.044

4. Cao Z., Kooistra L., Wang W., Guo L., Valente, 
J. Real-time object detection based on UAV re-
mote sensing: A Systematic Literature Review. 
Drones 2023; 7(10), 620. https://doi.org/10.3390/
drones7100620

5. Sandino J., Vanegas F., Maire F., Caccetta P. Sand-
erson C.; Gonzalez, F. UAV framework for autono-
mous onboard navigation and people/object detec-
tion in cluttered indoor environments. Remote Sens. 
2020; 12, 3386. https://doi.org/10.3390/rs12203386

6. Cheng J., Zhang S. TBFNT3D: Two-Branch Fusion 
Network With Transformer for Multimodal Indoor 
3D Object Detection. IEEE Robotics and Automa-
tion Letters 2023; 8(10), 6523–6530. https://doi.
org/10.1109/LRA.2023.3309133

7. Samani E.U., Yang X. Banerjee A.G. Visual Object 
Recognition in Indoor Environments Using Topo-
logically Persistent Features. IEEE Robotics and 
Automation Letters 2021; 6(4), 2377–3766. https://
doi.org/10.1109/LRA.2021.3099460



377

Advances in Science and Technology Research Journal 2024, 18(7), 364–378

8. Saif A.F.M.S., Prabuwono A.S., Mahayuddin Z.R. 
Real time vision based object detection from uav 
aerial images: a conceptual framework. In: Omar, 
K., et al. Intelligent Robotics Systems: Inspiring the 
NEXT. Communications in Computer and Infor-
mation Science, 376. Springer, Berlin, Heidelberg. 
https://doi.org/10.1007/978-3-642-40409-2_23

9. Zhang Z., Liu Y., Liu T., Lin Z., Wang S. DAGN: 
a real-time uav remote sensing image vehicle de-
tection framework. IEEE Geoscience and Remote 
Sensing Letters, 2019; 17(11), 1884–1888. https://
doi.org/10.1109/LGRS.2019.2956513

10. Parker A., Gonzales F., Trotter P. Live detection of 
foreign object debris on runways detection using 
drones and AI. In: Proceedings of the 2022 IEEE 
Aerospace Conference (AERO), Big Sky, MT, 
USA, 05–12 March 2022. https://doi.org/10.1109/
AERO53065.2022.9843697 

11. Truong H. M., Clavel M. Identifying temporary 
water bodies from drone images at real-time using 
deep-learning techniques, In: Proceedings of the 
2022 International Conference on Advanced Com-
puting and Analytics (ACOMPA), Ho Chi Minh 
City, Vietnam, 21–23 November 2022, https://doi.
org/10.1109/ACOMPA57018.2022.00009

12. Zhang Z., Uchiya T., Takumi I., Speed of autono-
mous drones in locating survivors after a disaster. 
In: Proceedings of the IEEE 10th Global Confer-
ence on Consumer Electronics (GCCE), Kyoto, Ja-
pan, 12–15 October 2021. https://doi.org/10.1109/
GCCE53005.2021.9621953

13. Hoshino W., Seo J., Yamazaki Y. A study for detect-
ing disaster victims using multi-copter drone with 
a thermographic camera and image object recogni-
tion by SSD. In: Proceedings of the 2021 IEEE/
ASME International Conference on Advanced 
Intelligent Mechatronics (AIM), Delft, Nether-
lands, 12–16 July 202. https://doi.org/10.1109/
AIM46487.2021.9517524

14. Geng X., Peng R. Li M., Liu W., Jiang G., Jiang H., 
Luo J. A lightweight approach for passive human 
localization using an infrared thermal camera. IEEE 
Internet of Things Journal, 2022; 9(24), 24800–
24811. https://doi.org/10.1109/JIOT.2022.3194714

15. Zhao X., Xiang M., He J., Huang Ch. Fire detec-
tion method in infrared image based on improved 
YOLO network, In: Proceedings of the 2021Chi-
na Automation Congress (CAC), Beijing, China, 
22–24 October 2021. https://doi.org/10.1109/
CAC53003.2021.9728278

16. Munshi A.A. Fire detection methods based on 
various color spaces and gaussian mixture mod-
els. Advances in Science and Technology Re-
search Journal 2021; 15(3), 197–214. https://doi.
org/10.12913/22998624/138924 

17. Shao Z., Liang Y., Tian F., Song S., Deng R. 

Constructing 3-D Land Surface Temperature Model 
of Local Coal Fires Using UAV Thermal Images. 
IEEE Transactions on Geoscience and Remote Sens-
ing, 2022; 60, 5002309. https://doi.org/10.1109/
TGRS.2022.3176854

18. Redmon J., Divvala S., Girshick R., Farhadi A. You 
Only Look Once: unified, real-time object detection. 
In: Proceedings of the 2016 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), 
Las Vegas, USA, 27–30 June 2016. https://doi.
org/10.1109/CVPR.2016.91

19. Liu K, Tang H., He S., Yu Q., Xiong Y., Wang N. 
Performance validation of yolo variants for object 
detection. In: Proceedings of the 2021 International 
Conference on Bioinformatics and Intelligent Com-
puting (BIC ‘21). New York, USA, January 2021. 
https://doi.org/10.1145/3448748.344878 

20. Wu H.-H., Zhou Z., Feng M., Yan Y, Xu H, Qian 
L. Real-time single object detection on the UAV. 
In: Proceedings of the 2019 International Confer-
ence on Unmanned Aircraft Systems (ICUAS), 
Atlanta, GA, USA, 11–14 June 2019. https://doi.
org/10.1109/ICUAS.2019.8797866

21. Tijtgat N., Ranst W. V., Goedeme T., Volckaert B. 
De Turck F. Embedded real-time object detection 
for a UAV warning system. In: Proceedings of the 
2017 IEEE International Conference on Computer 
Vision (ICCV), Venice, Italy, 22–29 October 2017. 
https://doi.org/10.1109/ICCVW.2017.247 

22. Subrahmanyam V, Iowa State University ProQuest 
Dissertations & Theses, 2019. 13896596. https://
www.proquest.com/openview/52ebcc2818e1a95e
8ee890197e97762b/1

23. Wu Q., Zhou Y., Real-time object detection based 
on unmanned aerial vehicle. In: Proceedings 
of the 2019 IEEE 8th Data Driven Control and 
Learning Systems Conference (DDCLS), Dali, 
China, 24–27 May 2019. https://doi.org/10.1109/
DDCLS.2019.8908984

24. Kim H.J., Shin M.C., Han M.W., Hong Ch., Lee 
H.W. An Efficient Scheme to Obtain Background 
Image in Video for YOLO-Based Static Object 
Recognition. Journal of Web Engineering, 2022; 
21(5), 1691–1706. https://doi.org/10.13052/
jwe1540-9589.21513

25. Zhang Q., Hu X. MSFFA-YOLO Network: Multi-
class Object Detection for Traffic Investigations in 
Foggy Weather. IEEE Transactions on Instrumenta-
tion and Measurement, 2023; 72, 2528712. https://
doi.org/10.1109/TIM.2023.3318671

26. Chen X., Peng D. L., Gu Y. Real-time object detec-
tion for UAV images based on improved YOLOv5s. 
Opto-Electron Eng, 2022; 49(3), 210372. https://
doi.org/10.12086/oee.2022.210372

27. Carranza-García M., Torres-Mateo J., Lara-Benítez 
P., García-Gutiérrez J. On the performance of 



378

Advances in Science and Technology Research Journal 2024, 18(7), 364–378

one-stage and two-stage object detectors in autono-
mous vehicles using camera data. Remote Sensing. 
2021; 13(1), 89. https://doi.org/10.3390/rs13010089

28. J. Lee, J. Wang, D. Crandall, S. Šabanović and G. 
Fox, Real-time, cloud-based object detection for 
unmanned aerial vehicles. In: Proceedings of the 
2017 First IEEE International Conference on Ro-
botic Computing (IRC), Taichung, Taiwan, 10–12 
April 2017. https://doi.org/10.1109/IRC.2017.77

29. Thamm F.-P., Brieger N., Neitzke K.-P., Meyer M., Jan-
sen R., Mönninghof M. Songbird – an innovative UAS 
combining the advantages of fixed wing and multi rotor 
UAS, In: Proceedings of the International Conference 

on Unmanned Aerial Vehicles in Geomatics, Toronto, 
Canada, 30 Aug–02 Sep 2015. https://doi.org/10.5194/
isprsarchives-XL-1-W4-345-2015, 2015

30. Boon M. A., Drijfhout A. P., Tesfamichael, S. Com-
parison of a fixed-wing and multi-rotor UAV for en-
vironmental mapping applications: a case study, In: 
Proceedings of the International Conference on Un-
manned Aerial Vehicles in Geomatics, Bonn, Ger-
many, 4–7 September 2017. https://doi.org/10.5194/
isprs-archives-XLII-2-W6-47-2017, 2017

31. Skóra J. The use of unmanned aerial vehicles in the 
context of ensuring security in the state. Aviation and 
Security, 2022; 1. https://doi.org/10.55676/asi.v1i1.7


