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INTRODUCTION

Each type of a production activity carries 
various risks, in particular those connected with 
the workplace. Occupational accidents pose a 
serious social and economic problem. Research 
in the field of occupational safety allows for a 
better understanding of the nature of such ac-
cidents, occupational risk assessment, hazards 
identification and reduction [1]. The problem 
attracts the interest of a multitude of scientists 
from various fields, leading to the development 
of methods and tools supporting the analysis of 
accidents at work [2]. In this study, the research 
interest is focused on occupational accidents 
recorded in manufacturing industries related to 
wood processing. 

Background

In the work, a process of literature review was 
carried out in two stages. First, a bibliometric anal-
ysis of bibliographic data was performed in order to 
find main research trends concerning occupational 
accidents in wood industry. Then reference was 
made to selected publications – the ones relating to 
the topic under consideration: accidents recorded in 
wood processing industry. The bibliographic data 
were retrieved and downloaded from two biggest 
world on-line repositories, Web of Science (WoS) 
and Scopus, in September, 2023. The following 
criteria for the bibliographic records acquisition 
joined by a logical conjunction were defined:
 • search string imposed for article title, key-

words, abstract and additional keywords 
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(Keywords Plus in WoS [3] and Index Key-
words in Scopus [4]): (“*wood*” OR “lum-
ber*” OR “timber*” OR “furniture*” OR 
“saw*mill*”) AND (“manufactur*” OR “pro-
cessing” OR “industr*”) AND (“occupational 
accident*” OR “accident at work*” OR “ac-
cidents at work*” OR “industrial accident*”); 

 • time period: “since 2000”; 
 • document type: “article” OR “review” OR 

“proceedings paper”.

In order to unify the resulting data set and to 
create a corpus of bibliographic records merged 
from both databases, two different data structures 
(WoS and Scopus) were unified. Pre-processing 
was done to eliminate duplicate documents as 
well as to perform other data cleaning proce-
dures. The resulting data set included 127 articles 
(records). They were published in 73 journals; 
among them 56 ones contained only one article. 
These articles formed the basis for the knowledge 
domain mapping, providing a general overview 
of the scientific output in the field [5].

The knowledge domain mapping was pro-
cessed with the use of the VOSviewer computer 
program [6], a tool for analysis and visualization 
of bibliographic data; a lexical map was created 
as regards occurrences and co-occurrences of key-
words in scientific publications. Own elaborated 
database management system tools were also ap-
plied. Very important is a thesaurus developed to 
reduce redundant terms and to standardize them 
[7]. Table 1 contains an example of the thesaurus 
concept. The Keyword and Occurrences columns 
are the results from the VOSviewer program. The 
third column, called Synonym, was specially pre-
pared to cover the respective group of the Key-
word phrases with the same or similar meaning, 
and it is the authors’ proposition. Except for the 
standard approach to the synonym creation, in 
order to combine phrases that differ in detail but 

refer to the same general concept, a term with the 
” +” suffix (space and plus sign) was created in 
the Synonym field allowing aggregation of the 
phrases. According to the VOSviewer require-
ments, the thesaurus file consists of the Keyword 
and Synonym columns and does not contain rows 
with the same content in both the columns. After 
applying the thesaurus, the number of unique key 
phrases ready for the knowledge map creation was 
reduced from 1438 to 1107 (reduction by almost 
30%). Among them, there were 220 synonyms to 
which more than one keyword was matched.

Using VOSviewer, the lexical map of key 
phrases (keywords) for the 127 publications was 
created. With the default settings of the program 
(minimum number of keyword occurrences = 5), 
four clusters were isolated on the map, among 
which 100 key phrases were distributed. Table 
2 shows five most often occurring key phrases 
within a cluster – the results from the VOSviewer 
program. The second column represents the num-
ber of phrases in a given cluster. For each key 
phrase, measures of its importance (weights) are 
given: occurrences, links, and total link strength 
[8]. The key phrases are ordered by Occurrences 
in descending order. The table also provides a 
brief description of each cluster.

From the point of view of this work, the Cl-1 
cluster is the most important, as it concentrates on 
occupational accidents in wood industry in gen-
eral. It contains 42 items. Occupational accident 
is the most important key phrase not only in the 
cluster but also in the whole map – see Figure 1. 
It is the result of aggregation of 16 phrases. The 
maximum values of all the weights (occurrences, 
links, total links strength) are achieved for this 
particular phrase. The wood industry phrase, at-
tributed to the cluster, is the result of aggregation 
of 7 phrases. The phrase weights are as follows: 
Occurrences = 11, Links = 63, Total link strength = 153. 

Table 1. Concept of synonym phrases for the thesaurus of occupational accidents bibliometric investigation 
Keyword Occurrences Synonym

Mechanical wood-processing industry 1 Wood industry

Plywood industry 1 Wood industry

Wood industries 1 Wood industry

Wood industry 3 Wood industry

Wood processing industry 2 Wood industry

Wooden furniture industry 4 Wood industry

Woodworking industry 1 Wood industry

Note: Grey background indicates a row excluded from the thesaurus file, as required by the VOSviewer.
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Table 2. The most important key phrases within bibliographic clusters concerning wood industry occupational 
accidents

Cluster
identifier

Cluster
size

Most important key phrases

Phrases Occurrences Links Total links strength

Cl-1
Red

42

Occupational accidents
Wood

Occupational risks
Occupational health and safety 

Accident prevention

103
31
30
26
26

99
95
87
86
84

1226
434
369
329
338

The Cl-1 cluster focuses on shaping a safe working environment, for example, through risk management or 
occupational accident prevention.

Cl-2
Green

25

Humans
Male
Adult

Female
Industry

82
54
54
39
37

99
99
99
91
92

1108
828
837
593
499

The core of the Cl-2 cluster is the human factor, accompanied by issues related to health and protection of 
workers in the workplace.

Cl-3
Blue

22

Middle aged
Young people

Adolescent
Incidence
Statistics

32
18
17
15
15

89
81
72
75
68

529
308
279
219
200

As in the green cluster, the human factor plays an important role in the Cl-3 cluster. However, this occurs 
mostly in conjunction with age and shows that serious injuries can occur during woodworking by young and 

middle-aged.

Cl-4
Yellow

11

Work-related injuries
Controlled study

Workers’ compensation
Wounds and injuries
Wood manufacturing

27
21
15
10
8

86
91
64
71
48

409
333
220
170
100

The Cl-4 cluster refers generally to the cost aspects of injuries to workers in the course of their work-related 
activities.

Figure 1. The map of keywords and keywords’ co-occurrence in research publications on wood industry 
occupational accidents
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Figure 2 presents the phrases with which 
wood industry has the strongest co-occurrence.

In the second stage of the literature review, 
publications related to the research interest of 
the work were identified and focused directly 
on them. Table 3 presents the articles selected as 
those that discuss occupational safety hazards in 
wood processing enterprises.

A large part of the articles in the table is devot-
ed to the analysis of data obtained through surveys 
of enterprise workers, often in connection with the 
safety climate at work. There are also articles on 
selected cases, for example: specific types of in-
juries related to hearing, sight, elderly employees. 
Very few ones use individual data records on acci-
dents at work obtained from institutions (including 
those of national level). Among the articles pre-
sented (but also others reviewed), the authors did 
not find the approach proposed in this paper.

Subject of the research

The main objective of the work is to build 
models to identify occupational accident pro-
files in wood manufacturing enterprises based 
on individual data of injured employees, taking 
into account the size of an enterprise. To the 
best of the authors’ knowledge, such aspect of 
the analyses has not yet been considered in the 
literature. An investigation at a national level 
was undertaken. The industry sector called 
Manufacture of wood and cork products, ex-
cluding furniture; manufacture of articles of 
straw and plaiting materials relating to Section 
C Manufacturing according to Polish Classi-
fication of Activities was chosen in this work. 
It covers the manufacture of products such as 
veneer, wooden packaging, floor coverings, ply-
wood, lumber products and other carpentry and 
joinery products [21]. Individual data records 

Figure 2. Keywords co-occurring with the phrase wood industry
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Table 3. Selected articles on OHS in wood processing industry
Article Main findings, achievements

The safety climate and its relationship 
to safety practices, safety of the 
work environment and occupational 
accidents in eight wood-processing 
companies [9]

Factor analysis was used to determine the structure of the safety climate in Finnish wood-
processing plants on the basis of data collected through a questionnaire among workers. The 
authors indicated that company safety precautions are correlated with company safety practices 
and with the safety level of the work environment. They concluded that the better was the safety 
climate of the company, the lower was the accident rate.

An evaluation of hospital discharge 
records as a tool for serious work-
related injury surveillance [10]

Hospital discharge records were extracted for a cohort of sawmills workers in British Columbia, 
Canada. Serious work-related injuries were identified and their most frequent causes indicated 
– falls, machinery related, overexertion, struck against, cutting or piercing, and struck by falling 
objects. It was pointed out that hospital discharge data represent an alternative and independent 
source of information on serious occupational accident injuries.

Work environment risk factors for 
injuries in wood processing [11]

The authors conducted a case-control study in Maine in wood processing enterprises in order to 
identify preventable injury risk factors. The data were collected through interviews. Multivariate 
analyses showed that variables associated with injury risk were: absence of a lockout/tagout 
program; high physical workload; lack of training; low level of seniority; machine-paced work or 
inability to take a break; male gender.

Self-organizing map and clustering 
algorithms for the analysis of 
occupational accident databases [12]

A two-level approach based on the joint use of the Kohonen Self-Organizing Map and the 
k-means clustering algorithm was used in order to discover the most common sequences of 
events leading to occupational accidents. The main purpose of the work was to analyze the 
effectiveness of the proposed clustering method. The dataset on non-fatal accidents at work 
in the Italian wood processing industry was a case study subject. The loss of control and the 
incorrect movements during the work with manual tools was indicated as the most critical 
sequence.

Job safety analysis and hazard 
identification for work accident 
prevention in para rubber wood 
sawmills in southern Thailand [13]

The authors conducted a cross-sectional study (with a walk-through survey). Potential OHS 
hazards associated with the main production processes at rubberwood sawmills were identified: 
high risks of exposure to wood dust and noise when sawing lumber into sheets; hand and 
foot injuries when struck by lumber; exposure to chemicals and fungicides; injuries due to 
poor ergonomics or repetitive work. Recommendations as regards the reduction of workplace 
hazards were formulated.

A novel tool for evaluating 
occupational health and safety 
performance in small and medium-
sized enterprises: The case of the 
Quebec forestry/pulp and paper 
industry [14]

Small and medium-sized enterprises were indicated as those characterized by a higher rate 
of accidents at work and worse OHS results than large companies. Taking the above into 
account, the authors presented proprietary computer software for assessing health and safety 
performance. The software become a part of the standard OHS procedures used by prevention 
experts (so far in the forestry/pulp and paper industry in Quebec). 

Large occupational accidents data 
analysis with a coupled unsupervised 
algorithm: The S.O.M. K-means 
method. An application to the wood 
industry [15]

The article focuses more on the methodology than on the problem of characterizing accidental 
profiles. Data on accidents at work in the wood industry were selected as a case study to 
illustrate the proposed cluster analysis methodology. The resulting clusters of occupational 
accident casualties were not discussed; selected examples were partially described. The 
two most critical clusters, according to the risk assessment, were related to “manual activity 
with hand tools” and to “free movements/manual transport” in the working area. According to 
the authors, their proposed method makes it possible to distinguish groups of occupational 
accidents, characterized by different dynamics, and also to associate a different quantification of 
the frequency and severity of occupational accidents with each group.

Perception of occupational risk factors 
in sawmills in the El Salto region of 
Durango, Mexico [16]

An exploratory questionnaire was used to determine the use of personal protective equipment 
(PPE) and the perception of safety among sawmill workers while wood processing in a selected 
region of Mexico. Respondent employees typically do not use full PPE during the workday, only 
gloves. They consider noise and vibration, but not sawdust and dust, to be the most serious 
occupational risk factors affecting their health. They also rate workplace safety as fair to good.

Evaluating the work environment in 
Turkish furniture industry from the 
point of occupational health and 
safety [17]

The work environments of SMEs in the furniture sector were studied. From the frequency 
analysis of measured parameters, the authors concluded that insufficient lighting, poor air 
quality, too noisy and dusty work environment affect the health of workers and can make them 
lose their attention, which can lead to injuries and fatal occupational accidents. 

Nonfatal occupational injuries among 
workers in microscale and small-scale 
woodworking enterprise in Addis 
Ababa, Ethiopia [18]

A pretested, structured questionnaire was used to collect information from workers, and an 
observation checklist was used to collect the work environment data. Applying the logistic 
regression, the following factors were identified as significantly associated with occupational 
injury in wood processing plants in Ethiopia: khat chewing behavior, job dissatisfaction, work-
related stress, job category, unguarded machines, and inadequate work space. 

Latent class analysis for identification 
of occupational accident casualty 
profiles in the selected Polish 
manufacturing sector [19]

The authors identified the profiles of occupational accident casualties in Polish wood processing 
plants. Latent class analysis and raw data from the Statistics Poland registers were used for 
the study. Several patterns were identified and described on the basis of the set of variables 
characterizing occupational accidents casualties. Among them, the most serious one referred 
to incidents with casualty disability or death connected with upper limb injuries while operating 
machinery.

The age factor in the analysis of 
occupational risks in the wood 
industry [20]

The role of a worker age in OHS management in the wood industry was investigated on the 
basis of in-depth interviews carried out among occupational safety technicians and experts 
from Galicia (Spain). Although hard work commonly affects workers over 55, the number of 
accidents and absences in this age group because of occupational accidents was not higher 
than in other groups. Intermediate age groups, with 5 to 10 years of experience, had the highest 
rate of suffering from accidents at work, mainly due to overconfidence. Most experts found that 
preventive measures at work were not taken according to age, and even less for a given age 
range. 
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containing information on single observation 
objects (casualties), provided by the national 
data owner (Statistics Poland), were examined. 
Accidents can occur according to a variety of 
scenarios, but the identification of certain pat-
terns can have significant preventive value.

The work provides additional insight into ac-
cidents at work in the wood processing industry 
and develops research methodology. The most 
important elements for scientific contribution are:
 • the validity of distinguishing two types of en-

terprises by their size and, at the same time, 
the way how to classify enterprises into these 
groups, based on pairwise tests,

 • the algorithm for the process of selecting ob-
served variables and building latent class anal-
ysis  models according to this process,

 • synthetic diagnosis of occupational safety 
threats for two types of manufacturing enter-
prises in the form of heat maps,

 • indication of similarities and differences be-
tween the occupational accident profiles iden-
tified for the two types of enterprises.

METHODOLOGY APPROACH

A qualitative nature is the characteristic 
feature of the data investigated in the research. 
Therefore, the latent class analysis (LCA) method 
was chosen to identify patterns of occupational 
accident casualties. LCA is a statistical tool used 
to build typologies based on the associations 
among a set of observed nominal variables [22, 
23]. In the LCA model, a certain abstract quali-
tative variable, called a construct or a latent vari-
able LV, is not directly observed but it reveals 
(manifests) its presence and intensity through 
other qualitative variables Xj, j = 1, …, J, whose 
values can be determined. These variables are 
indicators of the construct. The purpose of the 
method is to identify disjoint homogeneous sub-
sets (clusters) in the data set on the basis of the 
indicators. The clusters are called latent classes 
and represent the values of the LV latent vari-
able. The following form of the LCA model can 
be defined. It determines the probability that in 
the z observation the r(z) vector, representing the 
combination of values of the indicators X1,..., XJ, 
has the value equal to the q vector [23, 24]:
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𝐽𝐽

𝑗𝑗=1

𝐶𝐶

𝑐𝑐=1
 

(1) 

(∑ 𝑐𝑐
𝐶𝐶
𝑐𝑐=1 = 1); 𝑞𝑞𝑗𝑗|𝑐𝑐  

 
 𝑞𝑞𝑗𝑗|𝑐𝑐 = P(𝑞𝑞𝑗𝑗|𝑐𝑐) = P(𝑟𝑟𝑗𝑗(𝑧𝑧) = 𝑞𝑞𝑗𝑗|𝑧𝑧 ∈ 𝐾𝐾𝑐𝑐); 𝑞𝑞𝑗𝑗  
 
𝑞𝑞𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗; 𝑅𝑅𝑗𝑗  
 
 𝑞𝑞𝑗𝑗|𝑐𝑐 

𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗|𝐶𝐶) =  1
|𝑅𝑅𝑗𝑗|

∑  
𝑞𝑞𝑗𝑗∈𝑅𝑅𝑗𝑗

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) (2) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) = max
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐} − min
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐}; 
 𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐  
 

𝐴𝐴𝑅𝑅̅̅ ̅̅ (𝑋𝑋𝑗𝑗) = 1
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + 1 ∑ 𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗 | 𝐶𝐶)

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶=𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

 
𝐴𝐴𝑅𝑅̅̅ ̅̅   
 
 

 
– the value of j-th observed variable, 

 
𝑃𝑃(𝑟𝑟(𝑧𝑧) = 𝑞𝑞) = 

= ∑ 𝛾𝛾𝑐𝑐 ∙ ∏ 𝑃𝑃(𝑟𝑟𝑗𝑗(𝑧𝑧) = 𝑞𝑞𝑗𝑗| 𝑧𝑧 ∈ 𝐾𝐾𝑐𝑐)
𝐽𝐽

𝑗𝑗=1
=

𝐶𝐶

𝑐𝑐=1
 

=  ∑ 𝛾𝛾𝑐𝑐 ∙ ∏𝑞𝑞𝑗𝑗|𝑐𝑐

𝐽𝐽

𝑗𝑗=1

𝐶𝐶

𝑐𝑐=1
 

(1) 

(∑ 𝑐𝑐
𝐶𝐶
𝑐𝑐=1 = 1); 𝑞𝑞𝑗𝑗|𝑐𝑐  

 
 𝑞𝑞𝑗𝑗|𝑐𝑐 = P(𝑞𝑞𝑗𝑗|𝑐𝑐) = P(𝑟𝑟𝑗𝑗(𝑧𝑧) = 𝑞𝑞𝑗𝑗|𝑧𝑧 ∈ 𝐾𝐾𝑐𝑐); 𝑞𝑞𝑗𝑗  
 
𝑞𝑞𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗; 𝑅𝑅𝑗𝑗  
 
 𝑞𝑞𝑗𝑗|𝑐𝑐 

𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗|𝐶𝐶) =  1
|𝑅𝑅𝑗𝑗|

∑  
𝑞𝑞𝑗𝑗∈𝑅𝑅𝑗𝑗

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) (2) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) = max
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐} − min
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐}; 
 𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐  
 

𝐴𝐴𝑅𝑅̅̅ ̅̅ (𝑋𝑋𝑗𝑗) = 1
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + 1 ∑ 𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗 | 𝐶𝐶)

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶=𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

 
𝐴𝐴𝑅𝑅̅̅ ̅̅   
 
 

   – the set of values of j-th ob-
served variable, j = 1,..., J. 

On the basis of real data (which create a sam-
ple), the γc and 

 
𝑃𝑃(𝑟𝑟(𝑧𝑧) = 𝑞𝑞) = 

= ∑ 𝛾𝛾𝑐𝑐 ∙ ∏ 𝑃𝑃(𝑟𝑟𝑗𝑗(𝑧𝑧) = 𝑞𝑞𝑗𝑗| 𝑧𝑧 ∈ 𝐾𝐾𝑐𝑐)
𝐽𝐽

𝑗𝑗=1
=

𝐶𝐶

𝑐𝑐=1
 

=  ∑ 𝛾𝛾𝑐𝑐 ∙ ∏𝑞𝑞𝑗𝑗|𝑐𝑐

𝐽𝐽

𝑗𝑗=1

𝐶𝐶

𝑐𝑐=1
 

(1) 

(∑ 𝑐𝑐
𝐶𝐶
𝑐𝑐=1 = 1); 𝑞𝑞𝑗𝑗|𝑐𝑐  

 
 𝑞𝑞𝑗𝑗|𝑐𝑐 = P(𝑞𝑞𝑗𝑗|𝑐𝑐) = P(𝑟𝑟𝑗𝑗(𝑧𝑧) = 𝑞𝑞𝑗𝑗|𝑧𝑧 ∈ 𝐾𝐾𝑐𝑐); 𝑞𝑞𝑗𝑗  
 
𝑞𝑞𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗; 𝑅𝑅𝑗𝑗  
 
 𝑞𝑞𝑗𝑗|𝑐𝑐 

𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗|𝐶𝐶) =  1
|𝑅𝑅𝑗𝑗|

∑  
𝑞𝑞𝑗𝑗∈𝑅𝑅𝑗𝑗

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) (2) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) = max
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐} − min
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐}; 
 𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐  
 

𝐴𝐴𝑅𝑅̅̅ ̅̅ (𝑋𝑋𝑗𝑗) = 1
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + 1 ∑ 𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗 | 𝐶𝐶)

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶=𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

 
𝐴𝐴𝑅𝑅̅̅ ̅̅   
 
 

  parameters are estimated 
delivering the LCA model.

The researcher does not know in advance how 
many latent classes are to be obtained from the 
data set. Usually, several LCA models are gener-
ated for a different number of classes and the best 
one is selected among them. This study applies 
the concept of selecting such best (final) model 
for the discussed issue by specifying:
 • which observed variables play an important 

role in building the model,
 • how many classes make up the model. 

Observed variables may play more or less rel-
evant role in the construction of the LCA mod-
el and perhaps some of them may be excluded, 
which will allow to limit the number of estimated 
parameters. In the task of selecting observed vari-
ables for the model, the discriminating ability in-
dex AR was used. It is calculated for a given LCA 
model with C classes as follows [19]:

 

 
𝑃𝑃(𝑟𝑟(𝑧𝑧) = 𝑞𝑞) = 

= ∑ 𝛾𝛾𝑐𝑐 ∙ ∏ 𝑃𝑃(𝑟𝑟𝑗𝑗(𝑧𝑧) = 𝑞𝑞𝑗𝑗| 𝑧𝑧 ∈ 𝐾𝐾𝑐𝑐)
𝐽𝐽

𝑗𝑗=1
=

𝐶𝐶

𝑐𝑐=1
 

=  ∑ 𝛾𝛾𝑐𝑐 ∙ ∏𝑞𝑞𝑗𝑗|𝑐𝑐

𝐽𝐽

𝑗𝑗=1

𝐶𝐶

𝑐𝑐=1
 

(1) 

(∑ 𝑐𝑐
𝐶𝐶
𝑐𝑐=1 = 1); 𝑞𝑞𝑗𝑗|𝑐𝑐  

 
 𝑞𝑞𝑗𝑗|𝑐𝑐 = P(𝑞𝑞𝑗𝑗|𝑐𝑐) = P(𝑟𝑟𝑗𝑗(𝑧𝑧) = 𝑞𝑞𝑗𝑗|𝑧𝑧 ∈ 𝐾𝐾𝑐𝑐); 𝑞𝑞𝑗𝑗  
 
𝑞𝑞𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗; 𝑅𝑅𝑗𝑗  
 
 𝑞𝑞𝑗𝑗|𝑐𝑐 

𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗|𝐶𝐶) =  1
|𝑅𝑅𝑗𝑗|

∑  
𝑞𝑞𝑗𝑗∈𝑅𝑅𝑗𝑗

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) (2) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) = max
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐} − min
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐}; 
 𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐  
 

𝐴𝐴𝑅𝑅̅̅ ̅̅ (𝑋𝑋𝑗𝑗) = 1
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + 1 ∑ 𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗 | 𝐶𝐶)

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶=𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

 
𝐴𝐴𝑅𝑅̅̅ ̅̅   
 
 

 (2)

where:

 
𝑃𝑃(𝑟𝑟(𝑧𝑧) = 𝑞𝑞) = 

= ∑ 𝛾𝛾𝑐𝑐 ∙ ∏ 𝑃𝑃(𝑟𝑟𝑗𝑗(𝑧𝑧) = 𝑞𝑞𝑗𝑗| 𝑧𝑧 ∈ 𝐾𝐾𝑐𝑐)
𝐽𝐽

𝑗𝑗=1
=

𝐶𝐶

𝑐𝑐=1
 

=  ∑ 𝛾𝛾𝑐𝑐 ∙ ∏𝑞𝑞𝑗𝑗|𝑐𝑐

𝐽𝐽

𝑗𝑗=1

𝐶𝐶

𝑐𝑐=1
 

(1) 

(∑ 𝑐𝑐
𝐶𝐶
𝑐𝑐=1 = 1); 𝑞𝑞𝑗𝑗|𝑐𝑐  

 
 𝑞𝑞𝑗𝑗|𝑐𝑐 = P(𝑞𝑞𝑗𝑗|𝑐𝑐) = P(𝑟𝑟𝑗𝑗(𝑧𝑧) = 𝑞𝑞𝑗𝑗|𝑧𝑧 ∈ 𝐾𝐾𝑐𝑐); 𝑞𝑞𝑗𝑗  
 
𝑞𝑞𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗; 𝑅𝑅𝑗𝑗  
 
 𝑞𝑞𝑗𝑗|𝑐𝑐 

𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗|𝐶𝐶) =  1
|𝑅𝑅𝑗𝑗|

∑  
𝑞𝑞𝑗𝑗∈𝑅𝑅𝑗𝑗

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) (2) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) = max
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐} − min
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐}; 
 𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐  
 

𝐴𝐴𝑅𝑅̅̅ ̅̅ (𝑋𝑋𝑗𝑗) = 1
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + 1 ∑ 𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗 | 𝐶𝐶)

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶=𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

 
𝐴𝐴𝑅𝑅̅̅ ̅̅   
 
 

 
𝑃𝑃(𝑟𝑟(𝑧𝑧) = 𝑞𝑞) = 

= ∑ 𝛾𝛾𝑐𝑐 ∙ ∏ 𝑃𝑃(𝑟𝑟𝑗𝑗(𝑧𝑧) = 𝑞𝑞𝑗𝑗| 𝑧𝑧 ∈ 𝐾𝐾𝑐𝑐)
𝐽𝐽

𝑗𝑗=1
=

𝐶𝐶

𝑐𝑐=1
 

=  ∑ 𝛾𝛾𝑐𝑐 ∙ ∏𝑞𝑞𝑗𝑗|𝑐𝑐

𝐽𝐽

𝑗𝑗=1

𝐶𝐶

𝑐𝑐=1
 

(1) 

(∑ 𝑐𝑐
𝐶𝐶
𝑐𝑐=1 = 1); 𝑞𝑞𝑗𝑗|𝑐𝑐  

 
 𝑞𝑞𝑗𝑗|𝑐𝑐 = P(𝑞𝑞𝑗𝑗|𝑐𝑐) = P(𝑟𝑟𝑗𝑗(𝑧𝑧) = 𝑞𝑞𝑗𝑗|𝑧𝑧 ∈ 𝐾𝐾𝑐𝑐); 𝑞𝑞𝑗𝑗  
 
𝑞𝑞𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗; 𝑅𝑅𝑗𝑗  
 
 𝑞𝑞𝑗𝑗|𝑐𝑐 

𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗|𝐶𝐶) =  1
|𝑅𝑅𝑗𝑗|

∑  
𝑞𝑞𝑗𝑗∈𝑅𝑅𝑗𝑗

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) (2) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) = max
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐} − min
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐}; 
 𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐  
 

𝐴𝐴𝑅𝑅̅̅ ̅̅ (𝑋𝑋𝑗𝑗) = 1
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + 1 ∑ 𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗 | 𝐶𝐶)

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶=𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

 
𝐴𝐴𝑅𝑅̅̅ ̅̅   
 
 

 and Rj are specified in Equation 1.

The AR measure allows the assessment of the 
importance of any Xj variable in the process of 
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building the LCA model. It determines the average 
range of conditional probabilities of an observed 
variable in the LCA model. The measure construc-
tion and its interpretation are self-evident as they 
are based on probability theory. AR can be inter-
preted as an assessment of the distinguishability of 
latent classes in relation to the variable for which 
it is calculated. The AR value belongs to the inter-
val [0, 1]; the maximum AR value occurs when the 
conditional probability of the variable category in 
one of the classes has the value of 0, and in another 
class the value of 1. This means that in the case 
of perfect distinguishability of at least two classes, 
AR is equal to 1. The nature of the measure indi-
cates that the closer to one its value is, the stronger 
the discriminating ability of the observed variable 
becomes. In the study, the AR measure was used in 
the variable selection procedure for the LCA model 

and also as an indicator of importance (weight) of 
observed variables in defining profiles of occupa-
tional accident casualties. 

An iterative backward selection type algo-
rithm is proposed to select relevant observed vari-
ables. The diagram of the algorithm is presented 
in Figure 3. In the procedure, a set of temporary 
latent class models, with the number of classes 
varying in the range C = Cmin,..., Cmax is used. 
From the series of AR(Xj|C), the average value 
for each Xj is calculated as follows:
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Figure 3. Algorithm for selection of relevant observed variables and generation of LCA models
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excluded, as long as this value is less than a cer-
tain assumed cut-off level 𝐴𝑅*. The values of the 
parameters C𝑚𝑖𝑛, C𝑚𝑎𝑥, and 𝐴𝑅* are taken a priori 
by the researcher.

In the LCA method, as in other cluster anal-
ysis methods, it is important to determine the 
number of clusters (latent classes). A universal 
and unambiguous way to decide about this is not 
known in the literature [25, 26] and it is still un-
der discussion [27–30]. In the process of select-
ing the number of latent classes, the Bayesian in-
formation criterion (BIC) is the most commonly 
used and trusted fit index for model comparison 
[22, 30–32]. Other information measures are 
also applied, such as: adjusted Bayesian infor-
mation criterion (ABIC),  Akaike information 
criterion (AIC), consistent Akaike information 
criterion (CAIC), sample adjusted Bayesian in-
formation criterion (SABIC) [23, 33–34]. Also 
popular are: measures based on entropy, the 
lo-mendel-rubin (LMR) test, or the bootstrap 
likelihood ratio test (BLRT) [22–26, 30]. In any 
case, the nature of the issue under study and the 
subjective approach of the researcher imply the 
choice of the measures used.

In this work, the following quality measures 
were considered for selection of the final LCA 
model out of several candidates, with the number 
of classes varying from Cmin to Cmax: BIC, CAIC, 
ABIC, entropy-based measure E, and the discrim-
inating ability index AR.

PREPARATION OF DATA

Individual data records on accidents at work 
for 2008–2017 in Poland registered in produc-
tions enterprises, obtained from Statistics Poland 
(GUS), were the subject of the research. The study 
focuses on the industry sector called Manufacture 
of wood and cork products, excluding furniture; 
manufacture of articles of straw and plaiting ma-
terials and it refers to accidents that happened in 
a direct connection with the production process. 
Thus, only records that met the following criteria 
were selected (the denotation in italics originate 
from the Polish statistical accident card): 
 • people injured in accidents at work – Indus-

trial workers and craftsmen, Operators and 
assemblers of machines and devices, and Em-
ployees doing simple works;

 • accident location – Industrial production sites, 
 • work process – Production, processing, storage. 

In Poland, the size of an enterprise is classi-
fied according to the number of employees (with-
out recalculation to full-time employment) as 
follows:
 • 0 – self-employed persons with no other 

employees,
 • 1 – up to 9 employees,
 • 2 – 10–49 employees,
 • 3 – 50–249 employees,
 • 4 – 250–499 employees,
 • 5 – more than 499 employees.

According to the literature [35, 36], employees 
of smaller enterprises are at greater risk than em-
ployees of larger enterprises in terms of the severity 
of occupational accidents (including loss of life). In 
order to test the applicability of the above statement 
to the analyzed data and to propose a possible ag-
gregation of enterprise size classifications, multiple 
comparison tests for equality of proportions of se-
riously injured casualties were conducted. Because 
tests of multiple comparisons are not independent, 
the Bonferroni correction (considered to be relative-
ly conservative) was applied [37, 38]. The results of 
the tests in each pair of enterprise size are summa-
rized in Table 4. The null hypotheses H0 state that 
proportions in both populations are the same.

The p-values, calculated after the Bonferroni 
correction, imply that in six out of fifteen cases 
the null hypothesis of the equality of proportions 
should be rejected. The test results indicate the 
possibility of creating two variants of the enter-
prise size aggregation:
 • (0, 1, and 2) for the test numbers: 1, 2, and 6, 

respectively, and (3, 4, and 5) for the test num-
bers: 13, 14, and 15, respectively; 

 • (1 and 2) for the test number: 6, and (0, 3, 4, 
and 5) for the test numbers: 3, 4, 5, 13, 14, and 
15, respectively. 

Taking into account the logic and meaning of 
the values, it was proposed to classify the size of 
an enterprise according to the pair of aggregates 
indicated in the first variant and to create the vari-
able WK having two values (the following nota-
tions are used later in the paper):
 • wk1; micro and small enterprises employing 

up to 49 people;
 • wk2; medium and large enterprises employing 

50 people or more. 

In the work, attributes characterizing the ac-
cidents casualties are marked with the symbol Pxx, 
where xx stands for the number of an item from the 
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statistical accident card (for example, P02 means the 
age of the injured person). Table 5 provides a sum-
mary of the variables considered in the LCA model-
ing. The information in the table is divided into two 
data sets: wk1 and wk2, according to the enterprise 
size (the WK variable), as explained earlier. Observa-
tions that did not provide information were removed 
(for example, P09 – Injured body part = Unknown 
or undefined). Data transformation was proposed, 
mainly the aggregation of values or variables, which 
helped to solve the problem of rare categories. In this 
process, the substantive meaning of variables was 
taken into account. The presence of heterogeneous 
categories made it possible to examine how the LCA 
model deals with such a set of data. The P289 vari-
able, which speaks for Casualty injury severity, is the 
result of the aggregation of two attributes: P28 (Ac-
cident consequence) and P29 (Inability to work). 

LCA MODELS BY ENTERPRISE SIZE – THE 
RESULTS

The algorithm for building the LCA models 
and selecting relevant variables in the process of 
the model’s creation (Fig. 3) was used for both 
the data sets wk1 and wk2. The number of latent 
classes varied from Cmin = 2 to Cmax = 15. The fol-
lowing identifiers for the resulting models were 
used in the process: wk1-LCA2,..., wk1-LCA15 
for the wk1 data set and wk2-LCA2,..., wk2-
LCA15 for the wk2 data set, where the number 
at the end of the identifier indicates the number 
of latent classes in the model. The cut-off value 
𝐴𝑅* for the observed variables was assumed to be 
0.2 (this constitutes the variable selection crite-
rion). Out of 12 indicators (Table 5), the criterion 
was met by 9 (P02, P05, P06, P08, P09, P21, P26, 

Table 4. Test for equality of proportions of persons seriously injured in accidents at work by enterprise size
Test number Pairwise population by enterprise size Chi-square statistic p-value p-value after Bonferroni correction

1 0 and 1 0.2618 0.6089 1

2 0 and 2 0.9310 0.3346 1

3 0 and 3 2.8459 0.0916 1

4 0 and 4 4.3015 0.0381 0.5712

5 0 and 5 3.7516 0.0528 0.7913

6 1 and 2 5.6738 0.0172 0.2583

7 1 and 3 41.7432 <.0001 <.0001*

8 1 and 4 51.5309 <.0001 <.0001*

9 1 and 5 44.0053 <.0001 <.0001*

10 2 and 3 30.1105 <.0001 <.0001*

11 2 and 4 38.5189 <.0001 <.0001*

12 2 and 5 30.7957 <.0001 <.0001*

13 3 and 4 5.2654 0.0218 0.3263

14 3 and 5 2.3656 0.1240 1

15 4 and 5 0.4127 0.5206 1

Note: * The null hypothesis is rejected at α = 0.05.

Table 5. Characteristics of the research data
Observed variables and their descriptive values

(The information is taken from the Polish statistical accident card) Value codes wk1 data set 
[%]

wk2 data set 
[%]

P01 – Casualty gender

Male 1 92.75 82.23

Female 2 7.25 17.77

P02 – Casualty age

Up to 24 years old 1 17.42 17.28

25–34 years old 2 30.21 30.23

35–44 years old 3 24.95 25.60

45–54 years old 4 18.11 18.89

Over 54 years 5 9.32 8.01
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P05 – Casualty occupation

Industrial workers, craftsmen, and employees doing simple works 1 78.24 63.67

Operators and assemblers of machines and devices 2 21.76 36.33

P06 – Enterprise job seniority

Up to 5 years (inexperienced workers) 1 69.56 66.86

6–10 years (mature workers) 2 15.37 16.23

Over 10 years (veteran workers) 3 15.07 16.91

P07 – Hours from start of work to accident

Below 4 1 46.35 47.06

4–7 2 48.98 48.20

8 and more 3 4.67 4.74

P08 – Injury type

Wounds and superficial injuries 1 52.43 57.36

Bone fractures 2 18.69 15.25

Displacements, dislocations, sprains and strains 3 6.95 12.86

Traumatic amputations (loss of body parts) 4 13.28 4.85

Various other injuries – a heterogeneous category, that includes various injury types 5 8.66 9.68

P09 – Injured body part

Head, neck 1 5.64 7.52
Body – a heterogeneous category, that includes: Thoracic and lumbar spine, Torso 
and internal organs, Whole body and its various parts, Other body part 2 3.91 5.21

Upper limbs 3 71.60 65.62

Lower limbs 4 18.85 21.65

P16 – Time of year

Spring months 1 25.10 26.20

Summer months 2 25.59 24.68

Autumn months 3 24.31 24.97

Winter months 4 25.00 24.15

P21 – Activity performed at accident time

Operating machinery 1 55.52 43.52

Working with tools and objects 2 25.69 30.56

Transport at the workplace 3 12.72 15.39

Presence at the accident scene without doing work 4 6.08 10.52

P26 – Material factor as injury source

Buildings, structures, surfaces 1 5.31 7.44

Another factor – a heterogeneous category, that includes various injury sources 2 8.91 9.62

Hand tools 3 10.16 8.96

Machines and devices 4 46.99 37.23

Materials, objects, products, machine parts 5 28.63 36.74

P27 – Main accident cause

Defect of material factor 1 21.50 14.35

Misuse of material factor 2 13.94 13.98

Inappropriate work organization 3 10.70 12.03

Safety neglect 4 53.86 59.64
P289 – Casualty injury severity; a new variable, defined on the basis of the variables: P28 (Accident consequence) 

and P29 (Inability to work)
Slight – accident resulting in inability to work for 0–29 days 1 36.75 50.26

Medium – accident resulting in inability to work for 30–89 days 2 43.18 35.90
Serious – severe or fatal accident or accident causing inability to work for at least 90 
days 3 20.07 13.84

Number of observations 3916 9822

Table 5. Cont.
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Table 6. Quality measures for the LCA models
Model G2 BIC CAIC ABIC E

wk1-LCA2 14904.89 15343.35 15396.35 15174.94 0.71

wk1-LCA3 13890.79 14552.62 14632.62 14298.42 0.70

wk1-LCA4 13499.92 14385.11 14492.11 14045.12 0.74

wk1-LCA5 13145.62 14254.18 14388.18 13828.39 0.74

wk1-LCA6 12811.57 14143.49 14304.49 13631.91 0.72

wk1-LCA7 12536.30 14091.59 14279.59 13494.22 0.70

wk1-LCA8 12339.38 14118.04 14333.04 13434.86 0.70

wk1-LCA9 12216.82 14218.84 14460.84 13449.87 0.71

wk1-LCA10 12095.05 14320.44 14589.44 13465.68 0.71

wk1-LCA11 11982.94 14431.70 14727.70 13491.15 0.71

wk1-LCA12 11889.69 14561.81 14884.81 13535.46 0.72

wk1-LCA13 11807.23 14702.72 15052.72 13590.58 0.72

wk1-LCA14 11746.45 14865.31 15242.31 13667.37 0.71

wk1-LCA15 11660.59 15002.81 15406.81 13719.08 0.73

wk2-LCA2 20135.87 20567.91 20614.91 20418.55 0.71

wk2-LCA3 17455.41 18108.06 18179.06 17882.44 0.65

wk2-LCA4 16421.00 17294.27 17389.27 16992.38 0.67

wk2-LCA5 15477.94 16571.83 16690.83 16193.67 0.68

wk2-LCA6 14662.84 15977.35 16120.35 15522.92 0.69

wk2-LCA7 14172.12 15707.25 15874.25 15176.55 0.70

wk2-LCA8 13777.77 15533.51 15724.51 14926.54 0.67

wk2-LCA9 13455.09 15431.45 15646.45 14748.21 0.68

wk2-LCA10 13138.21 15335.19 15574.19 14575.68 0.70

wk2-LCA11 12898.51 15316.10 15579.10 14480.33 0.70

wk2-LCA12 12675.40 15313.61 15600.61 14401.57 0.70

wk2-LCA13 12486.63 15345.46 15656.46 14357.15 0.72

wk2-LCA14 12321.46 15400.91 15735.91 14336.33 0.72

wk2-LCA15 12192.68 15492.74 15851.74 14351.89 0.72

P27, and P289) and 8 (P02, P05, P06, P08, P09, 
P21, P26, and P289) variables for wk1 and wk2, 
respectively. Of the resulting models, the best 
model was selected for each enterprise group. 

Table 6 and scree plots in Figure 4 present 
the quality measures for the wk1 models. The 
numbers of latent classes in the LCA model are 
marked on the horizontal axis (they also indicate 
the numbers of the models). The decrease in the 
values of BIC and CAIC measures is relatively 
gentle starting from the wk1-LCA4 model. The 
lowest values of these measures occur for the 
wk1-LCA7 model. For the ABIC measure, the 
mild decline starts from the wk1-LCA7 model, 
reaching a minimum for the wk1-LCA8 model. 
The entropy-based E index value is at least 0.70, 
indicating the sufficient class differentiability in 
each model [39]. Figure 5 shows the values of 

the AR index for the considered nine observed 
variables, in relation to each C-class model. 
Starting with the wk1-LCA6 model, six vari-
ables form a group that plays a major role in the 
discrimination of latent classes: P21, P26, P08, 
P06, P09 and P289. 

Table 6 and scree plots in Figure 6 present the 
quality measures for the wk2 models. The decline 
in BIC and CAIC is relatively mild starting from 
the wk2-LCA7 model. For the ABIC measure, the 
mild decline starts from the wk2-LCA10 model, 
reaching a minimum for the wk1-LCA14 model. 
The entropy-based E index value in each model 
is at least 0.60, which speaks for sufficient class 
differentiability [39]. Figure 7 shows the values 
of the AR index for the considered eight observed 
variables, in relation to each C-class model. Start-
ing with the wk2-LCA6 model, six variables 
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Figure 4. Scree plots of information measures for the wk1 LCA models

Figure 5. AR values of observed variables in the wk1 LCA models

Figure 6. Scree plots of information measures for the wk2 LCA models
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form a group that plays largest major role in the 
discrimination of latent classes: P21, P09, P08, 
P289, P26 and P06. 

On the basis of all the considered measures 
and, additionally, the insight into the estimated 
parameters, the wk1-LCA7 and wk2-LCA8 mod-
els were selected for further analysis. Their quali-
tative assessment is considered to be better than 
that of other models for respective data sets. The 
two obtained LCA models for the two groups of 
manufacturing enterprises illustrated in the form 
of heat map are shown in Table 7. The map pres-
ents synthetic diagnosis of occupational safety 
threats. The layout of the map is defined by the 
ordering of the analyzed observed variables ac-
cording to their identifiers. The bolded columns 
show the empirical distributions of the analyzed 
variables and provide references for the other part 
of the map. The map cells represent the estimators 
of the conditional probabilities 
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 𝑞𝑞𝑗𝑗|𝑐𝑐 = P(𝑞𝑞𝑗𝑗|𝑐𝑐) = P(𝑟𝑟𝑗𝑗(𝑧𝑧) = 𝑞𝑞𝑗𝑗|𝑧𝑧 ∈ 𝐾𝐾𝑐𝑐); 𝑞𝑞𝑗𝑗  
 
𝑞𝑞𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗; 𝑅𝑅𝑗𝑗  
 
 𝑞𝑞𝑗𝑗|𝑐𝑐 

𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗|𝐶𝐶) =  1
|𝑅𝑅𝑗𝑗|

∑  
𝑞𝑞𝑗𝑗∈𝑅𝑅𝑗𝑗

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) (2) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑞𝑞𝑗𝑗|{𝑐𝑐}) = max
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐} − min
𝑐𝑐=1,…,𝐶𝐶

{𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐}; 
 𝜌𝜌𝑞𝑞𝑗𝑗|𝑐𝑐  
 

𝐴𝐴𝑅𝑅̅̅ ̅̅ (𝑋𝑋𝑗𝑗) = 1
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + 1 ∑ 𝐴𝐴𝑅𝑅(𝑋𝑋𝑗𝑗 | 𝐶𝐶)

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶=𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

 
𝐴𝐴𝑅𝑅̅̅ ̅̅   
 
 

. The estima-
tors of the probabilities gc for the latent classes are 
given at the top of the maps. 

OCCUPATIONAL ACCIDENTS BY 
ENTERPRISE SIZE – THE DISCUSSION

The number of latent classes varies between 
the two groups of enterprises. Occupational ac-
cidents profiles for micro and small enterprises 
(wk1) are identified by the 7-class model wk1-
LCA7 estimated on the basis of 9 observed vari-
ables; its latent classes (clusters) were given the 
following labels (identifiers): wk1-K1,..., and 

wk1-K7. In the case of medium and large enter-
prises (wk2), such profiles are identified by the 
8-class model wk2-LCA8, for which 8 observed 
variables were used; compared to the wk1-
LCA7 model, the P27 variable is absent. In this 
case, the wk2-LCA8 model latent classes were 
given the following labels: wk2-K1,..., and wk2-
K8. The first part of each identifier (wk1 or wk2) 
informs about the model to which a class belong. 
The second part (K1 to K7 or K1 to K8) is used 
to indicate a particular cluster in the model. 

In the two models, the relevance of the ob-
served variables, determined by the values of the 
AR index, is different. Also, the importance rank-
ing of the variables is different – see Figure 8. On 
the basis of the estimated conditional probabili-
ties for the P289 variable, the latent classes ob-
tained in the wk1-LCA7 and wk2-LCA8 models 
were assigned to one of three groups as follows, 
reflecting the degree of casualty injury:
a) mild accident category when P(P289 = 3) < 0.1 

and P(P289 = 1) > 0.5; contains latent classes: 
wk1-K3, wk1-K7, wk2-K2. wk2-K4, wk2-K5, 
and wk2-K6,

b) intermediate accident category when it is nei-
ther mild nor alert accident category; contains 
latent classes: wk1-K4, wk1-K5, wk1-K6. 
wk2-K1, and wk2-K3,

c) alert accident category when P(289 = 3) > 0.25 
and P(P289 = 2) + P(289 = 3) > 0.5; contains latent 
classes: wk1-K1, wk1-K2, wk2-K7, and wk2-K8.

The proposed classification is not the same as the 
values of the observed variable P289 and the above 

Figure 7. AR values of observed variables in the wk2 LCA models
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Table 7. The heat maps of occupational accident casualty profiles for the wk1-LCA7 and wk2-LCA8 models
Estimated γc→ 0.066 0.219 0.187 0.118 0.150 0.164 0.096 0.048 0.150 0.104 0.139 0.180 0.124 0.138 0.118

Variable Value wk1
wk1- wk1- wk1- wk1- wk1- wk1- wk1-

wk2
wk2- wk2- wk2- wk2- wk2- wk2- wk2- wk2-

K1 K2 K3 K4 K5 K6 K7 K1 K2 K3 K4 K5 K6 K7 K8

P02

1 0.17 0.09 0.22 0.31 0.12 0.15 0.00 0.27 0.17 0.06 0.00 0.05 0.32 0.33 0.27 0.11 0.10

2 0.30 0.25 0.31 0.37 0.33 0.34 0.13 0.38 0.30 0.23 0.13 0.26 0.43 0.39 0.37 0.24 0.30

3 0.25 0.27 0.21 0.19 0.28 0.25 0.36 0.21 0.26 0.33 0.38 0.32 0.17 0.15 0.22 0.29 0.26

4 0.18 0.25 0.17 0.10 0.18 0.18 0.32 0.09 0.19 0.26 0.31 0.25 0.07 0.10 0.11 0.24 0.24

5 0.09 0.13 0.09 0.03 0.09 0.08 0.19 0.05 0.08 0.12 0.18 0.12 0.01 0.02 0.03 0.11 0.10

P05
1 0.78 0.65 0.81 0.79 0.69 0.77 0.84 0.83 0.64 0.61 0.63 0.49 0.62 0.68 0.61 0.74 0.65

2 0.22 0.35 0.19 0.21 0.31 0.23 0.16 0.17 0.36 0.39 0.37 0.51 0.38 0.32 0.39 0.26 0.35

P06

1 0.70 0.61 0.87 0.92 0.67 0.76 0.14 0.80 0.67 0.61 0.20 0.50 0.92 0.94 0.80 0.63 0.64

2 0.15 0.15 0.09 0.07 0.20 0.13 0.32 0.14 0.16 0.18 0.31 0.21 0.08 0.06 0.13 0.20 0.17

3 0.15 0.24 0.04 0.00 0.12 0.11 0.54 0.07 0.17 0.21 0.49 0.29 0.01 0.00 0.07 0.17 0.19

P08

1 0.52 0.08 0.31 0.92 0.59 0.13 0.66 0.83 0.57 0.14 0.85 0.12 0.67 0.84 0.88 0.47 0.08

2 0.19 0.35 0.16 0.01 0.02 0.65 0.12 0.07 0.15 0.05 0.03 0.23 0.03 0.07 0.03 0.15 0.67

3 0.07 0.51 0.01 0.03 0.01 0.16 0.01 0.02 0.13 0.10 0.06 0.60 0.18 0.03 0.02 0.01 0.16

4 0.13 0.00 0.44 0.01 0.00 0.03 0.17 0.03 0.05 0.00 0.00 0.01 0.00 0.01 0.01 0.31 0.02

5 0.09 0.06 0.07 0.02 0.38 0.03 0.04 0.06 0.10 0.71 0.06 0.04 0.11 0.06 0.07 0.06 0.07

P09

1 0.06 0.01 0.01 0.02 0.33 0.01 0.04 0.04 0.08 0.23 0.15 0.02 0.13 0.04 0.11 0.00 0.00

2 0.04 0.09 0.02 0.00 0.20 0.03 0.00 0.00 0.05 0.64 0.03 0.04 0.05 0.01 0.01 0.00 0.03

3 0.72 0.18 0.95 0.88 0.21 0.53 0.90 0.82 0.66 0.03 0.66 0.16 0.44 0.91 0.81 0.98 0.66

4 0.19 0.72 0.03 0.10 0.25 0.43 0.06 0.14 0.22 0.10 0.16 0.78 0.37 0.04 0.07 0.02 0.31

P21

1 0.56 0.08 0.88 0.76 0.38 0.31 0.77 0.00 0.44 0.35 0.49 0.10 0.23 0.81 0.01 0.85 0.32

2 0.26 0.15 0.12 0.17 0.27 0.23 0.18 0.98 0.31 0.22 0.31 0.06 0.21 0.17 0.98 0.13 0.36

3 0.13 0.21 0.00 0.07 0.21 0.44 0.05 0.01 0.15 0.31 0.15 0.21 0.41 0.01 0.01 0.01 0.28

4 0.06 0.56 0.01 0.00 0.14 0.02 0.00 0.01 0.11 0.12 0.05 0.63 0.15 0.00 0.00 0.01 0.04

P26

1 0.05 0.50 0.00 0.01 0.07 0.05 0.00 0.01 0.07 0.06 0.02 0.49 0.06 0.00 0.02 0.00 0.06

2 0.09 0.28 0.03 0.07 0.19 0.10 0.04 0.06 0.10 0.23 0.11 0.23 0.12 0.05 0.04 0.03 0.08

3 0.10 0.01 0.06 0.04 0.05 0.01 0.04 0.71 0.09 0.03 0.06 0.00 0.02 0.01 0.51 0.01 0.07

4 0.47 0.11 0.82 0.67 0.19 0.13 0.70 0.00 0.37 0.19 0.36 0.18 0.26 0.65 0.00 0.81 0.21

5 0.29 0.09 0.09 0.21 0.50 0.72 0.22 0.21 0.37 0.49 0.45 0.10 0.55 0.28 0.42 0.14 0.57

P27

1 0.22 0.09 0.30 0.16 0.27 0.12 0.29 0.16

2 0.14 0.02 0.15 0.13 0.10 0.19 0.15 0.18

3 0.11 0.14 0.09 0.09 0.17 0.16 0.06 0.07

4 0.54 0.76 0.46 0.63 0.46 0.52 0.50 0.59

P289

1 0.37 0.27 0.10 0.59 0.62 0.18 0.32 0.68 0.50 0.47 0.69 0.33 0.81 0.61 0.82 0.09 0.06

2 0.43 0.40 0.48 0.41 0.20 0.62 0.50 0.27 0.36 0.30 0.26 0.47 0.16 0.36 0.16 0.51 0.67

3 0.20 0.33 0.42 0.00 0.18 0.20 0.18 0.05 0.14 0.22 0.05 0.20 0.03 0.03 0.02 0.40 0.27

percentage threshold values depend on the research-
er’s decision in the context of data specificity. 

Figure 9 shows the distribution of the adopted 
classification by the enterprise size, considering the 
estimated probability of occurrence of the latent 
classes. In the group of medium and large enterpris-
es (wk2), the probability of occurrence of accident 
profiles classified in the mild category is highest, 
close to 0.6, while in the group of micro and small 

enterprises (wk1) it is lowest, slightly exceeding 
0.28. The probability of occurrence of accident pro-
files from the intermediate category is lowest in the 
group of medium and large enterprises, amounting 
to 0.15, while in micro and small enterprises it is 
highest, at the level of 0.43. Both groups of enter-
prises have similar probabilities of occurrence of 
accident profiles from the alert category, although in 
the group of micro and small enterprises it is slightly 
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higher (0.28 for wk1 vs. 0.26 for wk2). Micro and 
small wood processing enterprises have a consider-
ably higher threat of more severe injuries in occupa-
tional accidents than medium and large enterprises 
(71.7% for wk1 vs. 40.8% for wk2); this conclusion 
is in consent with the outcome of some other studies 
[14, 17]. On the basis of the heat maps, the accident 
profiles were characterized as follows. 

Mild accident category

Similar patterns occur in both groups of enter-
prises, with wounds and superficial injuries pre-
dominating. They contain the following classes:
 • wk1-K3 and wk2-K5, which can be labeled 

as a light severity of injury involving upper 
limbs during machine operation among inex-
perienced workers,

 • wk1-K7 and wk2-K6, which can be labeled 
as a very light severity of injury involving up-
per limbs when working with tools or objects 
among inexperienced workers.

In micro and small enterprises, neglect of 
safety is the main cause of accidents. In medium 
and large enterprises, there are additional patterns: 
wk2-K2 – a very light severity of injury involving 
upper limbs during the production process among 
experienced workers, and wk2-K4 – a very light 
severity of injury involving limbs during various 
activities among inexperienced workers.

Intermediate accident category

In each of the wk1 and wk2 groups of enterpris-
es, there is a fuzzy, heterogeneous profile of acci-
dents at work, which is assigned to the intermediate 

accident category, represented by the wk1-K4 and 
wk2-K1 latent classes, respectively. In these two 
clusters, the differentiation of conditional prob-
abilities for the observed variables is smaller than 
in the remaining latent classes of both models wk1-
LCA7 and wk2-LCA8. The clusters are also char-
acterized by a significant share of heterogeneous 
categories. Differences between classes wk1-K4 
and wk2-K1 are noticeable in terms of the estimat-
ed distributions of the observed variables: Injury 
type (P08) and Injured body part (P09).

The remaining classes in the wk1-LCA7 
model differ from the remaining class in the wk2-
LCA8 model:
 • wk1-K5 can be labeled as a moderate sever-

ity of limb injuries (often fractures) during the 
production process or its support among inex-
perienced workers; wk1-K6 can be labeled as a 
moderate severity of upper limb injuries (often 
lacerations and superficial injuries) when op-
erating machines among experienced workers,

 • wk2-K3 can be labeled as a moderate sever-
ity of lower limb injuries (often dislocations, 
sprains, sprains and strains) during work not 
directly related to the production processes.

Alert accident category

There are similar profiles in both groups of en-
terprises as regards alert accident category. They 
are represented by classes wk1-K2 and wk2-K7, 
which can be labeled as a very high severity of 
upper limb injuries (often amputations) while op-
erating machinery. However, the estimated prob-
ability for inexperienced workers is distinctly 
greater in wk1-K2 than in wk2-K7.

Figure 8. AR values of observed variables in the wk1-LCA7 and wk2-LCA8 models
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There are also different alert accident profiles 
in the two groups of enterprises:
 • wk1-K1, which can be labeled as a high se-

verity of lower limb injuries (usually disloca-
tions, sprains, and tears) during work not di-
rectly related to the production process,

 • wk2-K8, which can be labeled as a high sever-
ity of injuries to upper limbs (usually fractures) 
during the production processes or their support. 

CONCLUSIONS

The work covers the issues related to the di-
agnosis of selected occupational safety hazards in 
wood processing enterprises at the country level 
– Poland. Data on accidents at work provided by 
Statistics Poland, which include individual records 
characterizing the accident casualties, were used. 

Opinions of other researchers that the size 
of an enterprise has an impact on the severity of 
the consequences of accidents at work have been 
confirmed through the test for equality of propor-
tions with the Bonferroni correction. On the basis 
of the test results, a division of the data set into 
two subsets was proposed as follows: data related 
to micro and small enterprises, employing up to 
49 people, and data related to medium and large 
enterprises, employing 50 people or more. 

The identification of profiles of occupational 
accident casualties was carried out using the LCA 
data mining technique. The process of building 
the LCA model was carried out independently for 
each of the two groups of enterprises, resulting 
in latent classes that defined accident profiles. 
A proprietary algorithm indicating the observed 

variables that, due to their high discriminatory 
property should be included in the LCA model, 
was proposed. Occupational accident profiles 
were illustrated graphically in the form of heat 
maps. Latent classes were individually labeled 
and compared in groups formed according to the 
degree of harm to the casualty. The LCA method 
proved to be a good tool in analyzing qualitative 
occupational accident data. It made it possible 
to extract rational patterns of accidents at work. 
General conclusions drawn on the basis of the re-
search are presented below.
1. In terms of the quantity aspect of occupational 

accident threats, micro and small enterprises 
(wk1) differ from medium and large enter-
prises (wk2). The probability of the alert and 
intermediate accident category is significantly 
higher for the former (71.7%) than for the lat-
ter (40.8%). Thus, employees of smaller enter-
prises (wk1) may be at greater risk of suffering 
more serious injury from an accident at work 
than employees of larger enterprises (wk2).

2. In both groups of enterprises, the most severe 
work accidents are related to operating ma-
chinery. Such incidents mainly affect workers 
with little job seniority and injuries involve 
particularly upper limbs. The casualties often 
suffer from traumatic amputations.

3. In micro and small enterprises, high injury se-
verity of accidents occurs during activity not di-
rectly related to production process, but due to 
the worker finding himself at the accident site. 
Displacements, dislocations, sprains, and strains 
of lower limbs were the most common injuries. 

4. In the case of medium and large enterprises, high 
injury severity was characterized by accidents 

Figure 9. Distribution of occupational accident profiles classification by enterprise size
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occurring during the production process or its 
support. Injuries, mostly fractures, were sus-
tained to limbs (more often upper ones).

Despite the introduction of legal regulations 
for the protection of workers’ health and life in 
Poland, they may be insufficient for high-risk 
production enterprises, such as wood processing 
ones. In the light of the obtained results, it also 
appears that certain health and safety require-
ments may not be fully met, or the weak link may 
be the employee himself (not always through 
their own fault). Enterprises should be targeted 
with appropriate information and prevention pro-
grams, as well as appropriate inspection activities 
by competent institutions. In particular, it seems 
reasonable to extend increased/special attention 
to smaller enterprises.
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