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INTRODUCTION

Biogas production is a well-explored technolo-
gy used to generate renewable energy and manage 
organic waste through anaerobic processes. Nowa-
days, the biogas sector is growing rapidly, promot-
ing a circular economy through the recycling of 
nutrients, reduction of greenhouse gas emissions 
and biorefinery goals, and a review of the current 

state and future prospects reveals the potential for 
optimizing the digestion process [1, 2]. Biogas is a 
gas produced from biomass, extracted from the an-
aerobic decomposition of organic compounds by 
the process of methane fermentation. It is a multi-
step biochemical process that has a direct relation-
ship to the chemical composition of the starting 
substrate, i.e., the organic compounds entering the 
digester and the bacteria involved in the process. 
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ABSTRACT
One of the alternative ways to obtain low-cost energy is to use biogas generated by the digestion process from sew-
age sludge. This paper presents an analysis of the processes in four anaerobic digesters (AD) – A, B, C and D. The 
study analyzed the amount of biogas produced in each digester tank and compared them with each other. Using 
data sets consisting of parameters relating to the pre-sludge and surplus sludge diverted to each tank, the effect of 
the proportion of these parameters on biogas production efficiency was studied. Based on this data, several models 
using different machine learning techniques were built and compared, which can be used to support the biogas 
production optimization process. A free convenient web tool written in Python language – AD2Biogas Predictor 
Tool - was also given away for sewage treatment plants to conveniently estimate the predicted amount of biogas 
produced on a given day using the implemented models. The main objective of the study is to understand how the 
studied parameters affect the efficiency of the process and identify potential optimization strategies, as well as to 
propose a model for biogas yield prediction based on sludge characteristics. The result of the study is to contribute 
to increasing the efficiency of sludge management in wastewater treatment plants and increasing biogas produc-
tion, both in the form of developed models and a software tool.
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The substrate for fermentation can be any biode-
gradable compound, but they differ in their decom-
position rates and methane yields [3, 4].

Nowadays, biogas is a commonly used re-
source obtained as a result of waste digestion. 
It may be used to generate electricity for the in-
ternal needs of wastewater treatment plants, but 
its excess can also be sold [5–8]. In addition, the 
combustion of biogas in boilers or combined heat 
and power (CHP) units allows for the generation 
of heat [9]. Another potential way to manage bio-
gas is to inject it into the gas network or use it as 
vehicle fuel [10]. Combustion of biogas in CHP 
units enables economic energy production (1 m³ 
of biogas allows the generation of about 2.1 kW 
of electricity and 2.9 kW of heat energy) and pro-
vides higher efficiency of the system, compared to 
separate heat and power generation [11]. The treat-
ment of wastewater does not only result in biogas. 
The process also produces sewage sludge, which 
can be utilized in various industries. The results of 
studies on the mechanical properties of concrete 
mixtures modified with post-fermentation sludge 
have demonstrated the potential for using these 
residues in concrete mixes [12]. Another area 
where sewage sludge can be used is in the produc-
tion of unconventional material for road construc-
tion, as demonstrated in the studies by Wojcik 
(2018) [13], which used dewatered sewage sludge 
with a moisture content of 62%, glass powder, and 
quartz sand. Sewage sludge residue can be repur-
posed as a building material in the form of pellets 
[14]. The referenced study details the process of 
converting sewage sludge into pellets, which have 
potential applications in construction, particularly 

as thermal insulation or as a substitute for conven-
tional building materials.

A reasonable approach to treating sewage 
sludge is to use it as a substrate for biogas produc-
tion in the methane fermentation process. Biogas 
is a mixture of gases, mainly methane and carbon 
dioxide, which can be used to produce electric-
ity and heat. In addition, the process of anaerobic 
digestion leading to the formation of biogas is 
beneficial for dehydrating sludge and reducing its 
volume. Given the numerous benefits of biogas 
production, the energy potential of sewage sludge 
is steadily increasing [15–17]. This approach can 
lead to an improvement in the energy efficiency 
of the entire treatment plant and even allow it to 
become self-sufficient [18–20]. Analyzing the 
amounts of sludge processed in digestion pro-
cesses, it may be concluded that the energy po-
tential inherent in sludge is utilized in less than 
40% [21–24]. For comparison, in Croatia, about 
30% of sewage sludge is processed through di-
gestion into biogas [25]. It is estimated that up 
to 170 installations for biogas production from 
sewage sludge could still be built in wastewater 
treatment plants in Poland [26], and every district 
in Poland has a sufficient amount of substrates 
for biogas production [27]. Sludge treatment for 
biogas production consists of sludge pretreatment 
(thickening, conditioning), anaerobic decompo-
sition of organic matter in methane digestion, 
biogas treatment (desulfurization) and its conver-
sion to electricity or heat, and post-treatment of 
digested sludge (dehydration, drying). A simpli-
fied diagram of the biogas production process is 
presented in Figure 1.

Figure 1. Process of producing biogas from wastewater with four anaerobic digesters
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The classic arrangement for biogas generation 
in a wastewater treatment plant is one in which 
the sludge is initially thickened, and then pumped 
into the separated or enclosed digesters, where 
the mesophilic fermentation process takes place 
in the temperature range of 35–39 °C. The hold-
ing time is about 20 days, and this is the period 
during which biogas is produced with the partici-
pation of microorganisms [3]. The most common 
in biogas production is mesophilic fermentation 
carried out at a temperature of 35 °C. In such a 
system, organic substances decompose up to 40% 
within a retention time of 30 to 40 days. It is cru-
cial that the thermal conditions remain stable; 
otherwise, there may be a development of non- 
methanogenic bacteria populations, which would 
significantly reduce the methane content in the 
biogas [28]. According to literature, raw sludge 
can produce about 315–400 Nm³ of methane per 
ton of dry organic matter, while for excess sludge 
this figure is lower, at 190–240 Nm³ of methane 
[29]. However, in terms of the amount of waste-
water, 1000 m3 of municipal wastewater can yield 
100–200 Nm3 of biogas. It is also estimated that 1 
m3 of sludge (with a dry matter content of 4–5%) 
can produce 10–20 m3 of biogas with a 60% 
methane content [3].

The amount of biogas produced largely de-
pends on process conditions and the character-
istics of the wastewater load. Flexible (demand-
driven) biogas production is possible both in 
conventional anaero- bic digestion (AD) and in 
advanced AD using thermal hydrolysis process 
(THP), yielding better results compared to us-
ing a steady operational regime [30] [31]. Bio-
gas production is often analyzed using advanced 
mathematical models and artificial intelligence, 
emphasizing the importance of process control-
lability, including substrate selection. Anaerobic 
co-fermentation of activated sludge with wheat 
straw (a mixture with a 7% ratio) increased bio-
gas production 15-fold compared to monofer-
mentation of the sludge. This was confirmed by 
mathematical models (TDMMs) and ANN [32]. 
In another study, it was demonstrated using arti-
ficial neural net- work (ANN) that organic load-
ing rates (OLRs) obtained at optimal levels have 
a significant impact on increasing biogas produc-
tion [33]. In the study by Qdais et al. operational 
parameters of the fermentation chamber, such 
as temperature (T), total solids content (TS), to-
tal volatile solids content (TVS), and pH, were 
used. Using these data and the ANN algorithm, 

the effectiveness of the model in predicting meth-
ane production was demonstrated, with a corre-
lation coefficient of 0.87 [34]. A variety of sub-
strates can be used to improve biogas yields, such 
as maize silage, slurry, and distillery waste [15], 
food wastes [35], sorghum [36], and brewery 
sludge [37]. The optimal selection and proportion 
of different substrates, supported by advanced 
mathematical models and artificial intelligence, 
allow for the maximization of biogas yield and 
improvement of the overall energy efficiency of 
the process [38].

In the study by Wang et al. [39], the k-nearest 
neighbors (KNN) algorithm showed the highest 
prediction accuracy in regression models, achiev-
ing a root mean square error (RMSE) of 26.6, 
with the dataset values ranging from 259.0 to 
573.8, after excluding extreme outliers from the 
validation set. The study [40] develops a three-
layer ANN and nonlinear regression models to 
predict biogas production rates from an anaero-
bic hybrid reactor (AHR) under various condi-
tions. The results demonstrate that both mod-
els, particularly the ANN (RMSE 217.4, range: 
1510–8084), accurately predict biogas produc-
tion, providing valuable insights for optimizing 
reactor performance and improving economic 
and environmental sustainability in biogas pro-
duction. The research [41] implemented ANN 
models to predict biogas production rates. The 
performance of these models was enhanced by 
selecting significant process variables using GA 
and ACO optimization techniques. GA-ACO-
Optimized ANN Model achieved the best results 
with RMSE of 6.24% for test data, The review 
[42] discusses the application of machine learn-
ing (ML) in AD pro- cesses, highlighting its po-
tential for optimizing, predicting, and stabilizing 
biogas production. Various models such as ANN, 
adaptive neuro-fuzzy inference system (ANFIS), 
and support vector machine (SVM) have been ef-
fectively used to address the complex and nonlin-
ear nature of AD systems. The review also identi-
fies challenges such as the need for large data sets 
and the ”black box” nature of some ML models, 
suggesting that future research should focus on 
improving model transparency and integrating 
different algorithms for better performance. Of 
all the methods, ANN were the most commonly 
used, accounting for 33% of the cases studied.

The aim of this study is to analyze sludge and 
biogas management in four anaerobic digesters at 
the wastewater treatment plant in Rzeszow using 
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data from 2024. The study examined the impact 
of input data on the amount of biogas produced in 
four independent digesters: A, B, C, and D. The 
calculations aim to determine whether the digest-
ers operate in a similar manner and, consequently, 
whether prioritizing a specific digester has eco-
nomic justification due to varying biogas produc-
tion efficiencies in the digesters. Another objec-
tive of the study is to determine the effectiveness 
of multiple (22) ML algorithms in predicting the 
amount of biogas produced based on substrate 
proportions, in order to enable more flexible ener-
gy management at the wastewater treatment plant. 
The wastewater treatment plant in Rzeszow is a 
municipal facility that primarily handles domestic 
sewage, which distinguishes it from other studies 
that often focus on industrial or agricultural waste-
water treatment plants. This difference in the type 
of wastewater treated has a significant impact on 
the biogas production process, as the characteris-
tics of the sewage sludge and the resulting biogas 
yield can vary greatly depending on the source of 
the wastewater. The study utilized algorithms that 
are less commonly used in this type of research, 
compared to methods like ANN and ANFIS [42]. 
By focusing on a municipal plant with its specific 
challenges and conditions, this research provides 
insights that are directly applicable to similar facil-
ities, offering a valuable contribution to the field. 
Additionally, approaches were applied where data 
from multiple tanks were analyzed independently 
or dependently, which is a novelty, as previous 
studies typically examined a single tank or treated 
them collectively. The final element of this work 
is the design of a public tool for predicting the 

amount of gas based on input data to support the 
operation of the analyzed wastewater treatment 
plant. Using the online tool, it is possible to esti-
mate the amount of product based on the data for 
each tank individually.

MATERIALS AND METHODS

Dataset

The study utilized a dataset from the waste-
water treatment plant in Rzeszow. The results 
were obtained for the periods from 01.01 to 01.02 
and from 19.02 to 18.04.2024, comprising a total 
of N = 91 results. The measurements are not con-
tinuous. The dataset includes a set of operational 
parameters for four independent anaerobic digest-
ers, A, B, C, and D. These parameters include in-
formation about the digesters (such as their size) 
and daily operation metrics, such as the amount of 
primary sludge (PS), the amount of excess sludge 
(ES), dry mass (Load A), organic dry mass (Load 
A’), the amount of biogas produced, and biogas 
yield per cubic meter of sludge. Daily measure-
ments of the wastewater treatment plant’s opera-
tion indicate that the PS to ES ratios for individual 
anaerobic digesters are different, which, in turn, 
should have an impact on the different amounts 
of biogas production. The characteristics of these 
data are provided on Figure 2. To evaluate the 
ML models and feature correlation, the data pre-
sented in Table 1 were used as input. There were 
108 days during which data were collected. Each 
data entry contains separate information for the 

Figure 2. The ratio of primary sludge to excess sludge for 4 anaerobic digesters
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four AD tanks. The PS+ES and PS/ES columns, 
although they appear to be redundant, were not 
removed from the data frame. In scenarios where 
features from all digesters were mixed or valida-
tion was performed on the combined features, the 
feature set also included a column indicating the 
specific digester as a char (A, B, C or D).

Methods

In this study, three data validation variants 
were employed to evaluate the effectiveness of 
biogas production prediction. Calculations were 
performed for all variants, and the best-fitting al-
gorithm was selected. In addition, each variant 
was carefully analyzed, and the predictions in 
each case were presented on diagrams. To evalu-
ate the ML models, the MSE was adopted as the 
performance metric. 

First variant (I): Each anaerobic chamber was 
analyzed individually, and biogas production was 
pre- dicted independently for each chamber. The 
leave-one-out (LOO) validation method was used. 
This variant aimed to determine whether the regres-
sion performance depends on the specific anaerobic 
chamber and whether the same algorithms would 
provide similar results in different chambers.

Second variant (II): The leave-one-subject-out 
(LOSO) validation method was applied, where the 
regression performance was tested on an anaerobic 
chamber that was not included in the training pro-
cess. This approach aimed to assess whether the 
characteristics of the chambers were similar and if the 
model could generalize well to an unseen chamber. 
Third variant (III): All data from the four anaerobic 
chambers were combined, and the Leave-One-Out 
validation method was used. This approach allowed 

for a fourfold increase in the number of samples and 
aimed to mitigate the potential variability in chamber 
characteristics, providing a more robust assessment 
of the model’s predictive performance.

MSE has been chosen as the evaluation metric 
for our models due to its widespread recognition 
in the literature, which is intuitively understand-
able and easy to interpret, facilitating the presen-
tation and comprehension of results. MSE is sen-
sitive to large errors, enabling the identification 
of models that minimize significant deviations 
from actual values. Furthermore, it can be easily 
converted to RMSE, providing an additional per-
spective on model accuracy. In our study, we are 
aware that the data may not be fully precise and 
that accuracy may vary between digesters. There-
fore, it is more important to limit large errors, 
even at the cost of increasing the average error. In 
this study, various Python libraries were utilized 
to support the data analysis, machine learning 
model development, and evaluation processes. 
Specifically, pandas was used for data manipu-
lation and analysis, while scikit-learn provided 
tools for implementing and evaluating multiple 
machine learning models, including linear regres-
sion, neural networks, decision trees, random for-
ests, and support vector machines. Additionally, 
numpy was employed for numerical operations, 
and matplotlib was used for visualizing the re-
sults. The study also leveraged advanced cross-
validation techniques, such as leave-one-out, to 
rigorously assess model performance.

For each anaerobic digester, correlations were 
examined and the significant components for each 
specific digester were identified. Results included 
in Table 2 indicate that the parameters studied 
have a significant, but not always the same, effect 

Table 1. List of regression models used in each of three proposed variants
No. Model No. Model

1 Linear regression 12 Extra tree regressor

2 Ridge regression 13 Random forest regressor

3 Lasso regression 14 Gradient boosting regressor

4 ElasticNet regression 15 Adaboost Regressor

5 Bayesian ridge regression 16 Bagging regressor

6 SGD regressor 17 Extra trees regressor

7 Huber regressor 18 Support vector regressor

8 Passive aggressive regressor 19 Linear SVR

9 Theil-Sen regressor 20 Kernel ridge regressor

10 MLP regressor 21 Gaussian process regressor

11 Decision tree regressor 22 K-Neighbors regressor
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on specific recipients. This information forms the 
basis for considering whether all anaerobic digest-
ers operate in the same way and whether it is worth 
considering the proposed calculation variants.

In Table 1, 22 machine learning algorithms are 
presented, which were initially used for the evalu-
ation of the digesters. Each algorithm was applied 
to analyze the performance of individual digesters 
based on various parameters. The results of these 
evaluations help identify the most effective models 
for predicting biogas production. Each method was 
run with the default settings of the sklearn library, 
with only the n estimators and max iter parameters 
changed to 1000. Random forest regressor is an 
algorithm that creates multiple decision trees dur-
ing training and derives predictions by averaging 
the results of each tree (in the case of regression) 
[43]. For the random forest regressor, the n-estima-
tor’s value means that the random forest consists of 
1000 decision trees. This is a relatively large num-
ber, which usually leads to more stable and accurate 
predictions because a higher number of trees better 
averages the predictions and reduces model vari-
ance. The parameter was tested in configurations 

of 10, 100, 500 and 1,000, and the best one was 
chosen. Similarly, in the Extra Trees Regressor, this 
value represents the number of decision trees in the 
model. Extra trees differs from Random Forest in 
that it randomly selects the split threshold at each 
node of the tree, leading to greater randomness. 
[44] In the Bagging Regressor, n estimators also 
refers to the number of base models (by default, de-
cision trees in sklearn) that are trained on different 
bootstrap samples of the data. A higher number of 
estimators increases accuracy. The final result is an 
average of the results of all models [45].

RESULTS

Regression for each anaerobic digesters 
independently (Variant I)

The first variant, where each anaerobic cham-
ber was tested independently, aims to determine 
whether the same methods are suitable for each 
chamber and whether their effectiveness will 
be similar. Figures 3, 4, 5, and 6 contain the 

Table 2. Pearson correlation coefficient for selected features of anaerobic digesters dataset
Parameter AD A AD B AD C AD D

Biogas [m3/d] 1.000000 1.000000 1.000000 1.000000

PS [m3/d] 0.066277 0.053039 0.340254 0.341549

ES [m3/d] -0.008963 0.030069 0.284818 0.308429

PS+ES [m3/d] 0.043022 0.054525 0.381637 0.384922

Load A [kg/m3] -0.233100 -0.234764 0.129208 0.152170

Load A’ [kg/m3] -0.224789 -0.211233 0.143224 0.175614

PS / ES 0.196363 0.091932 0.174754 0.132134

Figure 3. Prediction for biogas production in AC ”A” using bagging regressor, MSE: 71473
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Figure 4. Prediction for biogas production in AC ”B” using k-neighbors regressor, MSE: 51071

Figure 5. Prediction for biogas production in AC ”C” using bagging regressor MSE: 31040

Figure 6. Prediction for biogas production in AC ”D” using extra trees regressor MSE: 27133
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predicted values for the individual datasets. To 
determine which method was best overall, the 
average MSE values for each method from all 
four tanks and compare these averages was cal-
culated. Average MSE is presented as a summary 
in Table 3. The results indicate that while certain 
methods, such as Random Forest Regressor and 
Bagging Regressor, consistently perform well 
across different chambers, there are variations 
in their performance. For example, the Random 
Forest Regressor had the lowest average MSE 
of 46126.20, suggesting it was the best method 
overall. Bagging Regressor was very close with 

a score of 46136.10. AdaBoost Regressor dem-
onstrated the lowest MSE in the variants where it 
was applied, with a value of 39923.97, but it was 
not used across all chambers, so this comparison 
may not be fully representative. These findings 
suggest that while some algorithms may gener-
ally perform well, their performance can still vary 
depending on the specific characteristics of each 
chamber. This underscores the importance of tai-
lored approaches when optimizing biogas produc-
tion predictions for different anaerobic chambers.

Prediction using the leave-one-subject-out 
(LOSO) for 4 anaerobic digesters (Variant II)

Using the LOSO, The extra trees regressor 
algorithm outperformed other mod- els with the 
lowest mean MSE, making it the most suitable 
model for predicting outcomes in unseen anaer- 
obic chambers. In Table 4, the top 5 algorithms 
with the lowest average MSE errors are present-
ed. The individual columns contain the MSE er-
ror calculations for cases where the specific set 
was the test set and the average error value for 
the given algorithm. In Figures 7, 8, 9 and 10, the 
predicted values for each of the anaerobic digest-
ers and the algorithm with the lowest MSE error 

Table 3. Average MSE for each regression method 
across all chambers

Method Average MSE

Bagging regressor 46136.10

Random forest regressor 46126.20

Gradient boosting regressor 48297.91

K-Neighbors regressor 62380.02

Extra trees regressor 49108.96

AdaBoost regressor 39923.97

Table 4. MSE values of different regression models for the leave-one-subject-out (LOSO)
Model AD A AD B AD C AD D Mean

Extra trees regressor 59532.49 83049.72 80335.66 32974.38 63973.06

Bagging regressor 61025.31 48411.45 199939.32 27686.68 84265.69

Random forest regressor 60703.95 48717.10 200236.83 27470.19 84282.02

AdaBoost regressor 93803.80 67780.00 169001.98 31800.44 90596.56

Lasso regression 95798.70 86715.74 104989.74 84865.07 93092.31

Figure 7. Prediction for biogas production in AD ”A” using Extra Trees Regressor, MSE: 59532.49
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Figure 8. Prediction for biogas production in AD ”B” using extra trees regressor, MSE: 83049.72

Figure 9. Prediction for biogas production in AD ”C” using extra trees regressor, MSE: 80335.66

Figure 10. Prediction for biogas production in AD ”D” using extra trees regressor, MSE: 32974.38
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are shown. Fact that the results obtained using the 
LOSO method are superior in one of the datas-
ets indicates several potential aspects. The spe-
cific anaerobic chamber used as the test set may 
have characteristics more similar to the training 
chambers, enabling better generalization and pre-
diction accuracy. Additionally, the model might 
exhibit robustness in handling the variability and 
nuances of that particular test chamber, suggest-
ing effective learning of underlying patterns con-
sistent across similar chambers. The data from 
this test chamber could also be of higher quality 
and consistency, contributing to improved pre-
diction accuracy, especially if it is less noisy or 
more representative of the training data. How-
ever, significantly better performance on one test 
set raises concerns about potential overfitting to 
certain data patterns, underscoring the necessity 
for the model to generalize well to new, unseen 
data. Furthermore, the experimental conditions 
for data collection in that chamber might be more 
controlled or consistent, reducing variability and 
enhancing model performance. These superior 
results highlight the im- portance of assessing 

model performance across diverse and varied test 
sets to ensure robust generalization and avoid 
overfitting to specific data patterns.

Regression for combined data from four 
anaerobic digester

In the Third Variant, where all data from 
the four chambers are combined, leave-one-out 
cross-validation was used as the validation meth-
od for each machine learning algorithm, provid-
ing a more robust assessment by leveraging the 
increased sample size and mitigating potential 
variability between chambers. Table 5 summa-
rizes the performance of different evaluated re-
gression models. The Random Forest Regressor 
achieved the lowest MSE among the considered 
models. Predicted values are shown in Figure 11 
using sample origins.

Discussion

The study addressed the prediction of biogas 
production based on parameters from a waste-
water treatment plant in Rzeszow (Table 6). For 
the calculations, three variants were used: each 
anaerobic chamber was analyzed independently 
using LOO cross-validation (First Variant). The 
LOSO validation method was applied, where the 
regression performance was tested on an anaero-
bic chamber that was not included in the training 
process (Second Variant). Finally, all data from 
the four anaerobic chambers were combined, 
and leave-one-out cross-validation was applied 
(Third Variant). Each of these validation strate-
gies has its own merits and limitations. The First 

Table 5. Comparison of different regression models 
and their mean squared error (MSE)

Model MSE

Random forest regressor 44519.72

Bagging regressor 44597.86

Extra trees regressor 47911.41

Gradient boosting regressor 51887.12

AdaBoost regressor 52291.93

Figure 11. Prediction for biogas production using random forest regressor where samples from four anaerobic 
digester are merged, MSE: 44519.72
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Variant, while offering insights into the perfor-
mance of models on individual chambers, may 
suffer from limited data, leading to overfitting 
and reduced generalizability. The Second Variant, 
using LOSO, provides a more stringent test of 
model robustness by ensuring that one chamber 
is entirely unseen during training. However, it as-
sumes a degree of similarity between chambers 
that may not exist, potentially leading to lower 
predictive accuracy if the chambers differ sig-
nificantly in their operational characteristics. The 
Third Variant, which combines all data, maximiz-
es the training data available to the model, offer-
ing potentially higher stability and generalization, 
but at the cost of possibly averaging out unique 
chamber-specific characteristics, which might be 
crucial for accurate predictions.

When comparing our results to those in the 
literature, several observations emerge. Wang et 
al. [39] reported an RMSE of 8.45% using the K-
nearest neighbors (KNN) algorithm. This meth-
od’s success highlights the importance of local 
data structures in predicting biogas production. 

Tufaner [40], using an ANN, achieved a sig-
nificantly lower RMSE of 3.31%, indicating the 
superior capability of ANN models in captur-
ing the complex nonlinear relationships inherent 
in biogas production processes. Beltramo et al. 
[41] further improved upon these results, record-
ing an RMSE of 6.24% by employing an ANN 
optimized through genetic algorithms (GA) and 
ant colony optimization (ACO), showcasing the 
potential of hybrid optimization techniques in en-
hancing model performance.

Our study, with RMSE values of 11.34% using 
the Random Forest Regressor in the LOO valida-
tion scheme and 8.86% using the Extra Trees Re-
gressor in the LOSO validation, did not achieve the 
lower error rates reported in the aforementioned 
studies. This discrepancy can be attributed to sev-
eral factors. Firstly, the complexity and variability 
of the data across different anaerobic digesters in 
our study posed a significant challenge. Unlike the 
more homogeneous datasets used in other studies, 
our data varied significantly between digesters, 
leading to increased difficulty in model training 

Table 6. Statictics of data provided by treatment plants in Rzeszow collected in 2024
Parameter Count Mean Std Min 25% 50% 75% Max

Biogas [m3/d] 364.0 1793.255 345.583 1145.0 1503.75 1793.5 1984.25 3005.0

PS [m3/d] 364.0 76.630 9.073 35.1 73.1 78.1 80.1 97.3

ES [m3/d] 364.0 46.654 6.631 25.5 41.8 47.6 51.9 61.3

PS + ES [m3/d] 364.0 123.284 12.770 61.0 118.875 125.4 131.2 147.0

Load A [kg/m3] 364.0 2.371 0.383 0.98 2.13 2.38 2.64 3.12

Load A’ [kg/m3] 364.0 1.828 0.289 0.77 1.64 1.86 2.03 2.44

PS / ES 364.0 1.226 0.356 0.342 1.075 1.231 1.402 3.691

Anaerobic digester 364.0 2.5 1.120 1.0 1.75 2.5 3.25 4.0

Table 7. Top 5 regression methods for anaerobic chambers A, B, C and D based on MSE
Rank Chamber A Chamber B

1 Bagging regressor (71472.89) K-Neighbors regressor (51070.89)

2 Random forest regressor (71652.81) AdaBoost regressor (53264.62)

3 Gradient boosting regressor (73055.35) Random forest regressor (53905.84)

4 K-Neighbors regressor (73689.14) Bagging regressor (54140.13)

5 Extra trees regressor (73737.89) Extra trees regressor (61993.55)

Rank Chamber C Chamber D

1 Bagging regressor (31039.58) Extra trees regressor (27132.87)

2 Random forest regressor (31113.47) Random forest regressor (27834.69)

3 Extra trees regressor (33569.52) Bagging regressor (27893.80)

4 AdaBoost regressor (37322.93) AdaBoost Regressor (29182.37)

5 Gradient boosting regressor (41371.68) Gradient boosting regressor (30466.70)
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and prediction. Additionally, our models, while ro-
bust, may not be as finely tuned as the ANN mod-
els optimized through GA and ACO. This suggests 
that while our approach is practical and easier to 
implement, particularly in environments where 
data may be limited or of varying quality, there is 
considerable potential for improvement by adopt-
ing more advanced techniques.

Furthermore, the differences in RMSE be-
tween our best-performing models and those in 
other studies underscore the trade-offs involved 
in model selection. While ANNs and other ad-
vanced methods like ANFIS (Adaptive Neuro-
Fuzzy Inference System) can potentially offer 
lower RMSE, they also come with higher compu-
tational costs, increased complexity, and a greater 
risk of overfitting, particularly when data is sparse 
or noisy. In contrast, methods like Random For-
est Regressor and Extra Trees Regressor, while 
potentially less precise in capturing complex in-
teractions, offer robustness, easier implementa-
tion, and better handling of small and irregular 
datasets. This makes them particularly suitable 
for practical applications where data quality and 
availability are significant concerns.

The study also introduced the AD2Biogas Pre-
dictor Tool, a Python-based web software for pre-
dicting biogas production (Figure 12). This tool 
is especially valuable for the analyzed treatment 
plant, as it enables the selection of the anaero-
bic digester that produces the most biogas under 
similar conditions. This tool’s applicability could 
be further enhanced by integrating advanced 

optimization techniques, such as those used by 
Beltramo et al. [41], to refine predictions and 
improve decision-making. Moreover, the tool’s 
development, which adheres to strict safety stan-
dards [47], positions it as a reliable resource for 
plant operators seeking to optimize biogas pro-
duction and manage resources more effectively. In 
the current version, this tool has been successfully 
implemented at the studied wastewater treatment 
plant, achieving an error margin of approximately 
10%, which has been considered sufficiently accu-
rate. Its deployment has provided operators with 
a valuable and efficient tool for swiftly estimat-
ing essential parameters, enhancing operational 
decision-making. The broader implications of this 
study lie in its demonstration of the importance of 
selecting the appropriate machine learning model 
and validation strategy for specific biogas produc-
tion environments. The study’s comparison of dif-
ferent validation approaches and models provides 
valuable insights into the trade-offs between ac-
curacy, robustness, and computational efficiency. 
Future work should explore the integration of 
more advanced AI techniques, such as deep learn-
ing models or ensemble methods that combine 
multiple machine learning approaches, to further 
enhance prediction accuracy and generalizabil-
ity. Additionally, expanding the dataset to include 
more diverse and continuous samples would like-
ly improve model performance and offer more re-
liable insights for optimizing biogas production.

Given the performance results and the char-
acteristics of the three variants, the Third Variant 

Figure 12. ML-based software tool for predicting biogas production - AD2Biogas predictor tool
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with the Random Forest Regressor emerged as 
the most suitable choice from the 22 models 
tested for creating a prediction tool for biogas 
production in wastewater treatment plants. This 
variant’s ability to leverage all available data 
ensures the development of a robust and gener-
alizable model, making it a strong candidate for 
practical implementation.

CONCLUSIONS

The study focused on predicting biogas pro-
duction using data from a municipal wastewater 
treatment plant in Rzeszow, where three valida-
tion strategies were employed: LOO cross-val-
idation for individual chambers, LOSO cross-
validation, and a combined dataset approach. 
Each approach has its strengths and limitations, 
with the combined data variant offering robust 
generalization but possibly averaging out unique 
chamber characteristics. The novelty of this re-
search lies in its application to a municipal plant, 
where the variability in sludge composition and 
biogas yield presents distinct challenges com-
pared to industrial or agricultural settings. This 
focus allows for insights that are directly appli-
cable to similar facilities, filling a gap in existing 
literature. Our study’s RMSE results were higher 
than those achieved in other research using more 
advanced models like ANNs or ANFIS, which 
can better capture complex, nonlinear relation-
ships but come with greater computational costs 
and a higher risk of overfitting, especially with 
limited or noisy data. The AD2Biogas Predictor 
Tool, developed from this study, was successful-
ly implemented at the Rzeszow plant, achieving 
an error margin of about 10%, which has been 
deemed sufficient for operational use. This tool 
has proven to be a valuable resource for opera-
tors, enabling efficient estimation of biogas pro-
duction and better management of resources. 
By focusing on a real-world municipal setting, 
this study offers practical contributions to the 
field and demonstrates the importance of select-
ing appropriate machine learning models and 
validation strategies tailored to specific environ-
ments. Future work should explore advanced AI 
techniques and larger datasets to further enhance 
prediction accuracy and generalizability. Given 
the results, the Third Variant using the Random 
Forest Regressor emerged as the most suitable 
for creating a biogas prediction tool, providing a 

robust and generalizable model ideal for practical 
implementation in wastewater treatment plants.
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