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INTRODUCTION

A noticeable tendency in the new, innovative 
designs of numerically controlled machine tools 
of the 21st century is the increase of their func-
tionalities as regards the possibility of producing 
increasingly more complex, asymmetrical parts of 
machines. This is achieved by combining several 
different treatments within one machining cen-
tre, including: turning, milling, drilling, grinding 
on flat and cylindrical surfaces, laser processing, 
heat treatment, measurement and control activi-
ties and lately also the varied types of incremental 
technology. Relatively recently the following no-
tions have emerged: multi-material parts [1], hy-
brid manufacturing processes or hybrid machine 
tools. “Hybrid manufacturing processes are based 

on the simultaneous and controlled interaction of 
process mechanisms and/or energy sources/tools 
having a significant effect on the process perfor-
mance” [2]. In the hybrid processing operations 
carried out on materials which are troublesome 
in processing, a conventional machine cutting 
may be assisted simultaneously by a different en-
ergy form, especially thermal or kinetic energy 
[3]. Wherever the share of processing time and 
material cost is high in the total product cost and 
manufacturing is of a single or small-series type, 
incremental-removal hybrid techniques become 
more and more meaningful. In addition, the prod-
uct obtained may demonstrate better the opera-
tional features, as in the case of specialised tools 
[4]. Achieving these objectives requires, among 
other things, the structural extension of machine 
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tools with additional numerically controlled axes, 
additional part and/or tool spindles or additional 
subassemblies for tools storage and replacement. 
Such a dynamical development of the new, in-
creasingly more complex configurations of ma-
chine tools and the concepts of manufacturing 
operations facilitates their higher productivity; 
however, it creates new challenges concerning 
their designing process. 

The effective operation of multi-functional 
machine tools requires integrating a range of ac-
tivities of a designing-operating-diagnostic type. 
What must be mentioned here is the interoper-
ability, openness, and flexibility of next genera-
tion of Computer Numerical Control in order to 
adapt with Industry 4.0 [5], computer assisted 
generation of operations for CNC (CAM) ma-
chine tools, post-processors considering the actu-
al possibilities of the machine tool, a technique of 
controlling the machine tool movements at high 
machining parameters, including not only the 
speed control of a tool movement along the de-
signed trajectory but also the analysis of the first 
and second degree accelerations, the intelligent 
compression of motion geometry in subsequent 
program blocks, the prediction of self-induced 
oscillations, the compensation of errors evoked 
by a tool deformation or the automatic exclusion 
of a collision. Plenty of these activities may be 
verified in off-line tests [6]. Currently, the virtual 
reality enables the construction of extremely ac-
curate simulation models which allow to exclude 
errors in the control program, at the same time 
contributing to better use of a machine tool poten-
tial, work safety, the reduction of breaks in work, 
better use of the possibilities of machine cutting 
tools, the elimination of manufacturing rejects 
and the improvement of the quality of the prod-
ucts which are manufactured.

The accuracy of cutting machine tools in op-
erating conditions is a critical element of their 
competitiveness and application effectiveness. 
For this reason, geometric error measuring, mod-
eling and compensation has been a very impor-
tant topic in mechanical engineering [7]. The is-
sue of machine tool calibration was extensively 
presented in the work of Gao et al. [8]. It present-
ed, among other things, the latest achievements 
in artificial intelligence and machine learning in 
machine tool calibration. One of the main goals 
of machine tool calibration is to predict whether 
the machine is capable of producing a workpiece 
within specified tolerances, for example through 

virtual machining simulation. Uncertainty is the 
most important parameter for assessing reliability 
machine tool calibration results. For this purpose, 
appropriate tools are necessary to model mea-
surement uncertainty in the calibration process. 

The high accuracy and repeatability of ma-
chine tool positioning is extremely difficult to ob-
tain. It may be increased, among other things, by 
introducing innovative design solutions, program 
functions dedicated to the improvement of accu-
racy, diagnosing, identification, supervision and 
error reduction. All these influential factors must 
be developed further in order to enable reliable 
production with increasingly higher precision. 
Even the best design solutions usually do not al-
low to achieve required accuracy in the event of 
manufacturing precise machine parts. In addition, 
increasing requirements concerning machine 
tool accuracy are connected with the exponential 
growth of the cost of manufacturing such machine 
tools. Each machine tool structure is a certain 
compromise between its accuracy and the cost of 
its manufacturing. Taking the above dependences 
and limitations into consideration, what is more 
appreciated now is the improvement of the accu-
racy of the manufactured parts, not only by in-
creasing the accuracy of the machine tool but also 
by increasing the share of measurement activities 
in the implemented machining, enabling the com-
pensation of machine tool errors.

Structural requirements concerning the reli-
ability, usage safety and functionality of newly 
designed mechanisms cause that the necessary 
accuracy of part geometry is hard to achieve with 
the use of classic manufacturing processes. The 
structural optimisation of operations, which con-
siders higher share of control-measurement ac-
tivities, is required. In particular, it is necessary to 
devise and popularise the methods and dedicated 
software, including three dimensional relations 
between manufacturing tolerances and functional 
requirements of the manufactured machine parts 
[9]. The works aimed at the above are highly 
advanced due to the GD&T (Geometric Dimen-
sioning and Tolerancing). The GD&T is a system 
for defining nominal 3D geometry with consider-
ation of annotations concerning the permissible 
variability of the shape of respective features con-
tained in the model and for defining permissible 
orientation variability and positioning between 
the features. At the same time, there are no fully 
integrated, user friendly, highly comprehensible 
and applicable – already at the stage of process 
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designing – methods and tools for analysing the 
accuracy of detail machining, with consideration 
of the unavoidable, actual values of machining 
and measuring errors. This aspect should be ad-
dressed as part of the fourth industrial revolution.

THE IDENTIFICATION AND 
COMPENSATION OF MACHINING 
ERRORS

The compensation of machine tool errors is a 
more and more meaningful element of improving 
the quality of the manufactured machine parts, 
also because the development of a measurement 
technique contributed to the increase in the avail-
ability of precise and easily applicable measure-
ment devices. In the event of fine machining and 
ultra-precision machining, compensation is gen-
erally necessary and it is the best tool improv-
ing the quality of the workpieces made. The fine 
machining, in its essence, comprises an array of 
techniques, including precision machining, elec-
troplating, bead blasting, polishing, anodizing, 
powder coating, sandblasting, painting, chemi-
cal removal (etching), electrochemical removal, 
wire-cut electrical discharge machining and die 
sinking, hard machining, high-speed cutting, hon-
ing, lapping, ultrasonic lapping, scraping, grind-
ing, vibratory finishing. What is crucial here is 
refined offline software which assists a user in 
the classification and assessment of errors and 
the development of the contemporary systems of 
numerical control, adjusted functionally to online 
compensation in real time. Algorithms consider-
ing corrections may currently act inside the in-
terpolation cycle of a controller in order to adapt 
the programmed and real location and orientation 
of the tool tip. In the last 20 years, measures for 
diagnosing machine tool accuracy have been pop-
ularised and a range of methods has been devel-
oped for forecasting and improving the accuracy 
of the manufactured machine parts, based on the 
results of virtual simulation tests.

Error compensation is a process usually con-
sisting of a few stages. The last of them is cor-
rection consisting in including a correction in the 
programmed tool position and/or operation setup 
data, i.e. location, connected with the workpiece, 
an origin point of the local coordinate system or 
cutting tool dimensions. The majority of the au-
thors of publications concerning the above subject 
do not differentiate between these two notions, 

using mostly the term of error compensation, 
which may lead to the ambiguity of a statement. 
A problem with the precise determination of a co-
ordinate system and considering its impact on the 
machining effects has not been noticed for many 
years in research publications. No sooner than 
in work [10] this fact was addressed with proper 
importance. The contemporary techniques of co-
ordinate measurements on NC machines enable 
defining a local coordinate system connected with 
the workpiece (WCS) in relation to the already 
existing part surfaces or those machined later, at 
the same time limiting transfers and avoiding too 
restrictive manufacturing tolerances.

A high number and variety of error sources 
and mutual intermingling of their effects causes 
that their identification and compensation is a 
highly complex aspect. All the publications ad-
dress this aspect only in terms of selected impact 
factors or solving specific problems, such as: the 
problems of measurement uncertainty, tempera-
ture compensation, machine tool calibration, the 
determination and correction of a volumetric er-
ror, etc. So far, the majority of the integrated mod-
els of geometric errors of five-axis machine tools 
ignores the impact of backlash, which affects sig-
nificantly the machining accuracy of workpieces 
with complex geometry [11]. Currently, there are 
no complete solutions available since the level of 
knowledge and technical possibilities are always 
limited to a certain degree and, in addition, they 
must be confronted with an economic account. 

This paper focuses on two selected catego-
ries of errors, affecting the accuracy of the manu-
factured machine parts on 5-axis machine tools. 
These are errors resulting from the imperfect 
configuration of the kinematic chain of the ma-
chine tool and setup errors. Errors in these two 
categories occur in each situation because mea-
surement errors occur in each situation. Based on 
such measurements, setup values are determined. 
Nevertheless, their identification for multi-axis 
machine tools is not easy although these are sys-
tematic errors.

The machining inaccuracy of machine parts 
on multi-axis machine tools results only partially 
from the inaccuracy of the machine tool. The cru-
cial factors affecting a performance error include 
basing and mounting errors, the errors of the ma-
chining itself or the errors of measurements car-
ried out before, during and after machining. In or-
der to identify and estimate the impact of respec-
tive factors, it is possible to apply a modelling 
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technique. This paper includes the author’s own 
approach to the structure of the model of machin-
ing errors propagation which allows, by simula-
tion methods, to estimate error volumes, test dif-
ferent variants of manufacturing operations and 
identify the most important factors affecting the 
cumulative error.

THE EVALUATION OF MEASUREMENT 
UNCERTAINTY ON THE CNC MACHINE

In the mechanical engineering industry, a ba-
sic measurement technique is currently a coordi-
nate technique, which is implemented mostly on 
coordinate measurement machines and measure-
ment arms but also more and more frequently 
directly on numerically controlled machines 
equipped with measurement probes. The objec-
tives of using measurement probes on machining 
centres include:
	• the detection of the presence of parts, the mea-

surement of the machining allowance volume 
or the detection of its lack;

	• increasing the level and scope of operation au-
tomation, the automatic identification of ma-
chine tool accuracy errors and their automatic 
correction;

	• automatic centring, edge scanning, the mea-
surement and/or correction of coordinate 
system, the possibility of eliminating the ini-
tial operation of tracing workpiece before 
machining;

	• the automation of the compensation of tool 
dimensions;

	• the automatic measurement of machining fea-
tures directly on the machining centre, before, 
during and after machining;

	• the comparison of measurement results, 
alarming about the occurrence of a manufac-
turing shortage, generating quality reports of 
machine parts manufactured in series;

	• the improvement of manufacturing efficiency, 
quality, the reduction of defective parts;

	• the reduction of the number and the accumulat-
ed time of machine tool downtime, the improve-
ment of the OEE index (Overall Equipment Ef-
fectiveness) in the manufacturing station;

	• the limitation of a human error, admitting a 
worker with lower qualifications for operating 
the machine tool;

	• the calibration of the machine tool, increasing 
the accuracy of machine tools;

	• the reduction of auxiliary times on the ma-
chine tool;

	• the elimination of the necessary use of highly 
accurate machining tools;

	• the verification of tool data and condition;
	• the verification of the position of a mounting tool;
	• digitalisation by scanning the machined 

workpieces;
	• increasing manufacturing flexibility, enabling 

deeper parametrisation of machining program; 
the automatic selection of a machining variant 
or required change of tool movement trajectory;

	• other depending on the configuration and spe-
cial functions of the machine tool.

The measurement of the point coordinates is 
a basis of a coordinate measurement technique. It 
must be assumed that the probe was calibrated in 
the conditions of the thermal stabilisation of the 
machine tool and during the implementation of 
a calibration procedure and a measurement pro-
cedure the spindle is blocked. Probe calibration 
before a proper measurement enables:
	• setting the radial eccentricity of the probe,
	• aligning the radius of a measuring tip,
	• length adjusting by means of an internal or ex-

ternal length pattern,
	• determining the respective switching points in 

relation to the spindle centre in each of five 
axis directions (+X, -X, +Y, -Y, -Z).

Taking the above comments into account, 
three most significant factors, which affect the 
measurement uncertainty of the point coordinates 
on the numerically controlled machine, are as 
follows:
a)	uncertainty u1 of the axis location in relation 

to the indications of the machine tool measure-
ment system,

b)	uncertainty u2 resulting from the measurement 
probe accuracy,

c)	uncertainty u3 resulting from the non-perpen-
dicularity of the measurement probe move-
ment in relation to the measured surface.

Formulas for the distance of a point from a 
point, a point from a straight and a point from a 
plane are used mostly for the construction of co-
operate measurement models. By modelling the 
coordinate measurement uncertainty w = {x, y, 
z} of the measured point, it is necessary to note 
a measurement movement direction, a measure-
ment movement velocity and even the length of a 
spindle in the measurement probe. The number of 
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impact factors is obviously much higher. For in-
stance, it is possible to consider the determination 
uncertainty of a measuring tip radius, the determi-
nation uncertainty of a time delay in a measure-
ment chain and further. Assuming that measure-
ment uncertainty components are at least one size 
row smaller than the components mentioned in 
points a, b and c, their impact on the final result 
is lower than 1%, therefore, it may be neglected.

Uncertainty uw of determining a coordinate 
related to a direction, in which the measurement 
movement was performed, should include all the 
above mentioned three independent components 
of uncertainty, therefore, a proper dependence for 
its determination is:

	 𝑚𝑚 = 𝑎𝑎 ∙ 𝑏𝑏 ∫ 𝜌𝜌𝑤𝑤𝜃𝜃(ℎ)𝑑𝑑ℎ
ℎ
0          (1) 

 
	 (1)

where:	u1, u2, u3 as above.

The remaining coordinates are burdened only 
with uncertainty u1 resulting from the reading er-
ror of machine tool location. Hence, the estimat-
ed area, which contains a measured point in the 
form of an ellipse, may be presented graphically 
(Figure 1). The probe allows for determining di-
mension deviations and geometric deviations of: 
shape, direction, location or pulsation. The coor-
dinates of pre-determined points and their count 
affect the result of a measurement by a coordinate 
technique and, in consequence, the uncertainty 
of these measurements. It is possible to apply a 
strategy of a minimum point count, which is nec-
essary for determining a given geometric form or 
increasing the count of measurement points, thus 
limiting measurement uncertainty but, at the same 

time, increasing measurement performance time. 
For instance, an opening (opening diameter and 
centre) may be determined by a 3-point, 4-point 
or 8-point method, which allows – in the last case 
– also to determine a directional vector of its axis. 
A plane may be determined by measuring 1 point 
and assuming that it is parallel to a proper operat-
ing plane XY, YZ or ZX, based on 3 points or a 
point cloud with the use of, for example, RANSAC 
method [12]. RANSAC (RANdom Sample Con-
sensus) algorithm is an iterative method used to 
estimate sought parameters of the mathematical 
model of object based on a redundant set of data 
points, forming a cloud around the determined 
area. A corner may be determined by measuring 3 
points or based on three non-parallel planes, that 
is a significantly more accurate 9-point method. 
More complex measurements, e.g. the parallelism 
of an opening axis in relation to the plane, require 
using 9 or 11 measurement points. Therefore, 
there is a question about the uncertainty of thus 
determined forms, location deviations, etc.

Coordinate measurement uncertainty depends 
primarily on the measurement tool used, environ-
mental conditions, the object of tests, the type of the 
deviation measured and the measurement strategy 
applied, which includes the number and distribu-
tion of respective measurement points, the number 
of repeating measurements in a given point, etc. 
What is also crucial here is the applied measure-
ment cycle and its adaptation to the probe used. 
Measuring the dimensional and shape accuracy of 
workpieces using a touch probe on machine tool is 
negatively affected by the geometric accuracy set-
ting, thermal stability of the machine tool and its 
surroundings, type of scanning system [13, 14].

There are a few methods of determining coor-
dinate measurement uncertainty among which the 
following methods are worth particular attention 
according to ISO/TS 15530-1: 
	• a method with the use of a calibrated part,
	• a sensitivity analysis method,
	• a simulation method. 

The best known and elaborated method with 
the use of a calibrated part [ISO/TR 15530-3] is the 
simplest and most effective method. An experimen-
tal part consists in the multiple measurement of the 
calibrated workpieces which may have the form of 
a manufactured part, pre-measured carefully. A cal-
ibrated workpiece may be used simultaneously for 
supervising a machine tool and correcting its sys-
tematic errors by using comparative measurements. 

Figure 1. Point measurement uncertainties in the 3D 
area
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This method may be applied effectively in serial 
production. In the case of unit production or small 
series production we often do not have a proper 
model of the manufactured machine parts.

A sensitivity analysis method is a universal 
method but it is regarded as a complex method be-
cause it requires a high number of sampling points, 
the use of complex measurement models and the 
knowledge of the geometric errors of a machine 
tool. This method concerns measuring dimensions 
and geometrical deviations. Measurement models 
express the measured characteristics as a function 
of differences of coordinates of a small number 
of appropriately selected points of the workpiece. 
In recent years, research has been done which fa-
cilitates using this method by interested users who 
use measurement machines [15, 16].

The Monte Carlo (MCM) simulation method 
of distribution propagation by random sampling 
from probability distributions is a method recom-
mended by the JCGM organisation (Joint Com-
mittee for Guides in Metrology). The precursor 
of using the MCM method was a representative 
of Lvov school of mathematics in the inter-war 
period, S. Ulam. MCM is used for mathematical 
modelling of processes that are far too complex 
to be able to predict their results using an analyti-
cal approach. Sampling according to the selected 
distribution of values characterizing the process 
plays an important role in MCM. After collecting 
a sufficiently large amount of such information its 
characteristics can be compared with the observed 
experimental results, confirming or denying the 
validity of assumptions made in the entire pro-
cedure. The accuracy of a result obtained by this 
method depends on the number of checks and the 
quality of the random number generator. The pre-
dominance over other methods is noticeable es-
pecially when model linearisation ensures insuffi-
cient representation, a probability density function 
for an output volume deviates significantly from 
the Gauss distribution, e.g. due to clear asymme-
try, component uncertainties are not proximate to 
the same value, providing component derivatives 
is difficult or inconvenient and a high model com-
plexity is present [JCGM 101/2008]. The Monte 
Carlo method is a universal and intuitive method. 
It gained popularity although it needs specialised 
software [17]. The main component of measure-
ment uncertainty is determined based on the series 
of virtual measurements. A simulation outcome 
is a large set of the resulting implementation of a 
random variable, based on which it is possible to 

determine the empirical distribution, random vari-
able characteristics, such as mean, standard devia-
tion or quantiles, which divide a set into specific, 
equal parts in terms of quantity [18]. In order to 
conduct simulation experiments, it is necessary to 
devise a model referring to input and output val-
ues and to determine a probability density func-
tion (PDF) which characterises input values. This 
approach is applied with any models which have 
a single output value Y, in which input values are 
characterised by a unique, defined PDF (Figure 2).

In general, a mathematical model of the 
measurement of a single scalar value may be ex-
pressed as dependence: 
	

 𝑢𝑢𝑤𝑤 = √𝑢𝑢12 + 𝑢𝑢22 + 𝑢𝑢32 (1) 
  

 𝑌𝑌 = 𝑓𝑓(𝑋𝑋) (2) 
 

 𝑔𝑔𝑥𝑥(𝜉𝜉) = 𝑑𝑑𝐺𝐺𝑥𝑥(𝜉𝜉) 𝑑𝑑𝑑𝑑⁄  (3) 

𝑔𝑔𝑥𝑥(𝜉𝜉) =
1

𝜎𝜎√2𝜋𝜋 exp [−
1
2 (

𝜉𝜉−𝜇𝜇
𝜎𝜎 )

2
] (4) 

 

 𝑢𝑢(𝑦𝑦) = √∑ (𝑦𝑦𝑟𝑟−𝜇𝜇)2𝑀𝑀
𝑟𝑟=1
(𝑀𝑀−1)  (5) 

 
 𝑋𝑋𝑖𝑖 = 𝜇𝜇 + 𝜎𝜎√−2ln(𝑈𝑈1) cos(2𝜋𝜋𝑈𝑈2), (6) 

 
 Ǧ = (Π, T, E, M), (7) 
 𝑋𝑋4= (𝑋𝑋2 + 𝑋𝑋3) 2⁄  (8) 
 𝑌𝑌4= (𝑌𝑌2 + 𝑌𝑌3) 2⁄  (9) 
 𝑍𝑍4= (𝑍𝑍2 + 𝑍𝑍3) 2⁄  (10) 
 𝑃𝑃3𝑃𝑃4 = √(𝑋𝑋3 − 𝑋𝑋4)2 + (𝑌𝑌3 − 𝑌𝑌4)2 + (𝑍𝑍3 − 𝑍𝑍4)22   (11) 

 𝑅𝑅 = 𝑃𝑃3𝑃𝑃4
sin𝛼𝛼 (12) 

 𝑃𝑃1𝑃𝑃4 = √(𝑋𝑋4 − 𝑋𝑋1)2 + (𝑌𝑌4 − 𝑌𝑌1)2 + (𝑍𝑍4 − 𝑍𝑍1)22   (13) 
 𝐼𝐼𝑂𝑂 = (𝑋𝑋4 − 𝑋𝑋3) 𝑃𝑃1𝑃𝑃4⁄  (14) 
 𝐽𝐽𝑂𝑂 = (𝑌𝑌4 − 𝑌𝑌1) 𝑃𝑃1𝑃𝑃4⁄  (15) 
 𝐾𝐾𝑂𝑂 = (𝑍𝑍4 − 𝑍𝑍1) 𝑃𝑃1𝑃𝑃4⁄  (16) 
 𝑋𝑋𝑂𝑂 =  𝑋𝑋1 + 𝐼𝐼𝑂𝑂𝑅𝑅 (17) 
 𝑌𝑌𝑂𝑂 =  𝑌𝑌1 + 𝐽𝐽𝑂𝑂𝑅𝑅 (18) 
 𝑍𝑍𝑂𝑂 =  𝑍𝑍1 + 𝐾𝐾𝑂𝑂𝑅𝑅 (19) 

 

 𝑉𝑉1→2 × 𝑉𝑉1→3  = |
𝐼𝐼0 𝐽𝐽0 𝐾𝐾0
𝑎𝑎𝑥𝑥 𝑎𝑎𝑦𝑦 𝑎𝑎𝑧𝑧
𝑏𝑏𝑥𝑥 𝑏𝑏𝑦𝑦 𝑏𝑏𝑧𝑧

|, (20) 

 
 𝐼𝐼0 = 𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑏𝑏𝑦𝑦𝑎𝑎𝑧𝑧 (21) 
 𝐽𝐽0 = 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧 − 𝑏𝑏𝑥𝑥𝑎𝑎𝑧𝑧 (22) 
 𝐾𝐾0 = 𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑏𝑏𝑥𝑥𝑎𝑎𝑦𝑦 (23) 
 |𝑉𝑉𝑛𝑛| = √𝐼𝐼02 + 𝐽𝐽02 + 𝐾𝐾02 (24) 

 
 𝐼𝐼 = 𝐼𝐼𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (25) 
 𝐽𝐽 = 𝐽𝐽𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (26) 
 𝐾𝐾 = 𝐾𝐾𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (27) 

 
 𝐼𝐼𝐼𝐼 + 𝐽𝐽𝐽𝐽 + 𝐾𝐾𝐾𝐾 + 𝐷𝐷 = 0, (28) 
 𝐷𝐷 = −𝐼𝐼𝑥𝑥1 − 𝐽𝐽𝑦𝑦1 − 𝐾𝐾𝑧𝑧1. (29) 
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𝑋𝑋𝑂𝑂 = 𝑋𝑋𝐴𝐴 + 𝑎𝑎𝑋𝑋𝑡𝑡
𝑌𝑌𝑂𝑂 = 𝑌𝑌𝐴𝐴 + 𝑎𝑎𝑌𝑌𝑡𝑡
𝑍𝑍𝑂𝑂 = 𝑍𝑍𝐴𝐴 + 𝑎𝑎𝑍𝑍𝑡𝑡
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where: Y is a scalar output value, and X means N 

input values (X1,.., XN)T. 

A random variable is a function which assigns 
figures to elementary incidents (in this case, these 
are measurements). Each Xi is treated as a ran-
dom variable with possible values ξi and expected 
value xi. Similarly, Y is a random variable with 
possible values η and expected value y. The PDF 
is a derivative of distribution function gx (3):

	

 𝑢𝑢𝑤𝑤 = √𝑢𝑢12 + 𝑢𝑢22 + 𝑢𝑢32 (1) 
  

 𝑌𝑌 = 𝑓𝑓(𝑋𝑋) (2) 
 

 𝑔𝑔𝑥𝑥(𝜉𝜉) = 𝑑𝑑𝐺𝐺𝑥𝑥(𝜉𝜉) 𝑑𝑑𝑑𝑑⁄  (3) 

𝑔𝑔𝑥𝑥(𝜉𝜉) =
1

𝜎𝜎√2𝜋𝜋 exp [−
1
2 (

𝜉𝜉−𝜇𝜇
𝜎𝜎 )

2
] (4) 

 

 𝑢𝑢(𝑦𝑦) = √∑ (𝑦𝑦𝑟𝑟−𝜇𝜇)2𝑀𝑀
𝑟𝑟=1
(𝑀𝑀−1)  (5) 

 
 𝑋𝑋𝑖𝑖 = 𝜇𝜇 + 𝜎𝜎√−2ln(𝑈𝑈1) cos(2𝜋𝜋𝑈𝑈2), (6) 

 
 Ǧ = (Π, T, E, M), (7) 
 𝑋𝑋4= (𝑋𝑋2 + 𝑋𝑋3) 2⁄  (8) 
 𝑌𝑌4= (𝑌𝑌2 + 𝑌𝑌3) 2⁄  (9) 
 𝑍𝑍4= (𝑍𝑍2 + 𝑍𝑍3) 2⁄  (10) 
 𝑃𝑃3𝑃𝑃4 = √(𝑋𝑋3 − 𝑋𝑋4)2 + (𝑌𝑌3 − 𝑌𝑌4)2 + (𝑍𝑍3 − 𝑍𝑍4)22   (11) 

 𝑅𝑅 = 𝑃𝑃3𝑃𝑃4
sin𝛼𝛼 (12) 

 𝑃𝑃1𝑃𝑃4 = √(𝑋𝑋4 − 𝑋𝑋1)2 + (𝑌𝑌4 − 𝑌𝑌1)2 + (𝑍𝑍4 − 𝑍𝑍1)22   (13) 
 𝐼𝐼𝑂𝑂 = (𝑋𝑋4 − 𝑋𝑋3) 𝑃𝑃1𝑃𝑃4⁄  (14) 
 𝐽𝐽𝑂𝑂 = (𝑌𝑌4 − 𝑌𝑌1) 𝑃𝑃1𝑃𝑃4⁄  (15) 
 𝐾𝐾𝑂𝑂 = (𝑍𝑍4 − 𝑍𝑍1) 𝑃𝑃1𝑃𝑃4⁄  (16) 
 𝑋𝑋𝑂𝑂 =  𝑋𝑋1 + 𝐼𝐼𝑂𝑂𝑅𝑅 (17) 
 𝑌𝑌𝑂𝑂 =  𝑌𝑌1 + 𝐽𝐽𝑂𝑂𝑅𝑅 (18) 
 𝑍𝑍𝑂𝑂 =  𝑍𝑍1 + 𝐾𝐾𝑂𝑂𝑅𝑅 (19) 

 

 𝑉𝑉1→2 × 𝑉𝑉1→3  = |
𝐼𝐼0 𝐽𝐽0 𝐾𝐾0
𝑎𝑎𝑥𝑥 𝑎𝑎𝑦𝑦 𝑎𝑎𝑧𝑧
𝑏𝑏𝑥𝑥 𝑏𝑏𝑦𝑦 𝑏𝑏𝑧𝑧

|, (20) 

 
 𝐼𝐼0 = 𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑏𝑏𝑦𝑦𝑎𝑎𝑧𝑧 (21) 
 𝐽𝐽0 = 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧 − 𝑏𝑏𝑥𝑥𝑎𝑎𝑧𝑧 (22) 
 𝐾𝐾0 = 𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑏𝑏𝑥𝑥𝑎𝑎𝑦𝑦 (23) 
 |𝑉𝑉𝑛𝑛| = √𝐼𝐼02 + 𝐽𝐽02 + 𝐾𝐾02 (24) 

 
 𝐼𝐼 = 𝐼𝐼𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (25) 
 𝐽𝐽 = 𝐽𝐽𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (26) 
 𝐾𝐾 = 𝐾𝐾𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (27) 

 
 𝐼𝐼𝐼𝐼 + 𝐽𝐽𝐽𝐽 + 𝐾𝐾𝐾𝐾 + 𝐷𝐷 = 0, (28) 
 𝐷𝐷 = −𝐼𝐼𝑥𝑥1 − 𝐽𝐽𝑦𝑦1 − 𝐾𝐾𝑧𝑧1. (29) 

 

 

{ 
 
  

𝑋𝑋𝑂𝑂 = 𝑋𝑋𝐴𝐴 + 𝑎𝑎𝑋𝑋𝑡𝑡
𝑌𝑌𝑂𝑂 = 𝑌𝑌𝐴𝐴 + 𝑎𝑎𝑌𝑌𝑡𝑡
𝑍𝑍𝑂𝑂 = 𝑍𝑍𝐴𝐴 + 𝑎𝑎𝑍𝑍𝑡𝑡
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In particular, for normal distribution, the PDF 
has the following form (4):

	

 𝑢𝑢𝑤𝑤 = √𝑢𝑢12 + 𝑢𝑢22 + 𝑢𝑢32 (1) 
  

 𝑌𝑌 = 𝑓𝑓(𝑋𝑋) (2) 
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(𝑀𝑀−1)  (5) 
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 Ǧ = (Π, T, E, M), (7) 
 𝑋𝑋4= (𝑋𝑋2 + 𝑋𝑋3) 2⁄  (8) 
 𝑌𝑌4= (𝑌𝑌2 + 𝑌𝑌3) 2⁄  (9) 
 𝑍𝑍4= (𝑍𝑍2 + 𝑍𝑍3) 2⁄  (10) 
 𝑃𝑃3𝑃𝑃4 = √(𝑋𝑋3 − 𝑋𝑋4)2 + (𝑌𝑌3 − 𝑌𝑌4)2 + (𝑍𝑍3 − 𝑍𝑍4)22   (11) 

 𝑅𝑅 = 𝑃𝑃3𝑃𝑃4
sin𝛼𝛼 (12) 

 𝑃𝑃1𝑃𝑃4 = √(𝑋𝑋4 − 𝑋𝑋1)2 + (𝑌𝑌4 − 𝑌𝑌1)2 + (𝑍𝑍4 − 𝑍𝑍1)22   (13) 
 𝐼𝐼𝑂𝑂 = (𝑋𝑋4 − 𝑋𝑋3) 𝑃𝑃1𝑃𝑃4⁄  (14) 
 𝐽𝐽𝑂𝑂 = (𝑌𝑌4 − 𝑌𝑌1) 𝑃𝑃1𝑃𝑃4⁄  (15) 
 𝐾𝐾𝑂𝑂 = (𝑍𝑍4 − 𝑍𝑍1) 𝑃𝑃1𝑃𝑃4⁄  (16) 
 𝑋𝑋𝑂𝑂 =  𝑋𝑋1 + 𝐼𝐼𝑂𝑂𝑅𝑅 (17) 
 𝑌𝑌𝑂𝑂 =  𝑌𝑌1 + 𝐽𝐽𝑂𝑂𝑅𝑅 (18) 
 𝑍𝑍𝑂𝑂 =  𝑍𝑍1 + 𝐾𝐾𝑂𝑂𝑅𝑅 (19) 

 

 𝑉𝑉1→2 × 𝑉𝑉1→3  = |
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 𝐽𝐽0 = 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧 − 𝑏𝑏𝑥𝑥𝑎𝑎𝑧𝑧 (22) 
 𝐾𝐾0 = 𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑏𝑏𝑥𝑥𝑎𝑎𝑦𝑦 (23) 
 |𝑉𝑉𝑛𝑛| = √𝐼𝐼02 + 𝐽𝐽02 + 𝐾𝐾02 (24) 

 
 𝐼𝐼 = 𝐼𝐼𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (25) 
 𝐽𝐽 = 𝐽𝐽𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (26) 
 𝐾𝐾 = 𝐾𝐾𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (27) 

 
 𝐼𝐼𝐼𝐼 + 𝐽𝐽𝐽𝐽 + 𝐾𝐾𝐾𝐾 + 𝐷𝐷 = 0, (28) 
 𝐷𝐷 = −𝐼𝐼𝑥𝑥1 − 𝐽𝐽𝑦𝑦1 − 𝐾𝐾𝑧𝑧1. (29) 
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𝑍𝑍𝑂𝑂 = 𝑍𝑍𝐴𝐴 + 𝑎𝑎𝑍𝑍𝑡𝑡
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 (30) 

 

 𝑈𝑈 = 0.05999√ 𝜎𝜎𝑝𝑝2

845 +
𝜎𝜎𝑚𝑚2
868 (31) 

	 (4)

where:	x – input value in the model, σ – standard 
deviation of random variable, μ – average 
value, ξ – measurement result.

Figure 2. Distribution propagation for N independent 
input value
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The following stages of uncertainty assess-
ment are differentiated:

1)	Model formulation:
−	 determine an output value (measured) Y;
−	 determine input values X = (X1,.., XN), which 

determine Y;
−	 devise a model referring to Y and X;
−	 based on the available knowledge, assign 

PDF files to Xi – Gauss (normal), rectan-
gular (uniform), etc. For Xi, which are not 
independent, a joint PDF must be assigned.

2)	Propagation: PDF propagating for Xi by means 
of a devised model in order to obtain PDF for Y;

3)	Summary: using the obtained PDF for Y, we 
obtain:
−	 expected value Y, assumed as estimated 

value y;
−	 standard deviation estimator Y is assumed 

as standard uncertainty u(y), determined by 
dependence (5) [JCGM 101:2008];

−	 coverage intervals including Y with specific 
probability.
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 𝑌𝑌 = 𝑓𝑓(𝑋𝑋) (2) 
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𝑟𝑟=1
(𝑀𝑀−1)  (5) 
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 𝑌𝑌4= (𝑌𝑌2 + 𝑌𝑌3) 2⁄  (9) 
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 𝐼𝐼𝑂𝑂 = (𝑋𝑋4 − 𝑋𝑋3) 𝑃𝑃1𝑃𝑃4⁄  (14) 
 𝐽𝐽𝑂𝑂 = (𝑌𝑌4 − 𝑌𝑌1) 𝑃𝑃1𝑃𝑃4⁄  (15) 
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𝑍𝑍𝑂𝑂 = 𝑍𝑍𝐴𝐴 + 𝑎𝑎𝑍𝑍𝑡𝑡

𝑎𝑎𝑋𝑋𝑋𝑋𝑂𝑂 + 𝑎𝑎𝑌𝑌𝑌𝑌𝑂𝑂 + 𝑎𝑎𝑍𝑍𝑍𝑍𝑂𝑂 + 𝐷𝐷 = 0
𝐷𝐷 = −𝑎𝑎𝑋𝑋𝑋𝑋𝐶𝐶 − 𝑎𝑎𝑌𝑌𝑌𝑌𝑐𝑐 − 𝑎𝑎𝑍𝑍𝑍𝑍𝑐𝑐

 (30) 

 

 𝑈𝑈 = 0.05999√ 𝜎𝜎𝑝𝑝2

845 +
𝜎𝜎𝑚𝑚2
868 (31) 

	 (5)

where: yr – result of r-sample in MCM cycle, μ – 
mean from all the samples, M – number 
of MCM cycles.

A computer is not able to generate random 
numbers. Instead, a computer generates num-
ber sequences which approximate very well 
the sequences of random numbers. Therefore, 
in the case of a “random number” generated by 
a computer, we should talk rather about pseu-
do-random numbers. Pseudo-random numbers 
generated by a computer belong to the constant 
distribution. Hence, some methods are needed 
to obtain a sequence of numbers with a desired 
distribution, e.g. normal, from the constant dis-
tribution of pseudo-random numbers. These are 
not precise methods but the approximations are 
precise enough to apply them e.g. in simulation 
techniques. One of the recommended methods 
of generating a normal distribution is Box-Mül-
ler’s method. One of the solutions in this method 
is dependence (6):

	

 𝑢𝑢𝑤𝑤 = √𝑢𝑢12 + 𝑢𝑢22 + 𝑢𝑢32 (1) 
  

 𝑌𝑌 = 𝑓𝑓(𝑋𝑋) (2) 
 

 𝑔𝑔𝑥𝑥(𝜉𝜉) = 𝑑𝑑𝐺𝐺𝑥𝑥(𝜉𝜉) 𝑑𝑑𝑑𝑑⁄  (3) 

𝑔𝑔𝑥𝑥(𝜉𝜉) =
1

𝜎𝜎√2𝜋𝜋 exp [−
1
2 (

𝜉𝜉−𝜇𝜇
𝜎𝜎 )

2
] (4) 

 

 𝑢𝑢(𝑦𝑦) = √∑ (𝑦𝑦𝑟𝑟−𝜇𝜇)2𝑀𝑀
𝑟𝑟=1
(𝑀𝑀−1)  (5) 

 
 𝑋𝑋𝑖𝑖 = 𝜇𝜇 + 𝜎𝜎√−2ln(𝑈𝑈1) cos(2𝜋𝜋𝑈𝑈2), (6) 

 
 Ǧ = (Π, T, E, M), (7) 
 𝑋𝑋4= (𝑋𝑋2 + 𝑋𝑋3) 2⁄  (8) 
 𝑌𝑌4= (𝑌𝑌2 + 𝑌𝑌3) 2⁄  (9) 
 𝑍𝑍4= (𝑍𝑍2 + 𝑍𝑍3) 2⁄  (10) 
 𝑃𝑃3𝑃𝑃4 = √(𝑋𝑋3 − 𝑋𝑋4)2 + (𝑌𝑌3 − 𝑌𝑌4)2 + (𝑍𝑍3 − 𝑍𝑍4)22   (11) 

 𝑅𝑅 = 𝑃𝑃3𝑃𝑃4
sin𝛼𝛼 (12) 

 𝑃𝑃1𝑃𝑃4 = √(𝑋𝑋4 − 𝑋𝑋1)2 + (𝑌𝑌4 − 𝑌𝑌1)2 + (𝑍𝑍4 − 𝑍𝑍1)22   (13) 
 𝐼𝐼𝑂𝑂 = (𝑋𝑋4 − 𝑋𝑋3) 𝑃𝑃1𝑃𝑃4⁄  (14) 
 𝐽𝐽𝑂𝑂 = (𝑌𝑌4 − 𝑌𝑌1) 𝑃𝑃1𝑃𝑃4⁄  (15) 
 𝐾𝐾𝑂𝑂 = (𝑍𝑍4 − 𝑍𝑍1) 𝑃𝑃1𝑃𝑃4⁄  (16) 
 𝑋𝑋𝑂𝑂 =  𝑋𝑋1 + 𝐼𝐼𝑂𝑂𝑅𝑅 (17) 
 𝑌𝑌𝑂𝑂 =  𝑌𝑌1 + 𝐽𝐽𝑂𝑂𝑅𝑅 (18) 
 𝑍𝑍𝑂𝑂 =  𝑍𝑍1 + 𝐾𝐾𝑂𝑂𝑅𝑅 (19) 

 

 𝑉𝑉1→2 × 𝑉𝑉1→3  = |
𝐼𝐼0 𝐽𝐽0 𝐾𝐾0
𝑎𝑎𝑥𝑥 𝑎𝑎𝑦𝑦 𝑎𝑎𝑧𝑧
𝑏𝑏𝑥𝑥 𝑏𝑏𝑦𝑦 𝑏𝑏𝑧𝑧

|, (20) 

 
 𝐼𝐼0 = 𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑏𝑏𝑦𝑦𝑎𝑎𝑧𝑧 (21) 
 𝐽𝐽0 = 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧 − 𝑏𝑏𝑥𝑥𝑎𝑎𝑧𝑧 (22) 
 𝐾𝐾0 = 𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑏𝑏𝑥𝑥𝑎𝑎𝑦𝑦 (23) 
 |𝑉𝑉𝑛𝑛| = √𝐼𝐼02 + 𝐽𝐽02 + 𝐾𝐾02 (24) 

 
 𝐼𝐼 = 𝐼𝐼𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (25) 
 𝐽𝐽 = 𝐽𝐽𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (26) 
 𝐾𝐾 = 𝐾𝐾𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (27) 

 
 𝐼𝐼𝐼𝐼 + 𝐽𝐽𝐽𝐽 + 𝐾𝐾𝐾𝐾 + 𝐷𝐷 = 0, (28) 
 𝐷𝐷 = −𝐼𝐼𝑥𝑥1 − 𝐽𝐽𝑦𝑦1 − 𝐾𝐾𝑧𝑧1. (29) 

 

 

{ 
 
  

𝑋𝑋𝑂𝑂 = 𝑋𝑋𝐴𝐴 + 𝑎𝑎𝑋𝑋𝑡𝑡
𝑌𝑌𝑂𝑂 = 𝑌𝑌𝐴𝐴 + 𝑎𝑎𝑌𝑌𝑡𝑡
𝑍𝑍𝑂𝑂 = 𝑍𝑍𝐴𝐴 + 𝑎𝑎𝑍𝑍𝑡𝑡

𝑎𝑎𝑋𝑋𝑋𝑋𝑂𝑂 + 𝑎𝑎𝑌𝑌𝑌𝑌𝑂𝑂 + 𝑎𝑎𝑍𝑍𝑍𝑍𝑂𝑂 + 𝐷𝐷 = 0
𝐷𝐷 = −𝑎𝑎𝑋𝑋𝑋𝑋𝐶𝐶 − 𝑎𝑎𝑌𝑌𝑌𝑌𝑐𝑐 − 𝑎𝑎𝑍𝑍𝑍𝑍𝑐𝑐

 (30) 

 

 𝑈𝑈 = 0.05999√ 𝜎𝜎𝑝𝑝2

845 +
𝜎𝜎𝑚𝑚2
868 (31) 

	 (6)

where: Xi – variable from the normal distribution, 
U1, U2 – independent pseudo-random 
variables from the constant distribution.

Figure 3 illustrates a test result histogram 
(3000 samples) by Box- Müller’s method as com-
pared to a standard normal distribution N(0, 1), 
confirming the correctness of such an approach.

Figure 4 presents the simulation methods 
made by the MCM method for two random vari-
ables described by normal distribution N(0, 1), 
N(0.5, 0.5). A simple model was used as the sum 
of two input values. A result is a random variable 
with expected value y of 0.502 and standard de-
viation of 1.117. In theory, measurement uncer-
tainty for the above model and data is √1.25 = 
1.118. Output value Y was determined based on 
3000 virtual samples. The results confirm the in-
tuitive assumptions that variable X1 will have a 
significant impact on the standard deviation of re-
sulting values, whereas variable X2 will dominate 
an expected value y.

The value of extended uncertainty U may 
be determined directly from gy(η) after rejecting 
5% of values most differing from the mean. 95% 
of values η is included in the interval [-1.658, 
2.663]. As far as the conducted test is concerned, 
U equals 4.321 μm.

A SIMULATION METHOD OF 
DETERMINING MEASUREMENT 
UNCERTAINTY IN THE MACHINE TOOL 
OPERATING AREA

What is needed for the purpose of conduct-
ing a simulation procedure of determining mea-
surement uncertainty are dedicated tools allow-
ing the user to construct a model and then, in the 
automatic mode, conduct and repeat the virtual 
tests of estimating measurement uncertainty for 
thousands of times. There are professional tools 
available for this purpose but at the current stage 

Figure 3. The test results of generating a normal 
distribution by Box-Müller’s method



456

Advances in Science and Technology Research Journal 2024, 18(6), 449–464

of development their availability, flexibility and 
usefulness for experiments is limited. Hence, re-
searchers search for alternative solutions in the 
form, for instance, of universal spreadsheet [18]. 
A prospective user, who wants to implement a 
simulation method in a workshop practice, as far 
as this extremely laborious approach is concerned, 
at each time, must have high competences. There-
fore, a prototype of a computer calculation system 
is presented below which is based on a network 
method and which is intended for assisting the 
determination of geometric measurement uncer-
tainty by means of the Monte Carlo method.

 Model representation by means of a graph 
has been for many years an attractive engineer 
tool for analysing modelled systems. A graphic 
form of this model enables the user to familiar-
ise faster with its structure, content, complexity, 
topology, scope and completeness. A graphic in-
terface of the user of contemporary personal com-
puters allows the user to familiarise immediately 
with the available functions of modelling tools. 
Furthermore, a graph structure, as in semantic 
networks, enables embedding objects present in a 
graph and analyse them in a proper context. 

Propagation is a notion widely applied in 
physics, where it generally means the spread of 
a disturbance in the centre. It may refer to radio 
waves, light or mechanical oscillations. Propaga-
tion, in the context of coordinate measurements, 
means error transferring in measurements. Since 
the results of direct measurements are burdened 
with uncertainty, measurement errors propagate 
to each indirect value calculated from the model. 

The propagation graph of coordinate mea-
surement uncertainty is a bipartite graph, direct-
ed, which on the grounds of the set theory may be 
defined in the form of ordered four:
	 Ǧ = (Π, T, E, M),	 (7)
where: Π – nonempty definite set of basic ele-

ments (places): Π = X∪Y∪Z∪P∪V∪R, 
where: X = {xi}, where xi = x( xi, uxi): co-
ordinates measured in axis X; Y = {yi}, 
where xi = y( yi, uxi): coordinates measured 
in axis Y; Z = {zi}, where xi = z( zi, uxi): 
coordinates measured in axis Z; P = {pi}, 
where pi = p(xi, yi, zi, uxi, uyi, uzi): measure-
ment points; V = {vi}, where vj = v(ij, jj, kj, 
uxj, uyj, uzj): vectors, including directional 

Figure 4. Simulation result for the sum of two random variables
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versors (unit vectors); R = {ri}, where ri 
= r(ri, uri), constant parameters of a real 
type; T – nonempty, finite, separate from 
P selection of transitions of the follow-
ing type: meas, point, line, aline, vector, 
unit_v, circle, middle, plane, frame, dis-
place, ratio, project, per_proj, etc., Π ∩ T 
= Ø, Π ≠ Ø, T ≠ Ø, Ø: empty set, E ⊂ (Π 
× T) ∪ (T × Π): incidence relation, M ⊂ 
M’ ∪ M0: set of markers.

A bipartite graph is a graph with two separate 
sets of apexes. In the case of Ǧ, these include the 
set of basic elements Π and the set of transitions 
T. By means of basic elements, we may define 
abstract objects such as axis, coordinate system 
and physical objects, e.g. a line (edge), plane, 
etc. Transitions represent the dynamic elements 
of a model. Their role, apart from determining 
the proper sequence of measurement activities, 
is the performance of calculations and the deter-
mination of the uncertainties of subsequent ele-
mentary objects. Basic measurement transitions 
meas generate measurement point coordinates 
and uncertainties assigned to the respective co-
ordinates of such points. A transition sequence, 
meas and displace, results in the displacement 
of a proper measurement coordinate with a con-
stant value of parameter r. The transition of a 
vector type determines the components of a sec-
tion between two known points. A point with a 
lower index is accepted as a starting point. The 
transition of a middle type determines the centre 
of a section between two known points. The cal-
culation transition of a ratio type is a product of 
section components and the number. It is used, 
for example, when it is necessary to determine 
the unknown sides of a rectangular triangle.

The transition of a point type also deter-
mines one point, depending on a context, this 
is a point of intersecting the plane with a line 
which is not parallel to this plane, the centre 
of a hole or a cylinder determined by means of 
a 4-point method or the centre of a ball deter-
mined by means of a 5-point method, with the 
known ball radius. The transition of a line type 
is also present in variants. In the basic vari-
ant, it determines a line based on two points; 
in the second variant, it determines a line as 
an intersection of two nonparallel planes. The 
basic variant of the transition of a plane type 
determines a plane in the area based on three 
points. The alternative determination of a plane 

is possible based on one point contained in this 
plane and a line perpendicular to the determined 
plane or by means of a multi-point method. 

The transition of a frame type determines 
the position of a coordinate system based on one 
known operating plane, one line and point. This 
enables eliminating six freedom degrees from 
the workpiece, at the same time determining 
clearly its location. A transition variant binding 
in a given node results from a context in which it 
is placed in the model, strictly speaking, from di-
rectly preceding transitions. Graph Ǧ is a graph 
with a tree structure, therefore, information flow 
is unidirectional and there are no cycles. When 
determining, for instance, the system of coordi-
nates, it is sufficient to indicate, by an arc, only 
a directional vector of an operating plane, a di-
rectional vector of a line and one point necessary 
for determining the starting point of the system 
in the third axis. The remaining necessary two 
points are found automatically by the system by 
back tracking. By using elementary objects, such 
as a point, line and plane, it is possible to pro-
gramme more types of transitions implementing 
the procedures of determining uncertainties, for 
example, location deviations.

Incidence relation E in the graphic interpre-
tation is a set of directed arcs. Since Ǧ is a bipar-
tite graph, these arcs may be divided into input 
arcs for transition and output arcs from transi-
tion. Transitions without input directed arcs are 
performed as the first ones in the subsequent 
simulation cycle. Transitions with input directed 
arcs require confirming all the locations, which 
are input positions of a given transition, with a 
marker. It means that the values for these loca-
tions were previously generated in a given simu-
lation. The set of markers M consists of a starter 
set M0 and a dynamic set o M’. M0 is a set of 
markers assigned to locations which are not ac-
tivated by any transition. This set is defined in 
input data and is not changed during subsequent 
simulation cycles. Set M’ is generated during 
network processing. This set is at each time re-
moved after finishing another simulation cycle. 
The set of markers controls the sequence of 
performing respective transitions. Firstly, only 
measurement transitions are performed. A mark-
er which settles in a given location, remains 
there until the end of a current simulation cycle. 
Each transition in a single simulation cycle is 
performed only once (Table 1).
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In the event of normal distribution, the uncer-
tainty of the determined value ui is equivalent to 
standard deviation.

Determining the centre of the calibration ball

Figure 5 presents the scheme of determining 
a ball centre by means of a coordinate method. In 

order to fulfil these tasks, it is necessary to pre-
calibrate precisely the measurement probe and to 
have an accurate spherical model. Firstly, on the 
basis of the determined four coordinates x1, x2, y1, 
y2 (Figure 5), it is possible to calculate an intersec-
tion point of a ball axis, perpendicular to the plane 
XY. Secondly, we measure the coordinate z1 on this 
axis. At the end, considering the spherical model 
radius r1 we determine the last coordinate of point 
p1 in axis Z. Figure 6 presents a proper graph for 
determining the uncertainty of such a measure-
ment on the basis of the above mentioned method.

Table 1. The elements of the propagation graph of 
coordinate measurement uncertainty and corresponding 
assertions in the model data base

Element Graphic symbol Assertion

Place

p(n, x, y, „p”, X, Y, Z)
p(n, x, y, „v”, I, J, K)
p(n, x, y, „d”, X, Y, Z)
p(n, x, y, „x”, X, Y, Z)
p(n, x, y, „y”, X, Y, Z)
p(n, x, y, „z”, X, Y, Z)

p(n, x, y, „r”, RX,RY, RZ)

Transition

t(n, x, y, meas)
t(n, x, y, point)

t(n, x, y, middle)
t(n, x, y, displace)

t(n, x, y, line)
t(n, x, y, plane)
t(n, x, y, frame)
- - - - - - - - - -

Input arc
Output arc

pt(p, t)
tp(t, p)

Marker m(p)

Note: n – location/transition number; x, y – coordinates 
(in pixels) of the graph apex on the graphic sheet; X, Y, 
Z – the measured location coordinate values; Xe, Ye, Ze 
– expected values; ux, uy, uz – point location uncertainty 
in the directions X, Y, Z; I, J, K – directional versor 
components; uI, uJ, uK – determination uncertainty 
of the components I, J, K; R – real number; ur – 
uncertainty of value R; p, t – indices of the basic 
elements of transitions.

Figure 5. The trajectory of measurement movements 
during determining a ball centre

Figure 6. Ball centre determination graph
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The determination of rotary axis locations

The correct calibration of rotary axes in the 
5-axis machining centre constitutes a basis for 
precise, multi-axis machining. In order to obtain 
correct data for the rotary axis calibration, i.e. its 
location and orientation in the MCS system, it is 
possible to apply a method based on determin-
ing three points which are the centre of a precise 
spherical model in three locations, obtained only 
by means of rotating the determined axis. These 
points are located in a circle whose centre Pax is 
in the determined axis. The orientation of axis VA 
may be represented in the form of a normal versor 
of the plane defined on the basis of pre-determined 
three points P1, P2 and P3. The example presented 
below, concerning the determination of an axis, 
refers to a five-axis machine tool with the P type 
kinematics, that is equipped with a rotated table.

Figures 7 and 8 present the location of a spher-
ical model for determining axis A and C. Figure 9 

presents a sketch based on which analytical depen-
dences were determined, enabling the calculation 
of an attachment point and a directional vector of 
a defined axis. Figure 10 includes a measurement 
model in the form of a bipartite graph.

Firstly, we determine the coordinates of point 
P4 (8, 9, 10), which is the centre of a section join-
ing points P2 and P3 (Figure 9). Then we calculate 
the length of the section components from P3 to 
P4 (11), represented in the graph as the compo-
nents of vector d2. Based on d2 and the known 
value of angle α, we determine arc radius R (12), 
in the graph represented by the components of 
section d3. In order to determine v1 containing the 
components of the directional vector IO, JO, KO 
(14, 15, 16) of a section from P1 to P4, we cal-
culate the length of this segment (13). Then, we 
determine the components of vector d4, which 
are the projection of radius R on the direction v1. 
Coordinates XO, YO, ZO, of the centre of arc PO 

Figure 7. A pattern for determining axis A location and orientation

Figure 8. A pattern for determining axis C location and orientation
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may be determined as the displacement of point 
P1 with the vector d4. In the event of determining 
the location of axis C it is advantageous to move 
the determined attachment point with the constant 
r2, pre-determined precisely as the distance of the 
centre of the calibration ball from the surface of 
the rotary table.

	

 𝑢𝑢𝑤𝑤 = √𝑢𝑢12 + 𝑢𝑢22 + 𝑢𝑢32 (1) 
  

 𝑌𝑌 = 𝑓𝑓(𝑋𝑋) (2) 
 

 𝑔𝑔𝑥𝑥(𝜉𝜉) = 𝑑𝑑𝐺𝐺𝑥𝑥(𝜉𝜉) 𝑑𝑑𝑑𝑑⁄  (3) 

𝑔𝑔𝑥𝑥(𝜉𝜉) =
1

𝜎𝜎√2𝜋𝜋 exp [−
1
2 (

𝜉𝜉−𝜇𝜇
𝜎𝜎 )

2
] (4) 

 

 𝑢𝑢(𝑦𝑦) = √∑ (𝑦𝑦𝑟𝑟−𝜇𝜇)2𝑀𝑀
𝑟𝑟=1
(𝑀𝑀−1)  (5) 

 
 𝑋𝑋𝑖𝑖 = 𝜇𝜇 + 𝜎𝜎√−2ln(𝑈𝑈1) cos(2𝜋𝜋𝑈𝑈2), (6) 

 
 Ǧ = (Π, T, E, M), (7) 
 𝑋𝑋4= (𝑋𝑋2 + 𝑋𝑋3) 2⁄  (8) 
 𝑌𝑌4= (𝑌𝑌2 + 𝑌𝑌3) 2⁄  (9) 
 𝑍𝑍4= (𝑍𝑍2 + 𝑍𝑍3) 2⁄  (10) 
 𝑃𝑃3𝑃𝑃4 = √(𝑋𝑋3 − 𝑋𝑋4)2 + (𝑌𝑌3 − 𝑌𝑌4)2 + (𝑍𝑍3 − 𝑍𝑍4)22   (11) 

 𝑅𝑅 = 𝑃𝑃3𝑃𝑃4
sin𝛼𝛼 (12) 

 𝑃𝑃1𝑃𝑃4 = √(𝑋𝑋4 − 𝑋𝑋1)2 + (𝑌𝑌4 − 𝑌𝑌1)2 + (𝑍𝑍4 − 𝑍𝑍1)22   (13) 
 𝐼𝐼𝑂𝑂 = (𝑋𝑋4 − 𝑋𝑋3) 𝑃𝑃1𝑃𝑃4⁄  (14) 
 𝐽𝐽𝑂𝑂 = (𝑌𝑌4 − 𝑌𝑌1) 𝑃𝑃1𝑃𝑃4⁄  (15) 
 𝐾𝐾𝑂𝑂 = (𝑍𝑍4 − 𝑍𝑍1) 𝑃𝑃1𝑃𝑃4⁄  (16) 
 𝑋𝑋𝑂𝑂 =  𝑋𝑋1 + 𝐼𝐼𝑂𝑂𝑅𝑅 (17) 
 𝑌𝑌𝑂𝑂 =  𝑌𝑌1 + 𝐽𝐽𝑂𝑂𝑅𝑅 (18) 
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Any plane Π in the three dimensional Carte-
sian area R3 may be represented by a pair of vec-
tors in the following form: location vector Vp = [X, 
Y, Z]T and directional vector (normal) Vd = [I, J, 
K]T (Figure 11). Vector Vp is attached at the origin 
of the reference system and it is finished at any 
point of the defined plane Π. Vector Vd is a unit 
vector perpendicular to plane Π, with components 
equivalent to directional cosines to the axis of the 
reference system. The plane may be determined 
based on three non-collinear points P1(x1, y1, z1), 
P2(x2, y2, z2), P3(x3, y3, z3), belonging to this plane 
(Figure 11). While defining the vectors between 
points P1 and P2 as V1→2 = [ax, ay, az] and between 
points P1 and P3 as V1→3 = [bx, by, bz] and the vec-
tor product V1→2  V1→3 we obtain dependence (20), 
where the resulting vector is provided as a deter-
minant of the formal matrix. Three vectors V1→2, 
V1→3, Vn are correspondingly oriented with the 
rule of a right-hand system.
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Based on the matrix (20) we calculate the 
components I0, J0, K0 (21, 22, 23) and the length 
of normal vector Vn (24)
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Figure 9. Determining the directional vector of the 
rotary axis A and the attachment point of axis A 

in the MCS system

Figure 10. A graph for determining the attachment 
point of axis Pax and the components of the axis 

directional versor in the MCS
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Said components, after standardisation, are 
components I, J, K (25, 26, 27) of the directional 
vector of the searched plane Π. 
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 |𝑉𝑉𝑛𝑛| = √𝐼𝐼02 + 𝐽𝐽02 + 𝐾𝐾02 (24) 

 
 𝐼𝐼 = 𝐼𝐼𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (25) 
 𝐽𝐽 = 𝐽𝐽𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (26) 
 𝐾𝐾 = 𝐾𝐾𝑜𝑜 |𝑉𝑉𝑛𝑛|⁄  (27) 

 
 𝐼𝐼𝐼𝐼 + 𝐽𝐽𝐽𝐽 + 𝐾𝐾𝐾𝐾 + 𝐷𝐷 = 0, (28) 
 𝐷𝐷 = −𝐼𝐼𝑥𝑥1 − 𝐽𝐽𝑦𝑦1 − 𝐾𝐾𝑧𝑧1. (29) 
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The general equation of the determined plane 

has the form (28):
	 Ix + Jy + Kz + D = 0	 (28)
where:
	 . D = –Ix1 – Jy1 – Kz1	 (29)

Usually, the designer of the machine tool as-
sumes the intersection of axis A and C. In prac-
tice, as a result of unavoidable performance er-
rors, these axes never intersect. The possible 
accurate determination of the mutual distance of 
axis A and C enables reducing calibration errors. 
For practical reasons, it is advantageous to place 
the origin of the MCS machine system on the axis 
A of the machine tool (Figure 12). Whereas, the 
BCS base system in relation to which the origins 
of coordinate systems are determined, connected 
with the WCS, for the same reasons, should be 
placed on the surface of the rotary table in its ro-
tation axis. Therefore, after determining the at-
tachment points of axis C, it must be projected 
on the table plane, then it is necessary to find a 
line perpendicular to axis A, going through such 
a determined point PC. Point PA of this line inter-
section with axis A determines the origin of the 

MCS system. The distance of PA from PC informs 
us about the errors of performing the rotated ta-
ble; whereas, the uncertainty of determining this 
distance is valuable information concerning the 
calibration quality of rotary axes. A simple way 
to find point PA is determining a plane containing 
point PC with a normal parallel to the determined 
axis A with components aX, aY, aZ. An intersection 
point of thus defined plane with axis A provides 
us with a searched starting point PO with coordi-
nates XO, YO, ZO. Analytically, the above task con-
sists in solving the system of Equations 30, which 
consists of parametrical equations of axis A and 
the equation of the plane perpendicular to axis A, 
going through point PC. The last step is determin-
ing a distance between point PA and point PC. The 
uncertainty of determining this distance is the un-
certainty of determining the location of the origin 
of the BCS coordinate system. 
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Figure 13 visualises a graph implementing 
the end of the procedure of determining the rela-
tive location of axis A and C. Transition t1 deter-
mines VA as the normal vector of the plane per-
pendicular to axis A. Similarly, t2 determines VC 
as the normal vector of the plane perpendicular to 
axis C. Transitions t7 and t8 dislocate the attach-
ment points of axis A and C in conformity with 
these vectors, to locations for which coordinate 
xA = 0 and zC = 0. Then, t9 determines point PO, 
which is a point of the intersection of axis A with 

Figure 11. The determination of a normal vector of 
the plane based on three points contained in this plane

Figure 12. An example of the real location of the axis 
of the rotated table and machine point
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the plane perpendicular to said axis and going 
through zC. The last transition (t10) calculates the 
components of section dAC between points zC and 
PO. The length of this section constitutes a critical 
element of the assessment of geometric accuracy 
which is taken into account during machine tool 
calibration.

Test results

On the basis of the devised model of deter-
mining a distance of axis A and C, a series of 
simulation tests was conducted for 25 points of a 
decisive area. For each point, 1000 solutions were 
generated. On this basis, the standard deviation 
of the results obtained was calculated. The results 
of the simulation tests are presented in Figure 14. 
The obtained distribution of results was a basis 

Figure 13. Graph for determining point PO as the 
recommended origin of the machine coordinate system

Figure 14. Uncertainty U of determining the location of the origin of the basic coordinate system depending on 
standard deviation for measurement probe σp and machine tool σm, based on simulation tests

Figure 15. Uncertainty U of determining the location of the origin of the BCS coordinate system depending on 
standard deviation for measurement probe σp and machine tool σm, based on dependence (31)
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for devising a mathematical formula based on 
which it is possible to determine quickly the un-
certainty of the measured distance of axis A and 
C. The shape of a surface containing 25 generated 
points suggested an equation of 3-axis ellipsoid 
as a dependence basis (31). Constant parameters 
in (31) were obtained by a regression analysis 
method. The tests conducted demonstrated that 
the estimation error of measurement uncertainty 
based on dependence (31) does not exceed 5% for 
the entire considered area of tests, and this must 
be accepted as a satisfactory result. Figure 15 
presents the results of calculating the uncertainty 
of determining the distance of axis A and C with 
the use of dependence (31).
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CONCLUSIONS

The estimation graph of machining accuracy, 
presented in this paper, enables the construction of 
a model and its simulation tests in order to deter-
mine the uncertainty of coordinate measurements 
performed by means of a measurement probe on 
numerically controlled machines. The determined 
measurement uncertainties enable the estimations 
of machining accuracy, especially on machine tools 
with complex kinematics, including 5-axis milling 
centres. It is possible to enumerate a range of un-
deniable benefits of the method devised, among 
which the following ought to be underlined:
1.	A graphical character allowing for the easy as-

sessment of the model completeness and cohe-
sion, the verification of its structure correct-
ness, the generation of alternative models and 
archiving of the model documentation;

2.	Intuitiveness allowing for the quick under-
standing of the proposed approach and learning 
it by process engineers and metrologists, what, 
in consequence, enables them to design and 
analyse easily the coordinate measurements 
and manufacturing procedures, their mutual 
relations and impact on the final accuracy of 
the machined parts. 

3.	This method may be learnt quickly owing to 
the proposed approach to vector dimensioning 
and determining geometric deviations.

4.	A simulation mode of determining measure-
ment uncertainty and estimating the accuracy 
of the machined features is consistent with the 
current recommendations of the JCGM.

5.	The full usefulness both at the stage of the 
calibration of a multi-axis machine tool and at 
the stage of operation, enabling, through the 
estimation of the performance accuracy of the 
designed processing of machine parts, the se-
lection of the optimal form of a manufacturing 
process.

6.	The possibility of determining, already at the 
stage of designing operations, a rational com-
promise between the number of measurements 
(measured points) and the obtained dimension-
al accuracy.

7.	Easy computer implementation. Owing to the 
definition on the ground of the theory of sets, 
this method may be implemented naturally in 
the declarative programming languages.

8.	Enabling the generation of mathematical mod-
els for the quick estimation of measurement 
uncertainty and/or machining accuracy.

The proposed method has other prospective 
advantages which may result in the future from its 
integration with structural modelling, especially 
in the case of the construction of the GD&T mod-
els, as well as there is a prospective possibility 
of the automatic generation of measurement pro-
gram based on the devised graph.
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