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INTRODUCTION

Machine learning and artificial intelligence are 
the fields that encompass automatic image analy-
sis; this process is also called computer vision, 
which entails extracting and processing the image 
data. Computer vision aims at identification and 
localization of objects within the image, followed 
by conveying their assignment to suitable classes. 
The computer perception of the world differs from 
that of humans. They analyze images pixels, i.e. 

arrays of numerical values. However computers 
can be trained to identify shapes and patterns. The 
key lies in determining how these numerical values 
can be used by a computer vision system to iden-
tify objects within an image and comprehend their 
attributes, including colors, edges, sizes, textures, 
as well as spatial arrangement [1–3]. 

The development of computer vision began 
in the mid-90s. One notable event related to the 
development of artificial intelligence occurred 
in 1966 when Seymour Papert initiated The 
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Summer Vision Project [4]. The primary objec-
tive was to create a specialized computer system 
that is able to identify objects within images. To 
achieve this, programmers manually established 
the rules for object detection. These rules were 
often based on specific patterns or features de-
fined by the programmers themselves. Math-
ematical algorithms or logical conditions were 
commonly employed in these early computer 
vision systems to aid in object identification or 
characterization. Rules could be developed, for 
example, to identify colors by comparing pixel 
values to predefined color thresholds or to de-
tect edges by evaluating abrupt changes in pixel 
intensity values. However, these rules heavily 
relied on the programmers’ knowledge and ex-
pertise, demanding substantial manual effort for 
development and refinement. Nevertheless, the 
effectiveness using only manually defined rules 
was constrained due to the variability and com-
plexity of real-world images [5].

During the 1970s and 1980s, researchers ded-
icated their efforts to creating the algorithms that 
could identify specific attributes in images, such 
as textures, corners, and edges. In addition, Wit-
kin developed the idea of scale-space theory in 
the 1980s, which sought to explain differences in 
object size and appearance by analyzing images 
at different scales. This theory helped to develop 
methods for blob detection such as the difference 
of gaussians (DoG) and Laplacian of Gaussian 
(LoG). Neural networks and machine learning 
became very popular in computer vision as the 
1980s and 1990s went on.

Numerous developments and breakthroughs 
in computer vision occurred between 2000 and 
2010. Particularly, advancements in object rec-
ognition and detection were made. In 2001, the 
Viola-Jones algorithm was released, enabling 
real-time face detection. Furthermore, the devel-
opment of the histogram of oriented gradients 
(HOG) feature descriptor improved the ability to 
identify objects in pictures. Various feature de-
scriptors, like scale-invariant feature transform 
(SIFT) and speeded-up robust features (SURF), 
were created to facilitate robust object recogni-
tion and matching across various angles and pic-
tures. For image classification tasks, machine 
learning algorithms – random forests and support 
vector machines, or SVMs – have become popu-
lar. Accurate image classification was greatly im-
proved by combining these algorithms with large 
datasets such as ImageNet [6–8]. 

In 2012, the ImageNet image recognition 
competition was won by the AlexNet convo-
lutional neural network, which was created 
by Alex Krizhevsky. This significant achieve-
ment sparked immense interest and initiated a 
transformative era in deep network learning. 
Subsequently, owing to technological advance-
ments and enhanced information accessibility, 
the precision of object detection models has 
doubled and continues to undergo further en-
hancements [9–11].

The initial objective of R-CNN was to take an 
input picture and output a collection of bounding 
boxes, each of which would include an item and 
its category (such as automobile or pedestrian). 
Recently, R-CNN has been expanded to handle 
more computer vision jobs [1, 12–15].

An algorithm that is frequently used for real-
time object detection is called YOLO (You Only 
Look Once). It introduced a unique approach to 
detection, bringing a significant revolution to 
the field of computer vision. Unlike traditional 
methods, e.g. R-CNN, Fast R-CNN, and Faster 
R-CNN, which involve multiple stages, YOLO 
performs object detection in a single pass. The 
input image is divided into a grid by the algo-
rithm, which then forecasts bounding boxes and 
class probabilities for every grid cell. YOLO 
forecasts several bounding boxes around each 
grid cell, enclosing the objects that are con-
tained in that specific cell. The coordinates 
for the box center (x, y), width (w), height (h), 
and confidence scores make up these bound-
ing boxes. Additionally, class probabilities are 
predicted for every object detected in each grid 
cell, based on the classes predefined during the 
process of data preparation. To ensure accurate 
detections, YOLO assigns a confidence score 
to each predicted bounding box, indicating the 
model’s degree of confidence in the existence 
of an object inside that box. Next, a threshold 
with a constant value is used for filtering out 
low-confidence detections. By using a method 
known as non-maximum suppression, YOLO 
removes duplicate and overlapping detections. 
By calculating the overlap of each detection us-
ing intersection-over-union (IoU) calculations, 
this process eliminates duplicate detections and 
chooses the most confident detection in each 
grid cell. YOLO provides the final set of bound-
ing boxes and their corresponding class labels 
following the application of non-maximum sup-
pression, producing a thorough detection result 
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for the input image [11, 16–18]. YOLO is rec-
ognized for its remarkable speed, allowing for 
real-time object detection across a range of plat-
forms, including drones and embedded systems. 
This is made possible through the optimization 
of network architecture and the utilization of 
methods like anchor boxes. YOLO has pro-
gressed through various versions over time, in-
cluding YOLOv1, YOLOv2 (also referred to as 
YOLO9000), YOLOv3, YOLOv4, all the way 
up to YOLOv8. Each iteration introduces im-
provements as far as speed, accuracy, and archi-
tectural advancements are concerned [10, 19].

At present, computer vision is experienc-
ing rapid growth in the artificial intelligence 
and machine learning domains. One of the main 
challenges in computer vision is to emulate the 
amazing powers of the human visual system. 
This entails understanding and characterizing the 
entire scene in addition to locating and identify-
ing objects within an image. Automated image 
analysis algorithms have demonstrated promis-
ing outcomes in tasks such as face recognition 
and autonomous driving. Moreover, they have 
found applications in various industries includ-
ing sales, healthcare, and manufacturing. The 
continuous efforts to enhance computer vision 
imply that this technology will be capable of 
performing an even broader range of functions 
in the future. When combined with artificial in-
telligence systems, it has the potential to create 
machines that possess human-like thinking and 
analytical abilities [20, 21].

The presented study focused on demonstrat-
ing the utilization of automatic image analysis 
to recognize a settled object in activated sludge, 
using the ciliates from the genus Vorticella as a 
model among the various activated sludge or-
ganisms. Ciliates constitute an essential com-
ponent of activated sludge, which influence the 
wastewater treatment process efficiency [22–
25]. They are also established markers of the 
quality of activated sludge [26, 27]. Vorticella 
species are almost always present in activated 
sludge [26–30]; therefore, they can be used as 
sensitive indicators of the state of activated 
sludge in a bioreactor, as well as indicators of 
the effect of wastewater on the ecosystems of 
receiving water bodies [26, 27, 31, 32]. This 
makes it important to identify representatives 
of Vorticella using artificial intelligence tech-
nologies. The method employed convolutional 
neural network to classify and localize objects. 

Automatic analysis holds promise for future ap-
plications in evaluating the state of activated 
sludge and monitoring changes in organism 
populations, akin to the current practice in as-
sessing flock structure parameters. The algo-
rithm presented is highly efficient at identifying 
other commonly used bioindicators in activated 
sludge, as validated by the authors’ study [5]. 
However, the difficulty with supervised ma-
chine learning techniques is not only choosing 
the best algorithm for object recognition but 
also having an experienced supervisor to help 
the algorithm distinguish thousands of repre-
sentatives of different species that are visually 
similar. In the case of image recognition process 
of – for example – road signs, the distortions 
of original images are not crucial. Road signs 
were designed to help in navigating, so symbols 
used on them have to be easy to recognize. The 
number of signs types are also well known. In 
biological organism communities, the situation 
is much more complicated. Depending on the 
angle, a two-dimensional image of a three-di-
mensional object can look completely different. 
Also, the differences between individual organ-
isms are not necessarily as clearly visible as in 
the case of signs. It should also be remembered 
that the subject of the study corresponds to mi-
croorganisms, which seriously limits the possi-
bilities of manipulating them (rotating, changing 
the shooting angle etc.). In this regard, protozo-
ologist’s experience of recognition of ciliates is 
very important in building automatic recogni-
tion system for activated sludge. The ground-
truth labeling should be used, because the conse-
quence of incorrectly defining organisms at the 
learning stage will be their incorrect recognition 
in the future. Understanding this circumstance, 
teacher’s practice cannot be ignored.

Although automatic image recognition using 
deep learning of neural networks is the main issue 
of this study, it is worth mentioning that in order 
to speed up the work and quickly automatically 
obtain images, a system for collecting data (dig-
ital images) from the surface of the preparation 
with biological material was developed.

MATERIALS AND METHODS

The procedure of digital image acquisi-
tion containing pictures of activated sludge 
organisms consists of a few stages, including 



54

Advances in Science and Technology Research Journal 2024, 18(7), 51–61

sampling of activated sludge, preparing cover-
slips, acquiring images, labeling, training neural 
network and finally conducting the verification 
process of training using the images prepared 
earlier but not used in learning. The research in-
volved the specimens of activated sludge sam-
pled in the bioreactors of the Hajdów treatment 
plant in Lublin. Using a measuring vessel, 300 
ml of activated sludge was poured into each of 
the plastic containers, up to a maximum of 150 
ml per container. To ensure air supply during 
transportation, half of the volume was left emp-
ty. Following preparation, the containers were 
brought to the laboratory and kept in a refrigera-
tor at 5 °C. Sampling and transportation lasted 
no longer than an hour, with microscopic ex-
amination preparations carried out immediately 
upon sample delivery. Each activated sludge 
sample yielded at least three in-vivo slices. An 

automatic pipette (BIOHIT m 1000) was used to 
apply the samples to a primary glass. and then 
a cover glass was placed on top. The obtained 
preparations were previewed by protozoolo-
gist, to determine their suitability for machine 
learning purposes. It is important to note that 
some of the samples were included in the next 
stage even though they did not have significant 
information about the objects being the subject 
of research. The image acquisition system was 
based on an OLYMPUS CX41 trinocular optical 
microscope with a rotating head equipped with 
DIN-compliant objective lenses with magnifica-
tions ×10, ×40, An external UI-1465LE-C-HQ 
color digital camera with a resolution of 1280 × 
1024 pixels was mounted in the trinocular head 
via a C-mount connector. The system compo-
nents shown in Figure 1. The mechanical system 
for controlling the microscope table consisted 

Figure 1. Acquisition system components

Figure 2. Movement of points located on slices according to optical path with digital camera
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of adapters printed from ABS using 3D printing 
to adjust the x and y axes. For precise focusing, 
an adapter was modeled, printed, and then at-
tached to the motor shaft using a flexible cou-
pling. Optimal focusing was performed through 
algorithms implemented in the motor controller. 
The stepper motors of each axis were controlled 
by an EasyDriver microcontroller using an Ar-
duino UNO connected to a PC. Figure 2 shows 
the camera movement according to the paths 
controlled by the algorithm.

The samples were placed into the described 
acquisition system and a set of images were gath-
ered from every preparation slice. The collected 
images were saved on attached computer hard 
disk for labeling tasks and further works. 

Next step involved labeling, which is cru-
cial for machine learning. Labeling allows al-
gorithms to learn how to recognize objects by 
giving feedback, where the mentioned object 
exactly is placed in image. In the presented 
work, the Label-Studio platform was used, 
which is very flexible in labeling tasks. Label 
Studio is fully prepared for group work, what 
makes the system more complex, but provides 
more work opportunities. Label Studio works as 
a web browser application, which allows users 
to use their favorite browser during work. The 
application is designed to set many instances 
of projects, in which different group of users 
can be included. The process of labeling in this 
software is available using different templates, 
depending on type of objects or user habits. 
In computer vision, there are available tem-
plates for polygon marking, masking, bound-
ing boxes, key points, ellipses and more. In the 
described case, bounding boxes were used. The 
labeling process was carried out by protozoolo-
gist, because it is the key task for the best pos-
sible results of the further research.

The dataset comprised a total of 990 images 
with labeling notes that were split into training 
(70%), validation (20%) as well as test (10%) 
subsets – as a preparation for machine learning 
task using YOLO v4 and v8 networks.

In YOLO architectures, the terms “head”, 
“backbone” and “neck” refer to different net-
work components that fulfill particular roles 
during the object detection procedure. The 
backbone network, which usually consists 
of several convolutional layers arranged in a 
deep neural network structure, is responsible 
for extracting high-level features from the in-
put image. From low-level features like edges 
and textures to higher-level semantic features, 
this backbone network learns to capture and 
represent different levels of visual informa-
tion. The backbone network forms the foun-
dation for feature extraction in YOLO archi-
tectures. By combining features from various 
scales, the neck network serves as a media-
tor between the head and backbone networks, 
improving feature representation. Combining 
feature maps from various core stages allows 
neck, also referred to as a feature extractor, to 
capture data at various scales. By capturing 
multi-scale information, the neck network aids 
in detecting objects of varying sizes, incorpo-
rating top-down and bottom-up pathways, fea-
ture fusion modules, and lateral connections. 
The neck network in YOLO architectures, like 
PANet (Path Aggregation Network), integrates 
multi-scale features to improve object detec-
tion accuracy. The final predictions for object 
detection, including bounding box coordinates, 
class probabilities and objectness scores, are 
generated by the head network. To produce the 
detection results, it processes the features that 
the neck network and backbone network ex-
tracted and refined. In YOLO architectures, the 

Figure 3. YOLOv4 network architecture [13]
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head network combines features from differ-
ent scales to produce accurate object detection 
predictions. In YOLO architectures, the head, 
neck, and backbone components work together 
to improve representation, extract features, and 
produce predictions for object detection tasks.
YOLOv4 was created to detect objects with the 
best possible speed and accuracy. The YOLOv4 
architecture includes CSPDarknet53 as the core, 
PANet as the neck, and YOLOv3 as the detection 
head. This design allows YOLOv4 to perform 
object detection at notable speeds, enabling its 
use in real-time applications. The architecture of 
YOLOv4 is depicted in Figure 3 [12, 13].

YOLOv8, created by Ultralytics, is an up-
graded version of the popular YOLOv5 model, 
incorporating several architectural enhancements 
and improvements in developer experience. One 
notable feature is its anchor-free methodology, as 
opposed to depending on an offset from a fixed 
anchor box, predicts an object’s center directly. 
YOLOv8 also includes user-friendly features like 
a simple command-line interface (CLI) and a 
neatly organized Python package. These upgrades 
are designed to offer developers a more conve-
nient and effective experience when working with 
the YOLOv8 model. YOLOv8 architecture can 
be roughly split into three primary parts: 

Figure 4. YOLOv8 architecture [33]
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1)	Neck uses the new C2f module rather than the 
conventional Feature Pyramid Network (FPN); 

2)	Core (backbone) uses a custom CSPDarknet53 
core that uses partial connections at various 
stages to improve information flow between 
layers and increase accuracy. Improved detec-
tion accuracy, particularly for small objects, 
is achieved by combining high-level semantic 
features with low-level spatial information in 
this module; 

3)	Head of YOLOv8 employs multiple detection 
modules that predict bounding boxes, objectiv-
ity scores, and class probabilities for each grid 
cell in the feature map. The final detections are 
then obtained by averaging these predictions. 
The architecture of YOLOv8 is shown in the 
Figure 4 [33, 34].

A number of significant advancements made 
by YOLOv8 are responsible for its outstanding 
performance. One such innovation is a spatial at-
tention mechanism that concentrates on pertinent 
areas of the image to improve object localization. 
By efficiently combining low-level spatial infor-
mation with high-level semantic features, the C2f 
module increases the precision of small object de-
tection. The CSPDarknet53 core’s bottles lower 
computational complexity without sacrificing ac-
curacy. To further enhance detection performance, 
the spatial pyramid pooling fast (SPPF) layer ad-
ditionally records features at various scales. The 
model evaluation involved the calculation of ac-
curacy, precision, and recall. The metrics were 
computed using the following formulas:
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where:	TN – stands for true negative instances,
	 TP – for true positive instances. 

Similarly, FN denotes false negative instanc-
es and FP denotes false positive instances. Ver-
sion 3.9.13 of the Python programming language 
was used for both model training and prediction. 
The procedure made use of the ultralytics pack-
age. Figures 5a and 5b depict the selected Vor-
ticella ciliates which were chosen for research 
and analysis purposes. These ciliates belong to 
a group that is relevant in evaluating the stabil-
ity of treatment plants with biological reactors, 
particularly in terms of removing organic carbon 
in colloidal and suspension form [35]. Their dis-
tinct appearance, abundant population, and sed-
entary lifestyle make them easily observable and 
countable under a microscope. Consequently, 
they serve as an model subject for the conducted 
detection task [24, 30].

RESULTS

Figures 6a to 6d depict the chosen YOLO net-
work predictions. The image analysis model suc-
cessfully identifies Vorticella in the image, pro-
viding bounding boxes and labeling them.

A significant performance enhancement can 
be observed with YOLOv8. YOLOv4, which 
was trained for 3200 epochs, yielded inferior 
results compared to YOLOv8 trained for 100 

Figure 5. Visible Vorticella ciliates
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Figure 6. Detected Vorticella instances

Table 1. Comparison of object detection quality measures on the test set
Model Epochs Training time [h] Precision Recall Accuracy

YOLOv4 3200 20.67 0.75 0.6 0.79

YOLOv8 100 16.41 0.875 0.7 0.86

Figure 7. Confusion matrix for the YOLOv8 algorithm
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epochs (Table 1). The precision metric for YO-
LOv4 stands at 0.75, whereas for YOLOv8 it 
equals 0.875. Similarly, the recall values are 0.6 
for YOLOv4 and 0.7 for YOLOv8. The accu-
racy raises from 0.79 to 0.86. Referring to the 
authors’ previous research, it should be stated 
that the YOLOv4 and YOLOv8 models were 
characterized by a similar behavior of charac-
teristic parameters set for the indication and de-
termination of shell amoebae – Arcella vulgaris 
– which are also biomarkers of the functioning 
of activated sludge bioreactors [30]. However, 
for amoebae, the number of epochs in YOLOv4 
was much smaller and amounted to 1500, while 
in YOLOv8 it was 100, which is the same as for 
Vorticella. A similar relationship concerning two 
applied models can be observed when analyzing 
Training time, where YOLOv4 required 20.85 
hours and YOLOv8 10.40 hours. The precision 
of Arcella determination was higher than Vor-
ticella and amounted to 0.94 for YOLOv4 and 
0.95 for YOLOv8. The situation was similar 
with recall and accuracy in detection of Arcella 
0.94 and 0.88 for YOLOv4 when 0.95 and 0.97 
for YOLOv8 [5]. It can therefore be concluded 
that the correct identification of sedentary cili-
ates Vorticella in the same sets of digital images 
is a more difficult task for both networks than the 
identification of shell amoeba Arcella vulgaris. 
Figure 7 shows the YOLOv8 confusion matrix 
– correctly and incorrectly detected individuals. 
Three Vorticella organisms set by human were 
omitted by the algorithm. Also, prediction of an 
instance of Vorticella was found in an image not 
labeled by protozoologist. 

CONCLUSIONS 

This study was aimed at conducting a per-
formance evaluation between the YOLOv4 and 
YOLOv8 deep learning networks used as a core 
in system of an automated image acquisition and 
analysis. The analysis focused on identifying and 
classifying a specific group of activated sludge 
organisms, namely Vorticella, using digital pho-
tos of biological samples containing different or-
ganisms from the bioreactors of treatment plant. 
It is important to note that the network architec-
tures created for the detection task were kept ge-
neric, meaning that the layer and filter structures 
were not impacted by the particular use of these 
models. Hence, given the universal structure of 

the models, the results in terms of precision and 
quality of classification may be deemed highly 
satisfactory. This implies that the overall frame-
work of the YOLO networks is applicable for 
particular assignments like identifying settled 
ciliates. Nevertheless, YOLOv8 showcased a 
notable enhancement in performance – requiring 
fewer epochs, it offered superior object detec-
tion accuracy compared to the previous iteration, 
YOLOv4. It is also worth considering labeling 
organisms using other methods, as the bounding 
box labeling is probably not the optimal option 
for elipsoid objects with stalks.

The organism identification model used for 
the Peritrichia group (Vorticella) from images has 
the potential to expand its capabilities to classify 
their a wider range. This enhanced model could 
be utilized in the future for automated analysis of 
activated sludge conditions, monitoring changes 
in organism populations, and assessing bioreactor 
stability based on technical treatment stages and 
treated wastewater samples. Furthermore, this 
tool could prove valuable in evaluating surface 
water quality, particularly in the areas affected 
by polluted water discharges, such as stormwater 
from urbanized catchments.
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