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INTRODUCTION

Acoustic scattering problems are pivotal 
in various engineering disciplines, and this re-
search bridges the gap between them, including 
mechanical engineering, material science, and 
biomedical engineering. The accurate model-
ing and reconstruction of obstacle shapes based 
on near-field data are not just theoretical exer-
cises, but are essential for practical applications 
such as non-destructive testing, medical imag-
ing, and material characterization. The BEM 
has emerged as a powerful computational tool 
for solving these complex problems, offering 
flexibility in imposing boundary conditions and 
modeling external fields.

Acoustic scattering is when an incident acous-
tic wave interacts with an object and is deflected in 
different directions. This process is central to appli-
cations such as sonar detection, ultrasound imag-
ing, and structural health monitoring [1]. Accurate 

modeling of acoustic scattering allows engineers to 
predict and analyze the behavior of waves as they 
encounter different materials and geometries.

The boundary element method is particular-
ly advantageous for solving acoustic scattering 
problems due to its boundary-only discretization, 
which reduces the dimensionality of the problem 
by one [2, 3]. This method is highly effective in 
handling infinite domains and complex boundary 
conditions, making it suitable for external field 
modeling and applications where the surrounding 
medium extends to infinity [4]. 

In non-destructive testing, BEM facilitates 
the detection of flaws in materials without caus-
ing damage. By analyzing the scattered field data, 
engineers can reconstruct the shape and size of 
internal defects, improving structures’ safety and 
reliability. Similarly, in medical imaging, BEM is 
used to improve the quality of ultrasound images, 
aiding in the diagnosis and treatment of various 
medical conditions [5]. Material characterization 
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is another area where BEM is invaluable. By 
studying the scattering patterns, researchers can 
infer the mechanical properties of materials, such 
as elasticity, density, and acoustic impedance [6]. 
This information is critical for developing and im-
proving new materials for industrial applications.

Recent advances in computational techniques 
and hardware have further enhanced the capabili-
ties of BEM. High-performance computing and 
parallel processing allow large-scale scattering 
problems to be solved with greater accuracy and 
efficiency [1]. In addition, the coupling of BEM 
with other numerical methods, such as the finite 
element method (FEM), allows for hybrid ap-
proaches that exploit the strengths of each meth-
od [7]. Furthermore, integrating machine learning 
algorithms with BEM has opened new avenues 
for automatic shape reconstruction and real-time 
monitoring. These advances promise to revolu-
tionize structural health monitoring and adaptive 
material design. Computational fluid dynam-
ics models have proven effective in optimizing 
the design and analysis of engineering systems, 
which can also be applied to improve acoustic 
scattering simulations [8].

Recent research indicates the significant po-
tential of deep neural networks to increase the ac-
curacy of diagnostic imaging [9, 10], which may 
have future applications to acoustic scattering 
problems in medical and industrial engineering. 
In addition, advanced stochastic modeling tech-
niques [11] can increase the reliability and perfor-
mance of diagnostic systems by accurately model-
ing complex temporal dynamics, enabling further 
improvements in acoustic scattering applications. 
Recent advancements in wireless communication 
technologies have significantly enhanced the effi-
ciency and accuracy of data transmission in wear-
able electronic devices, which can be leveraged 
in acoustic scattering applications for real-time 
monitoring and diagnostics [12].

In engineering mechanics, computational 
methods are critical in advancing our understand-
ing and solving complex problems. BEM, known 
for its effectiveness in modeling boundary con-
ditions, provides a robust solution for analyzing 
acoustic scattering problems. This study focuses 
on the inverse acoustic scattering problem, which 
involves reconstructing the shape of obstacles 
based on near-field measurements. Such prob-
lems are not only theoretically challenging but 
also have significant practical implications in en-
gineering diagnostics and imaging. The inverse 

acoustic scattering problem is fundamental to 
various applications, including non-destructive 
evaluation and medical diagnostics. Solving these 
problems requires sophisticated algorithms that 
can accurately reconstruct the shape and proper-
ties of the scattering objects from limited and of-
ten noisy data [13]. Recent research has proposed 
innovative methods, such as the hyper-singular 
source method, to address the uniqueness and sta-
bility issues inherent in inverse problems [14].

The development of advanced BEM tech-
niques, such as the extended isogeometric bound-
ary element method (XIBEM), has significantly 
improved the accuracy and efficiency of solving 
medium-wave acoustic scattering problems [15]. 
These advances allow detailed analysis of com-
plex geometries and materials, providing valu-
able insights for practical applications. The use 
of machine learning techniques has shown prom-
ise in improving the classification and analysis 
of complex flow regimes, which can be adapted 
for acoustic scattering problems [16]. Advanced 
monitoring systems using electrical capacitance 
tomography can enhance the detection and analy-
sis of structural defects in materials [17].

In addition, innovative approaches such as the 
coupled hybrid smoothed radial point interpolation 
method have been introduced to reduce dispersion 
errors in underwater acoustic scattering problems, 
thereby improving the accuracy of reconstructed 
shapes [2]. Integrating these methods with real-
time monitoring systems allows dynamic adjust-
ments and improved diagnostic capabilities.

The importance of solving inverse acoustic 
problems lies in their application to engineering 
diagnostics, non-destructive testing, and medical 
imaging. Inverse acoustic problems involve deter-
mining the properties or shape of an object based 
on measured acoustic waves that have interacted 
with it [18]. This process is critical for identifying 
defects in materials, locating sources of acoustic 
emissions, and imaging internal body structures. 
Additionally, recent developments in the study 
of fluid dynamics in segmented orifice flows pro-
vide insights that can be applied to the analysis of 
acoustic scattering in various media [19]

Existing methods for solving inverse acoustic 
problems include techniques such as the BEM, 
the FEM, and hybrid approaches. However, these 
methods face limitations such as computational 
cost, convergence issues, and sensitivity to noise 
[20]. For example, conventional BEM requires 
significant computational resources, especially 
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for large-scale problems, and can struggle with 
stability and accuracy when dealing with com-
plex geometries and heterogeneous media [15]. 
Addressing these limitations is an ongoing area 
of research, with recent advances focusing on 
improving computational efficiency and robust-
ness to measurement noise [21]. The Boundary 
Element Method is a versatile and powerful tool 
for tackling acoustic scattering problems. Its abil-
ity to handle complex boundary conditions and 
infinite domains and its integration with modern 
computational techniques make it indispensable 
across various engineering disciplines. The ongo-
ing research and development in this area con-
tinue to expand its applications and improve its 
effectiveness, solidifying its role in addressing 
contemporary engineering challenges.

RESEARCH NOVELTY

This study considered the inverse problem of 
scattering when a flat wave incident on an object of 
arbitrary shape. Based on measurements of the field 
at the Gamma boundary surrounding the obstacle, 
a reconstruction of the obstacle boundary will be 
considered. For this purpose, the BEM [22–24] was 
applied due to its ease of modeling external fields 
(Sommerfeld radiation conditions are automatically 
fulfilled), flexibility of imposing boundary condi-
tions, and ease of modeling the shape of the bound-
ary line. The problem involves reconstructing the 
scatterer surface based on near-field measured data. 
The obstacle is assumed to be a small and smooth 
perturbation of a disk (corrugated circle). The task 
poses some limitations, which are listed below:
 • Only the shape of the obstacle is reconstructed.
 • Incoming wave is flat, harmonic, and analyzed 

in the frequency domain.
 • Environment is a homogeneous medium.
 • Boundary conditions: A Neumann boundary 

condition is assumed at the obstacle boundary, 
but Dirichlet or Robin conditions can also be 
easily imposed.

 • Sommerfeld radiation condition: Satisfied by 
the scattered field.

Such problems become essential for engi-
neering problems like medical imaging or non-
destructive testing. Many authors explore this 
or similar topics, such as Jeong at al.  [25] or Li 
and Wang in their excellent paper[26]. In their 
work, the authors reconstruct only the shape of 

the obstacle using near-field measurement data. 
It is worth noting that the method adopted by the 
authors is an analytical method with Dirichlet 
boundary conditions, making it applicable only to 
‘sound soft’ obstacles. This method represents a 
unique approach to solving the inverse scattering 
problem. However, analytical methods do have 
certain limitations. Based on numerical analysis 
using the Boundary Element Method, the pro-
posed approach is accessible from the constraints 
inherent in analytical methods. However, the 
proposed approach does not have disadvantages 
(commonly known ones). It offers advantages 
such as the ease of imposing the boundary condi-
tions, including Sommerfeld radiation conditions, 
which are invaluable for this case. In this paper, 
the solution of the inverse problem was brought 
to the optimization iterative problem [25]. The 
objective function and inequality constraints im-
posed on the design variables were determined. 
The iterative methods require good initial guesses 
and are computationally expensive, as a sequence 
of forward problems needs to be solved at each 
iteration step. However, such disadvantages can 
be overcome quite easily in this case.

By collecting data in the near-field zone, it is 
possible to obtain images with subwavelength reso-
lution. This is referred to as near-field imaging [26] 
and might be useful for emerging applications in 
modern science and technology like nanotechnology.

THE FORWARD PROBLEM OF ACOUSTIC 
SCATTERING

The problem is outlined by beginning with 
the time-harmonic reduction of the wave Equa-
tion for the exterior forward problem to the Helm-
holtz Equation [27–29]:

  
(1)

where: ψ (p, t) [m2/s] is the scalar time-depen-
dent velocity potential related to the 
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where: ω = 2πf [1/s], φ(p) is the velocity poten-
tial amplitde and 

 
is the imagi-

nary unit. The substitution of the above 
expression into the wave Equation (1) 
reduces it to the Helmholtz Equation of 
the form [22, 30]:

 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)

𝜕𝜕𝑛𝑛𝑝𝑝
 (5) 

 𝑝𝑝(p) = i𝜔𝜔𝜔𝜔𝜑𝜑(p) [1s
kg
m3

m2

s = kg
ms2 = N

m2 = Pa]. (6) 

 𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟−𝑟𝑟′|)
𝜕𝜕𝑛𝑛𝛤𝛤 𝜑𝜑(𝑟𝑟′)𝑑𝑑𝑑𝑑 = ∫ 𝐺𝐺(|𝑟𝑟 − 𝑟𝑟′|) 𝜕𝜕𝜕𝜕(𝑟𝑟′)

𝜕𝜕𝑛𝑛𝛤𝛤 𝑑𝑑𝑑𝑑 + 𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟), 𝑟𝑟 ∈ 𝑑𝑑  (7) 

 𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∑ 𝜑𝜑𝑗𝑗(𝑟𝑟′)𝑀𝑀
𝑗𝑗=1 ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟−𝑟𝑟′|)

𝜕𝜕𝑛𝑛
+1
−1 𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉 =  𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟)  (8) 

as: 𝐽𝐽(𝜉𝜉) = 𝑑𝑑𝛤𝛤
𝑑𝑑𝑑𝑑 = √(𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2
+ (𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2

= 𝐿𝐿
2,  

𝑖𝑖 = √−1. 

Φ̂ = ∑ Φ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗) =

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 

∑ Re(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
  

(9) 

 Φ̂  =  ∑ ɸ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ Re ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (10) 

 𝐹𝐹 =  ∑ (ɸ̂𝑗𝑗ɸ̂𝑗𝑗
∗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ (Re2ɸ̂𝑗𝑗 + Im2ɸ̂𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (11) 

 

[
 
 
 
 
 
 
 −1 0 0 0

1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1 ]

 
 
 
 
 
 
 

[
𝑅𝑅
𝜀𝜀

𝑚𝑚𝑣𝑣𝑚𝑚
𝑚𝑚𝑣𝑣𝑚𝑚

] < radius of the

[
 
 
 
 
 
 
 −0.5𝑅𝑅𝜞𝜞

0.8𝑅𝑅𝜞𝜞
−0.001

1
−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞

−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞 ]

 
 
 
 
 
 
 

 (12) 

 𝑚𝑚 = 𝑔𝑔 cos(𝜃𝜃); 𝑚𝑚 = 𝑔𝑔 sin(𝜃𝜃), (13) 
 𝑔𝑔 = 𝜀𝜀 𝜆𝜆 (𝑎𝑎𝑣𝑣 sin(𝑎𝑎𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑣𝑣 sin(𝑏𝑏𝑠𝑠𝜃𝜃)) + 𝜆𝜆 𝑎𝑎𝑟𝑟 (14) 
 𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 1;  𝜀𝜀 = 0. (15) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.8;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0. (16) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 (3)

where:  and is the wavenumber and the 
wavelength is equal to λ = c/f, the right-
hand side 

 
Q Qstands for the acoustic 

source. The complex-valued function φ(p) 
possesses the magnitude and phase shift. 
The particle velocity has the similar form 
to the velocity potential see Equation 2:

 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)

𝜕𝜕𝑛𝑛𝑝𝑝
 (5) 

 𝑝𝑝(p) = i𝜔𝜔𝜔𝜔𝜑𝜑(p) [1s
kg
m3

m2

s = kg
ms2 = N

m2 = Pa]. (6) 

 𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟−𝑟𝑟′|)
𝜕𝜕𝑛𝑛𝛤𝛤 𝜑𝜑(𝑟𝑟′)𝑑𝑑𝑑𝑑 = ∫ 𝐺𝐺(|𝑟𝑟 − 𝑟𝑟′|) 𝜕𝜕𝜕𝜕(𝑟𝑟′)

𝜕𝜕𝑛𝑛𝛤𝛤 𝑑𝑑𝑑𝑑 + 𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟), 𝑟𝑟 ∈ 𝑑𝑑  (7) 

 𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∑ 𝜑𝜑𝑗𝑗(𝑟𝑟′)𝑀𝑀
𝑗𝑗=1 ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟−𝑟𝑟′|)

𝜕𝜕𝑛𝑛
+1
−1 𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉 =  𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟)  (8) 

as: 𝐽𝐽(𝜉𝜉) = 𝑑𝑑𝛤𝛤
𝑑𝑑𝑑𝑑 = √(𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2
+ (𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2

= 𝐿𝐿
2,  

𝑖𝑖 = √−1. 

Φ̂ = ∑ Φ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗) =

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 

∑ Re(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
  

(9) 

 Φ̂  =  ∑ ɸ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ Re ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (10) 

 𝐹𝐹 =  ∑ (ɸ̂𝑗𝑗ɸ̂𝑗𝑗
∗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ (Re2ɸ̂𝑗𝑗 + Im2ɸ̂𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (11) 

 

[
 
 
 
 
 
 
 −1 0 0 0

1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1 ]

 
 
 
 
 
 
 

[
𝑅𝑅
𝜀𝜀

𝑚𝑚𝑣𝑣𝑚𝑚
𝑚𝑚𝑣𝑣𝑚𝑚

] < radius of the

[
 
 
 
 
 
 
 −0.5𝑅𝑅𝜞𝜞

0.8𝑅𝑅𝜞𝜞
−0.001

1
−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞

−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞 ]

 
 
 
 
 
 
 

 (12) 

 𝑚𝑚 = 𝑔𝑔 cos(𝜃𝜃); 𝑚𝑚 = 𝑔𝑔 sin(𝜃𝜃), (13) 
 𝑔𝑔 = 𝜀𝜀 𝜆𝜆 (𝑎𝑎𝑣𝑣 sin(𝑎𝑎𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑣𝑣 sin(𝑏𝑏𝑠𝑠𝜃𝜃)) + 𝜆𝜆 𝑎𝑎𝑟𝑟 (14) 
 𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 1;  𝜀𝜀 = 0. (15) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.8;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0. (16) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 (4)

Often the normal component of the velocity 
on the boundary vn(p) is imposed as a Neumann 
boundary condition:

 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)

𝜕𝜕𝑛𝑛𝑝𝑝
 (5) 

 𝑝𝑝(p) = i𝜔𝜔𝜔𝜔𝜑𝜑(p) [1s
kg
m3

m2

s = kg
ms2 = N

m2 = Pa]. (6) 

 𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟−𝑟𝑟′|)
𝜕𝜕𝑛𝑛𝛤𝛤 𝜑𝜑(𝑟𝑟′)𝑑𝑑𝑑𝑑 = ∫ 𝐺𝐺(|𝑟𝑟 − 𝑟𝑟′|) 𝜕𝜕𝜕𝜕(𝑟𝑟′)

𝜕𝜕𝑛𝑛𝛤𝛤 𝑑𝑑𝑑𝑑 + 𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟), 𝑟𝑟 ∈ 𝑑𝑑  (7) 

 𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∑ 𝜑𝜑𝑗𝑗(𝑟𝑟′)𝑀𝑀
𝑗𝑗=1 ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟−𝑟𝑟′|)
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+1
−1 𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉 =  𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟)  (8) 

as: 𝐽𝐽(𝜉𝜉) = 𝑑𝑑𝛤𝛤
𝑑𝑑𝑑𝑑 = √(𝑑𝑑𝑑𝑑(𝑑𝑑)
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2
+ (𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2

= 𝐿𝐿
2,  

𝑖𝑖 = √−1. 

Φ̂ = ∑ Φ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗) =

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 

∑ Re(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
  

(9) 

 Φ̂  =  ∑ ɸ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ Re ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (10) 

 𝐹𝐹 =  ∑ (ɸ̂𝑗𝑗ɸ̂𝑗𝑗
∗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ (Re2ɸ̂𝑗𝑗 + Im2ɸ̂𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (11) 
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𝑚𝑚𝑣𝑣𝑚𝑚
𝑚𝑚𝑣𝑣𝑚𝑚
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[
 
 
 
 
 
 
 −0.5𝑅𝑅𝜞𝜞

0.8𝑅𝑅𝜞𝜞
−0.001

1
−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞

−0.01𝑅𝑅𝜞𝜞
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 (12) 

 𝑚𝑚 = 𝑔𝑔 cos(𝜃𝜃); 𝑚𝑚 = 𝑔𝑔 sin(𝜃𝜃), (13) 
 𝑔𝑔 = 𝜀𝜀 𝜆𝜆 (𝑎𝑎𝑣𝑣 sin(𝑎𝑎𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑣𝑣 sin(𝑏𝑏𝑠𝑠𝜃𝜃)) + 𝜆𝜆 𝑎𝑎𝑟𝑟 (14) 
 𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 1;  𝜀𝜀 = 0. (15) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.8;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0. (16) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 (5)

where: np is the unit outward normal to the bound-
ary at point  p[m] (see for example Fig. 1).

The sound pressure p at the point p in the 
acoustic domain is one of the most useful acoustic 
properties, and it is related to the velocity poten-
tial φ(p) by relation:

 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)

𝜕𝜕𝑛𝑛𝑝𝑝
 (5) 

 𝑝𝑝(p) = i𝜔𝜔𝜔𝜔𝜑𝜑(p) [1s
kg
m3

m2

s = kg
ms2 = N

m2 = Pa]. (6) 

 𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟−𝑟𝑟′|)
𝜕𝜕𝑛𝑛𝛤𝛤 𝜑𝜑(𝑟𝑟′)𝑑𝑑𝑑𝑑 = ∫ 𝐺𝐺(|𝑟𝑟 − 𝑟𝑟′|) 𝜕𝜕𝜕𝜕(𝑟𝑟′)

𝜕𝜕𝑛𝑛𝛤𝛤 𝑑𝑑𝑑𝑑 + 𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟), 𝑟𝑟 ∈ 𝑑𝑑  (7) 

 𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∑ 𝜑𝜑𝑗𝑗(𝑟𝑟′)𝑀𝑀
𝑗𝑗=1 ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟−𝑟𝑟′|)

𝜕𝜕𝑛𝑛
+1
−1 𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉 =  𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟)  (8) 

as: 𝐽𝐽(𝜉𝜉) = 𝑑𝑑𝛤𝛤
𝑑𝑑𝑑𝑑 = √(𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2
+ (𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2

= 𝐿𝐿
2,  

𝑖𝑖 = √−1. 

Φ̂ = ∑ Φ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗) =

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 

∑ Re(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
  

(9) 

 Φ̂  =  ∑ ɸ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ Re ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (10) 

 𝐹𝐹 =  ∑ (ɸ̂𝑗𝑗ɸ̂𝑗𝑗
∗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ (Re2ɸ̂𝑗𝑗 + Im2ɸ̂𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (11) 

 

[
 
 
 
 
 
 
 −1 0 0 0

1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1 ]

 
 
 
 
 
 
 

[
𝑅𝑅
𝜀𝜀

𝑚𝑚𝑣𝑣𝑚𝑚
𝑚𝑚𝑣𝑣𝑚𝑚

] < radius of the

[
 
 
 
 
 
 
 −0.5𝑅𝑅𝜞𝜞

0.8𝑅𝑅𝜞𝜞
−0.001

1
−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞

−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞 ]

 
 
 
 
 
 
 

 (12) 

 𝑚𝑚 = 𝑔𝑔 cos(𝜃𝜃); 𝑚𝑚 = 𝑔𝑔 sin(𝜃𝜃), (13) 
 𝑔𝑔 = 𝜀𝜀 𝜆𝜆 (𝑎𝑎𝑣𝑣 sin(𝑎𝑎𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑣𝑣 sin(𝑏𝑏𝑠𝑠𝜃𝜃)) + 𝜆𝜆 𝑎𝑎𝑟𝑟 (14) 
 𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 1;  𝜀𝜀 = 0. (15) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.8;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0. (16) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 (6)

In theoretical acoustics [28], it is often desir-
able to work with the Helmholtz Equation (3) of 
the velocity potential φ instead of pressure p

 
and/

or vector of the particle velocity v. Taking into 
account the above considerations and making use 
of Green’s second identity, the Helmholtz Equa-
tion 3 can be expressed in an equivalent form of 
a Boundary Integral Equation (BIE) [31,32], i.e.:

 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)

𝜕𝜕𝑛𝑛𝑝𝑝
 (5) 

 𝑝𝑝(p) = i𝜔𝜔𝜔𝜔𝜑𝜑(p) [1s
kg
m3

m2

s = kg
ms2 = N

m2 = Pa]. (6) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕𝛤𝛤

𝜑𝜑(𝑟𝑟′)𝑑𝑑𝑑𝑑 = 

= ∫ 𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|) 𝜕𝜕𝜑𝜑(𝑟𝑟′)
𝜕𝜕𝜕𝜕𝛤𝛤

𝑑𝑑𝑑𝑑 + 𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟), 𝑟𝑟 ∈ 𝑑𝑑 

(7) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∑𝜑𝜑𝑗𝑗(𝑟𝑟′)
𝑀𝑀

𝑗𝑗=1
 

∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕

+1

−1
𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉 =  𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟) 

(8) 

as: 𝐽𝐽(𝜉𝜉) = 𝑑𝑑𝛤𝛤
𝑑𝑑𝑑𝑑 = √(𝑑𝑑𝑑𝑑(𝑑𝑑)
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2
+ (𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2

= 𝐿𝐿
2,  

𝑖𝑖 = √−1. 
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 + 𝑗𝑗 ∑ Im(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)
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𝑗𝑗=1
  

(9) 

 Φ̂  =  ∑ ɸ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ Re ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im ɸ̂𝑗𝑗
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𝑗𝑗=1
 (10) 

𝐹𝐹 =  ∑ (ɸ̂𝑗𝑗ɸ̂𝑗𝑗
∗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (Re2ɸ̂𝑗𝑗 + Im2ɸ̂𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (11) 
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 (12) 

 𝑚𝑚 = 𝑔𝑔 cos(𝜃𝜃); 𝑚𝑚 = 𝑔𝑔 sin(𝜃𝜃), (13) 
 𝑔𝑔 = 𝜀𝜀 𝜆𝜆 (𝑎𝑎𝑣𝑣 sin(𝑎𝑎𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑣𝑣 sin(𝑏𝑏𝑠𝑠𝜃𝜃)) + 𝜆𝜆 𝑎𝑎𝑟𝑟 (14) 
 𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 1;  𝜀𝜀 = 0. (15) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.8;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0. (16) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 (7)

where: φinc is the incident wave and the vector n 
is the unit normal vector outward point-
ing from the considered domain (Fig. 1), 
Γ represents the boundary of the domain 
under consideration.

The sound-hard scatterer is imposed through a 
homogeneous Neumann boundary condition on the 

boundary Γ = I U S (Fig. 2). Due to the homoge-
neous Neumann boundary conditions, the third term 
of the Equation 7 vanishes. Now, the boundary inte-
gral Equation 7 for constant boundary elements can 
be written in terms of local coordinate ξ as follows:

 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)
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 (12) 

 𝑚𝑚 = 𝑔𝑔 cos(𝜃𝜃); 𝑚𝑚 = 𝑔𝑔 sin(𝜃𝜃), (13) 
 𝑔𝑔 = 𝜀𝜀 𝜆𝜆 (𝑎𝑎𝑣𝑣 sin(𝑎𝑎𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑣𝑣 sin(𝑏𝑏𝑠𝑠𝜃𝜃)) + 𝜆𝜆 𝑎𝑎𝑟𝑟 (14) 
 𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 1;  𝜀𝜀 = 0. (15) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.8;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0. (16) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 (8)

where: M – is the total number of constant ele-
ments, and  J(ξ) – is the Jacobian of trans-
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 (9)

where: L is the length of the constant boundary 
element [30, 32–34].

Figure 1. The external region under consideration is 
illuminated by plane, time-harmonic incident wave

Figure 2. Circular scatterer illuminated by incident 
plane wave where I denote the illuminated and S 

represents the shadowed zone
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If the incident plane wave is traveling along 
the vector dj = (cos θj, sin θj) than φinc(r) = eikr ·dj, 
where i
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.
It is worth noticing that the unit vector is de-

fined in the boundary element method by the x-
component and y-component of the unit outward 
vector. So, the incident wave is easy to calculate 
on the boundary and incorporated into the right-
hand side of the Equation 8. Equation 8 describes 
the acoustic forward scattering problem presented 
in Figure 1 and in Figure 2. The direct (forward) 
problem is used in the iterative solution of the in-
verse acoustic problem.

THE INVERSE PROBLEM OF ACOUSTIC 
SCATTERING

In order to calculate the inverse problem, it 
is necessary to define the state function φ(p) (see 
Equation 3), objective function, and inequality 
constraints. Then, the boundary conditions and 
parameters of the acoustic environment must be 
established.The perturbated circular cross-section 
of the scatterer boundary is rigid. That is why the 
homogeneous Neumann boundary conditions on 
the obstacle were imposed. The external area is 
homogenous and is filled by the air. The velocity 
of the sound wave is equal to 344 [m/s] [27].

Definition of the objective function

The following objective function (Equation 
10) has been defined to match the signal calcu-
lated in each iteration step to the measured one on 
the boundary. The analysis was conducted in the 
frequency domain, which means that all signals 
are complex and have real and imaginary parts.

This auxiliary function will be a part of the 
objective function and will be subject to deprecia-
tion with certain nonlinear constraints:
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 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 (10)

where: hat means complex quantities, – global 
auxiliary complex function taken from 
p sensors calculated along boundary Γ 
(see Figure 3), 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)

𝜕𝜕𝑛𝑛𝑝𝑝
 (5) 

 𝑝𝑝(p) = i𝜔𝜔𝜔𝜔𝜑𝜑(p) [1s
kg
m3

m2

s = kg
ms2 = N

m2 = Pa]. (6) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕𝛤𝛤

𝜑𝜑(𝑟𝑟′)𝑑𝑑𝑑𝑑 = 

= ∫ 𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|) 𝜕𝜕𝜑𝜑(𝑟𝑟′)
𝜕𝜕𝜕𝜕𝛤𝛤

𝑑𝑑𝑑𝑑 + 𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟), 𝑟𝑟 ∈ 𝑑𝑑 

(7) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∑𝜑𝜑𝑗𝑗(𝑟𝑟′)
𝑀𝑀

𝑗𝑗=1
 

∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕

+1

−1
𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉 =  𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟) 

(8) 

as: 𝐽𝐽(𝜉𝜉) = 𝑑𝑑𝛤𝛤
𝑑𝑑𝑑𝑑 = √(𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2
+ (𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2

= 𝐿𝐿
2,  

𝑖𝑖 = √−1. 

Φ̂ = ∑ Φ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗) =

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 

∑ Re(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
  

(9) 

 Φ̂  =  ∑ ɸ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ Re ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (10) 

𝐹𝐹 =  ∑ (ɸ̂𝑗𝑗ɸ̂𝑗𝑗
∗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (Re2ɸ̂𝑗𝑗 + Im2ɸ̂𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (11) 

 

[
 
 
 
 
 
 
 −1 0 0 0

1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1 ]

 
 
 
 
 
 
 

[
𝑅𝑅
𝜀𝜀

𝑚𝑚𝑣𝑣𝑚𝑚
𝑚𝑚𝑣𝑣𝑚𝑚

] < radius of the

[
 
 
 
 
 
 
 −0.5𝑅𝑅𝜞𝜞

0.8𝑅𝑅𝜞𝜞
−0.001

1
−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞

−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞 ]

 
 
 
 
 
 
 

 (12) 

 𝑚𝑚 = 𝑔𝑔 cos(𝜃𝜃); 𝑚𝑚 = 𝑔𝑔 sin(𝜃𝜃), (13) 
 𝑔𝑔 = 𝜀𝜀 𝜆𝜆 (𝑎𝑎𝑣𝑣 sin(𝑎𝑎𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑣𝑣 sin(𝑏𝑏𝑠𝑠𝜃𝜃)) + 𝜆𝜆 𝑎𝑎𝑟𝑟 (14) 
 𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 1;  𝜀𝜀 = 0. (15) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.8;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0. (16) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 – auxiliary complex 
function for the j – th sensor of the ve-
locity potential difference between so 
called “measured” and calculated in each 
iteration step, 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)

𝜕𝜕𝑛𝑛𝑝𝑝
 (5) 

 𝑝𝑝(p) = i𝜔𝜔𝜔𝜔𝜑𝜑(p) [1s
kg
m3

m2

s = kg
ms2 = N

m2 = Pa]. (6) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕𝛤𝛤

𝜑𝜑(𝑟𝑟′)𝑑𝑑𝑑𝑑 = 

= ∫ 𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|) 𝜕𝜕𝜑𝜑(𝑟𝑟′)
𝜕𝜕𝜕𝜕𝛤𝛤

𝑑𝑑𝑑𝑑 + 𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟), 𝑟𝑟 ∈ 𝑑𝑑 

(7) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∑𝜑𝜑𝑗𝑗(𝑟𝑟′)
𝑀𝑀

𝑗𝑗=1
 

∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕

+1

−1
𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉 =  𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟) 

(8) 

as: 𝐽𝐽(𝜉𝜉) = 𝑑𝑑𝛤𝛤
𝑑𝑑𝑑𝑑 = √(𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2
+ (𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2

= 𝐿𝐿
2,  

𝑖𝑖 = √−1. 

Φ̂ = ∑ Φ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗) =

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 

∑ Re(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
  

(9) 

 Φ̂  =  ∑ ɸ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ Re ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (10) 

𝐹𝐹 =  ∑ (ɸ̂𝑗𝑗ɸ̂𝑗𝑗
∗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (Re2ɸ̂𝑗𝑗 + Im2ɸ̂𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (11) 

 

[
 
 
 
 
 
 
 −1 0 0 0

1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1 ]

 
 
 
 
 
 
 

[
𝑅𝑅
𝜀𝜀

𝑚𝑚𝑣𝑣𝑚𝑚
𝑚𝑚𝑣𝑣𝑚𝑚

] < radius of the

[
 
 
 
 
 
 
 −0.5𝑅𝑅𝜞𝜞

0.8𝑅𝑅𝜞𝜞
−0.001

1
−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞

−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞 ]

 
 
 
 
 
 
 

 (12) 

 𝑚𝑚 = 𝑔𝑔 cos(𝜃𝜃); 𝑚𝑚 = 𝑔𝑔 sin(𝜃𝜃), (13) 
 𝑔𝑔 = 𝜀𝜀 𝜆𝜆 (𝑎𝑎𝑣𝑣 sin(𝑎𝑎𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑣𝑣 sin(𝑏𝑏𝑠𝑠𝜃𝜃)) + 𝜆𝜆 𝑎𝑎𝑟𝑟 (14) 
 𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 1;  𝜀𝜀 = 0. (15) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.8;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0. (16) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 value representing the 

calculated complex signal for the current 
iterative step, 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)

𝜕𝜕𝑛𝑛𝑝𝑝
 (5) 

 𝑝𝑝(p) = i𝜔𝜔𝜔𝜔𝜑𝜑(p) [1s
kg
m3

m2

s = kg
ms2 = N

m2 = Pa]. (6) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕𝛤𝛤

𝜑𝜑(𝑟𝑟′)𝑑𝑑𝑑𝑑 = 

= ∫ 𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|) 𝜕𝜕𝜑𝜑(𝑟𝑟′)
𝜕𝜕𝜕𝜕𝛤𝛤

𝑑𝑑𝑑𝑑 + 𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟), 𝑟𝑟 ∈ 𝑑𝑑 

(7) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∑𝜑𝜑𝑗𝑗(𝑟𝑟′)
𝑀𝑀

𝑗𝑗=1
 

∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕

+1

−1
𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉 =  𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟) 

(8) 

as: 𝐽𝐽(𝜉𝜉) = 𝑑𝑑𝛤𝛤
𝑑𝑑𝑑𝑑 = √(𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2
+ (𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2

= 𝐿𝐿
2,  

𝑖𝑖 = √−1. 

Φ̂ = ∑ Φ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗) =

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 

∑ Re(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
  

(9) 

 Φ̂  =  ∑ ɸ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ Re ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (10) 

𝐹𝐹 =  ∑ (ɸ̂𝑗𝑗ɸ̂𝑗𝑗
∗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (Re2ɸ̂𝑗𝑗 + Im2ɸ̂𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (11) 

 

[
 
 
 
 
 
 
 −1 0 0 0

1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1 ]

 
 
 
 
 
 
 

[
𝑅𝑅
𝜀𝜀

𝑚𝑚𝑣𝑣𝑚𝑚
𝑚𝑚𝑣𝑣𝑚𝑚

] < radius of the

[
 
 
 
 
 
 
 −0.5𝑅𝑅𝜞𝜞

0.8𝑅𝑅𝜞𝜞
−0.001

1
−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞

−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞 ]

 
 
 
 
 
 
 

 (12) 

 𝑚𝑚 = 𝑔𝑔 cos(𝜃𝜃); 𝑚𝑚 = 𝑔𝑔 sin(𝜃𝜃), (13) 
 𝑔𝑔 = 𝜀𝜀 𝜆𝜆 (𝑎𝑎𝑣𝑣 sin(𝑎𝑎𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑣𝑣 sin(𝑏𝑏𝑠𝑠𝜃𝜃)) + 𝜆𝜆 𝑎𝑎𝑟𝑟 (14) 
 𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 1;  𝜀𝜀 = 0. (15) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.8;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0. (16) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 – measured velocity po-
tential for the j – th sensor on the Γ circle.

Now Equation 11 could be shown in the fol-
lowing compact form:

 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)

𝜕𝜕𝑛𝑛𝑝𝑝
 (5) 

 𝑝𝑝(p) = i𝜔𝜔𝜔𝜔𝜑𝜑(p) [1s
kg
m3

m2

s = kg
ms2 = N

m2 = Pa]. (6) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕𝛤𝛤

𝜑𝜑(𝑟𝑟′)𝑑𝑑𝑑𝑑 = 

= ∫ 𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|) 𝜕𝜕𝜑𝜑(𝑟𝑟′)
𝜕𝜕𝜕𝜕𝛤𝛤

𝑑𝑑𝑑𝑑 + 𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟), 𝑟𝑟 ∈ 𝑑𝑑 

(7) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∑𝜑𝜑𝑗𝑗(𝑟𝑟′)
𝑀𝑀

𝑗𝑗=1
 

∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕

+1

−1
𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉 =  𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟) 

(8) 

as: 𝐽𝐽(𝜉𝜉) = 𝑑𝑑𝛤𝛤
𝑑𝑑𝑑𝑑 = √(𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2
+ (𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2

= 𝐿𝐿
2,  

𝑖𝑖 = √−1. 

Φ̂ = ∑ Φ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗) =

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 

∑ Re(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
  

(9) 

 Φ̂  =  ∑ ɸ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ Re ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (10) 

𝐹𝐹 =  ∑ (ɸ̂𝑗𝑗ɸ̂𝑗𝑗
∗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (Re2ɸ̂𝑗𝑗 + Im2ɸ̂𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (11) 

 

[
 
 
 
 
 
 
 −1 0 0 0

1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1 ]

 
 
 
 
 
 
 

[
𝑅𝑅
𝜀𝜀

𝑚𝑚𝑣𝑣𝑚𝑚
𝑚𝑚𝑣𝑣𝑚𝑚

] < radius of the

[
 
 
 
 
 
 
 −0.5𝑅𝑅𝜞𝜞

0.8𝑅𝑅𝜞𝜞
−0.001

1
−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞

−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞 ]

 
 
 
 
 
 
 

 (12) 

 𝑚𝑚 = 𝑔𝑔 cos(𝜃𝜃); 𝑚𝑚 = 𝑔𝑔 sin(𝜃𝜃), (13) 
 𝑔𝑔 = 𝜀𝜀 𝜆𝜆 (𝑎𝑎𝑣𝑣 sin(𝑎𝑎𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑣𝑣 sin(𝑏𝑏𝑠𝑠𝜃𝜃)) + 𝜆𝜆 𝑎𝑎𝑟𝑟 (14) 
 𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 1;  𝜀𝜀 = 0. (15) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.8;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0. (16) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 (11)

To minimize the objective function, it must be 
the real number, so must be defined by the follow-
ing Equation 12:

 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)

𝜕𝜕𝑛𝑛𝑝𝑝
 (5) 

 𝑝𝑝(p) = i𝜔𝜔𝜔𝜔𝜑𝜑(p) [1s
kg
m3

m2

s = kg
ms2 = N

m2 = Pa]. (6) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕𝛤𝛤

𝜑𝜑(𝑟𝑟′)𝑑𝑑𝑑𝑑 = 

= ∫ 𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|) 𝜕𝜕𝜑𝜑(𝑟𝑟′)
𝜕𝜕𝜕𝜕𝛤𝛤

𝑑𝑑𝑑𝑑 + 𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟), 𝑟𝑟 ∈ 𝑑𝑑 

(7) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∑𝜑𝜑𝑗𝑗(𝑟𝑟′)
𝑀𝑀

𝑗𝑗=1
 

∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕

+1

−1
𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉 =  𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟) 

(8) 

as: 𝐽𝐽(𝜉𝜉) = 𝑑𝑑𝛤𝛤
𝑑𝑑𝑑𝑑 = √(𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2
+ (𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2

= 𝐿𝐿
2,  

𝑖𝑖 = √−1. 

Φ̂ = ∑ Φ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗) =

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 

∑ Re(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
  

(9) 

 Φ̂  =  ∑ ɸ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ Re ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (10) 

𝐹𝐹 =  ∑ (ɸ̂𝑗𝑗ɸ̂𝑗𝑗
∗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (Re2ɸ̂𝑗𝑗 + Im2ɸ̂𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (11) 

 

[
 
 
 
 
 
 
 −1 0 0 0

1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1 ]

 
 
 
 
 
 
 

[
𝑅𝑅
𝜀𝜀

𝑚𝑚𝑣𝑣𝑚𝑚
𝑚𝑚𝑣𝑣𝑚𝑚

] < radius of the

[
 
 
 
 
 
 
 −0.5𝑅𝑅𝜞𝜞

0.8𝑅𝑅𝜞𝜞
−0.001

1
−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞

−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞 ]

 
 
 
 
 
 
 

 (12) 

 𝑚𝑚 = 𝑔𝑔 cos(𝜃𝜃); 𝑚𝑚 = 𝑔𝑔 sin(𝜃𝜃), (13) 
 𝑔𝑔 = 𝜀𝜀 𝜆𝜆 (𝑎𝑎𝑣𝑣 sin(𝑎𝑎𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑣𝑣 sin(𝑏𝑏𝑠𝑠𝜃𝜃)) + 𝜆𝜆 𝑎𝑎𝑟𝑟 (14) 
 𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 1;  𝜀𝜀 = 0. (15) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.8;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0. (16) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 (12)

where: 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)

𝜕𝜕𝑛𝑛𝑝𝑝
 (5) 

 𝑝𝑝(p) = i𝜔𝜔𝜔𝜔𝜑𝜑(p) [1s
kg
m3

m2

s = kg
ms2 = N

m2 = Pa]. (6) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕𝛤𝛤

𝜑𝜑(𝑟𝑟′)𝑑𝑑𝑑𝑑 = 

= ∫ 𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|) 𝜕𝜕𝜑𝜑(𝑟𝑟′)
𝜕𝜕𝜕𝜕𝛤𝛤

𝑑𝑑𝑑𝑑 + 𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟), 𝑟𝑟 ∈ 𝑑𝑑 

(7) 

𝑐𝑐(𝑟𝑟)𝜑𝜑(𝑟𝑟) + ∑𝜑𝜑𝑗𝑗(𝑟𝑟′)
𝑀𝑀

𝑗𝑗=1
 

∫ 𝜕𝜕𝜕𝜕(|𝑟𝑟 − 𝑟𝑟′|)
𝜕𝜕𝜕𝜕

+1

−1
𝐽𝐽(𝜉𝜉)𝑑𝑑𝜉𝜉 =  𝜑𝜑𝑖𝑖𝑛𝑛𝑐𝑐(𝑟𝑟) 

(8) 

as: 𝐽𝐽(𝜉𝜉) = 𝑑𝑑𝛤𝛤
𝑑𝑑𝑑𝑑 = √(𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2
+ (𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑 )
2

= 𝐿𝐿
2,  

𝑖𝑖 = √−1. 

Φ̂ = ∑ Φ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗) =

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 

∑ Re(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im(𝑓𝑓𝑗𝑗 − 𝑣𝑣0𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
  

(9) 

 Φ̂  =  ∑ ɸ̂𝑗𝑗
𝑗𝑗=𝑝𝑝

𝑗𝑗=1
=  ∑ Re ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 + 𝑗𝑗 ∑ Im ɸ̂𝑗𝑗

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (10) 

𝐹𝐹 =  ∑ (ɸ̂𝑗𝑗ɸ̂𝑗𝑗
∗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
= ∑ (Re2ɸ̂𝑗𝑗 + Im2ɸ̂𝑗𝑗)

𝑗𝑗=𝑝𝑝

𝑗𝑗=1
 (11) 

 

[
 
 
 
 
 
 
 −1 0 0 0

1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1 ]

 
 
 
 
 
 
 

[
𝑅𝑅
𝜀𝜀

𝑚𝑚𝑣𝑣𝑚𝑚
𝑚𝑚𝑣𝑣𝑚𝑚

] < radius of the

[
 
 
 
 
 
 
 −0.5𝑅𝑅𝜞𝜞

0.8𝑅𝑅𝜞𝜞
−0.001

1
−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞

−0.01𝑅𝑅𝜞𝜞
0.6𝑅𝑅𝜞𝜞 ]

 
 
 
 
 
 
 

 (12) 

 𝑚𝑚 = 𝑔𝑔 cos(𝜃𝜃); 𝑚𝑚 = 𝑔𝑔 sin(𝜃𝜃), (13) 
 𝑔𝑔 = 𝜀𝜀 𝜆𝜆 (𝑎𝑎𝑣𝑣 sin(𝑎𝑎𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑣𝑣 sin(𝑏𝑏𝑠𝑠𝜃𝜃)) + 𝜆𝜆 𝑎𝑎𝑟𝑟 (14) 
 𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 1;  𝜀𝜀 = 0. (15) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.8;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0. (16) 
 𝑎𝑎𝑣𝑣 = 0.5; 𝑏𝑏𝑣𝑣 = 0.5; 𝑎𝑎𝑠𝑠 = 6; 𝑏𝑏𝑠𝑠 = 7;  𝜆𝜆 = 1; 𝑎𝑎𝑟𝑟 = 0;  𝜀𝜀 = 0.4 (17) 
 

 means complex conjugate to auxiliary 
function 

 𝛻𝛻2𝜓𝜓(p, 𝑡𝑡) = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2 𝜓𝜓(p, 𝑡𝑡) (1) 
 𝜓𝜓(p, 𝑡𝑡) = Re{𝜑𝜑(p)e−iωt} (2) 
 
 𝛻𝛻2𝜑𝜑(p) + 𝑘𝑘2𝜑𝜑(p) = 𝑄𝑄 (3) 
 v(p, 𝑡𝑡) =  Re{𝛻𝛻𝜑𝜑(p)𝑒𝑒−iωt}. (4) 
 v𝑛𝑛(p) = 𝛻𝛻𝜑𝜑(p) ∙ n𝑝𝑝 = 𝜕𝜕𝜕𝜕(p)

𝜕𝜕𝑛𝑛𝑝𝑝
 (5) 
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From the physical point of view the objective 
function F is a distance in the complex plane be-
tween the measured and calculated signal. Mini-
mization of a distance means that both signals be-
come the same one or almost the same when the 
measured signal is polluted by the noise.
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 (13)

where: R – radius of the perturbated circle of the 
scatterer, 

 
RΓ – radius of the circle with 

the sensors, which is the constant value, 
ε– optimization variable responsible for 
the amplitude corrugation, mvx– x com-
ponent of the position vector of the region 
to be imaged and  – y component of the 
position vector.

The crucial point of any Inverse Problems 
solved by the Optimization Approach is the 
Sensitivity Analysis, which is particularly dif-
ficult for BEM [28]. So, to avoid the Sensitiv-
ity Analysis, which is complicated and time-
consuming for BEM, the fmincon function 
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was selected from the MATLAB library. This 
function calculates the gradient of the objective 
function numerically, so it is very convenient 
because the user does not need to deal with the 
Sensitivity Analysis at all. This function can ef-
fectively find the minimum of the constrained 
nonlinear multivariable objective function.

NUMERICAL EXAMPLES

Numerical examples have been presented to 
demonstrate the effectiveness of this approach 
and the dependence of the results on various pa-
rameters. The measurement data was taken at the 
boundary gamma in points where the acoustic 
sensors were placed (see Fig. 3). In this example, 
only eight sensors were located. 

A nonconvex scatterer was considered a cor-
rugated circle (see Fig. 3). A quite simple para-
metric Equation could describe the boundary of 
such a scatterer [27, 35]:

 x = g cos(θ); y = g sin(θ) (14)

where: the function g could be defined in a fol-
lowing way:

 g = ε λ (av sin(asθ) + bv sin(bsθ)) + λ ar (15)

where: λ, ε, av, as, bv, bs and ar are the coefficients 
responsible for the shape of the scatterer.

Different coefficients of function g corre-
spond to various shapes of scatterers [27, 35]: 
 • for the circle:

 λ = 1; ar = 1; ε = 0 (16)

 • for a kite:

 av = 0.5; bv = 0.8; λ = 1; ar = 0; ε = 0 (17)

 • for a corrugated circle/cylinder:

 av = 0.5; bv = 0.5; as = 6;  
 bs = 7; λ = 1; ar = 0; ε = 0.4 (18)

The focus of this paper is on the corrugated 
circle. Using the parametric Equation 15, differ-
ent shapes of the obstacle can be generated. Such 
parametric description might be particularly use-
ful in the scattering exterior (see Fig. 1) inverse 
problems solved by BEM [26–28].

NUMERICAL EXPERIMENTS RESULTS

Four numerical experiments were carried out 
using MATLAB software to prove the efficiency 
of the proposed approach to the inverse scatter-
ing acoustic problem for the near field data. The 
first was conducted for the measurement height 
h = 0.15 λ, the amplitude of perturbation ε = 
0.02, and noise level δ = 10%. In this case, the 
influence of the number of sensors on the opti-
mization results was studied. Figure 4 shows the 
“measured” boundary function (solid line) and the 

Figure 3. Circular corrugated scatterer illuminated by plane wave with eight sensors fixed in the boundary Γ
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reconstructed boundary function (dashed line) for 
n = 8, n = 16 and n =32, respectively. It is worth 
mentioning that the circle marked by the yellow 
color (without the perturbation) is the starting po-
sition for optimization. The dashed line indicates 
the optimization results, whereas the solid line 
means the real position and shape. This is obliga-
tory for all subsequent figures. All numerical ex-
periments for different parameters have been start-
ed from the same position. The delicate features 
of the obstacle are well reconstructed. However, 
the accuracy will not be significantly higher if the 
number of sensors increases, as shown in Figure 4.

For the next experiment, with fixed param-
eters height h = 0.15 λ and noise level δ = 10% 
the effects of the perturbation parameter ε were 
analyzed. Figure 5 shows the “measured” (solid 
line) and the reconstructed boundary function 
(dashed line) for ε = 0.02, 0.03 and 0.04, respec-
tively. Figure 5 shows the results even for rela-
tively high 10% noise added to the measurements 

for different amplitude of perturbations parameter 
ε are stable and precise.

In the third experiment, the effects of the 
noise level δ were investigated, maintaining con-
stant parameters ε = 0.04 and h = 0.15 λ. Figure 6 
shows the “measured” (solid line) and the recon-
structed (dashed line) boundary function for δ 
= 1%, 10% and 20%, respectively. As expected, 
the reconstruction deteriorates as δ increases. As 
evident in Figure 6, the influence of the noise 
level is significant, which was expected; how-
ever, even at a 20% noise level, some helpful 
information can still be obtained.

The latest experiment analyzed the effect of the 
measurement distance h for ε = 0.04, δ = 5%. Fig-
ure 7 shows the exact (solid) and the reconstructed 
(dashed) boundary line for h = 0.2 λ, 0.1 λ, and 0.05 
λ, respectively. Clearly, as distance h decreases, the 
precision of reconstruction increases. But increas-
ing is not impressive. The most important thing is 
that the distant h must belong to the near-field data.

Figure 4. Effect of sensors number: “measured” shape (solid line) and reconstructed surface function (dashed 
line) for ε = 0.02, h = 0.15 λ, δ = 10% and a) n = 8, b) n = 16, c) n = 32 sensors

Figure 5. Exact (solid line) and reconstructed (dashed line) surface function for h = 0.15 λ. Δ = 10%, and n = 16: 
a) ε = 0.02, b) ε = 0.03, c) ε = 0.04
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CONCLUSIONS

The Inverse acoustic scattering problem in 
2D space for the near field data was presented in 
this paper. The classical BEM was used for the 
solution, and The Objective function, Bound-
ary conditions, and inequality constraints were 
defined. Analyzing the acoustic problems is 
not easy for the classical BEM, but keeping the 
number of boundary elements per wavelength 
much more above the lower limit equal to 10, 
the error was kept low. 

The main goal of this paper was to investi-
gate if such an approach is suitable for imagining 
acoustic problems. Using BEM, we could con-
centrate only on the boundary. The boundary was 
parametrized to reduce the number of optimiza-
tion parameters, allowing the achievement of ar-
bitrary shapes. The results of controlling different 
parameters are shown in the figures. On this basis, 
it could be stated that the proposed approach pro-
duces reliable results when using near-field data 

as well as very robust concerning the noise. An-
other important conclusion, from a practical point 
of view, is that the number of sensors does not 
have to be exceedingly high.

The presented method demonstrates a robust 
and reliable approach for solving inverse acoustic 
scattering problems using near-field data. It also 
highlights its practical applicability in various 
engineering fields by maintaining low error rates 
with an optimal number of sensors and handling 
noise effectively.
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