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INTRODUCTION

Climate change, ongoing urbanization, and 
reduced pipe throughput contribute to the dete-
rioration of receiving waters, resulting in an in-
creased frequency and volume of stormwater 

flooding events in urban catchments [1, 2, 3]. To 
mitigate these impacts on the environment and 
living standards, decision-makers need to mod-
ernize stormwater networks through the imple-
mentation of green infrastructure or pipe reten-
tion systems [4, 5]. Ensuring optimal solutions, 
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including hydraulic effects, requires adherence to 
stormwater network operation standards defined 
by the European Standard EN 752 [6]. This stan-
dard determines the total number of stormwater 
flooding events within the assumed period [7, 8, 
9]. Additionally, quantitative criteria, expressing 
the depth of stormwater [10], i.e. determining 
the unit flooding volume per paved area of catch-
ment (referred to as specific flood volume) and 
specifying the degree of overflowed manholes in 
the stormwater network (referred to as degree of 
flooding) were introduced [11]. 

Depending on the available criteria, model-
ing can be performed using different computa-
tional tools [12, 13, 14, 15]. Mechanistic mod-
els (MCM) are usually applied for this purpose, 
enabling the modeling of hydraulic conditions in 
a stormwater network, as well as the depth and 
area of flooding [16, 17]. This usually requires 
integrating the hydraulic model with the digital 
terrain model (DTM) [18, 19]. If data are unavail-
able, simplified solutions can be used, modeling 
the volume of stormwater flooding for individ-
ual manholes. One of the most commonly used 
simplified approaches is SWMM (Storm Water 
Management Model) [18, 20]. The prediction of 
flooding is a complex issue resulting from the in-
teraction of land use, surface runoff, channel flow, 
and hydraulic characteristics of manholes [21, 22, 
23]. To account for the above factors, a number 
of coefficients are included in the mechanistic 
models, which require calibration [24, 25]. This 
leads to over-parameterization of MCM models, 
resulting in problems with the identification of 
calibrated parameters [26, 27]. The strong inter-
action between parameters, the limited number of 
inputs to developed MCM models, the simplified 
de-parameterization of land use, as well as the 
layout of the sewer network lead to problems with 
model calibration and influence the uncertainty of 
predictions [25, 28].

Sensitivity analysis constitutes an approach to 
reduce the number of calibrated parameters [29, 
30, 31], especially integrated with uncertainty 
analysis. This approach is often used during the 
implementation of optimization methods for the 
parameter identification. A literature review [32, 
33] indicates that sensitivity analysis is also car-
ried out by global and local methods, which do 
not take into account any influence of local rain-
fall conditions and the variability of identified pa-
rameters on the simulation results.

MCM models enable prediction of continuous 
values (flood volume, number of flooded manholes), 
but prevent prediction of the need to undertake repair 
action [25]. This limitation can result in problems 
with planning field studies during the development 
step of MCM models to be used for catchment man-
agement. Currently, there is a lack of guidelines for 
selecting rainfall events for the calibration and vali-
dation set [27], which has a major impact on the fit-
ting of predictions to measurements and the reliabil-
ity of the resulting predictions as a basis for making 
decisions on corrective actions [34].

This study presents the possibility of imple-
menting the given computational methodology 
with respect to proposed parameters, such as spe-
cific flood volume and the degree of flooding, as 
the operating criteria for stormwater networks. 
A logistic regression model already applied for 
simulating stormwater network operation was 
used for this purpose [35]; however, its use in 
the applied approach constitutes a novel applica-
tion. Moreover, in terms of specific flood volume 
and degree of flooding, an innovative analysis 
has been proposed that involves the development 
of a sensitivity coefficient of the hydrodynamic 
model. This enables the effect of (i) the influence 
of rainfall intensity, (ii) the frequency of its oc-
currence, and (iii) the parameters to be identified. 
So far, this aspect has not been considered in the 
proposed catchment model and calibration proce-
dures to determine operational parameters. 

STUDY AREA

The investigated urban catchment is located 
in the city of Kielce, Poland (Eastern Europe). 
Kielce is found in the Świętokrzyskie Region 
with an average population density of about 107 
persons·km−2 [25]. The studied catchment is po-
sitioned in the southeastern part of the city and 
is occupied with housing estates, public utility 
buildings, and the main streets. The impervious 
areas in the catchment constitute 40%, whereas 
the remaining part is pervious. It was determined 
that the retention of the impervious areas amounts 
to 2.5 mm, whereas that of pervious areas is equal 
to 6.0 mm [9].  The road network density in the 
analyzed area amounts to 108 m·ha−1. The el-
evation of the highest point of the catchment is 
271.20 m a.s.l., whereas that of the lowest one 
is 260.0 m a.s.l. In the considered catchment, the 
total length of the stormwater network amounts 
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to 5584 m, including the main pipe, which has a 
length of 1569 m. The diameter of the main pipe 
ranges from 600 to 1250 mm, whereas the diame-
ters of the side pipes range from 300 to 1000 mm. 
The slopes of the pipes are within the range of 
0.04 to 3.90% [25]. 

The catchment area under study is depict-
ed in Figure 1. The map shows the catchment 
boundaries, as well as the main sewer and side 
channels. The stormwater from the catchment 
flows into a diversion chamber (DC); up to a 
depth of 0.42 m, the entire volume of stormwa-
ter is directed to a stormwater treatment plant 
(STP). The treated stormwater is discharged to 
the Silnica River. If, due to intense rainfall, the 
level of stormwater in the DC exceeds 0.42 m, 
it is discharged through an overflow structure 
(OV) into the Silnica River. A MES-1 flow meter 
was installed ca. 3 m from the diversion cham-
ber inlet to measure and record the flow every 
minute during intense rainfall events. Location 
of devices is shown in Figure 1.

Based on data spanning 2010–2020, it was 
observed that MES-1 flow meter recorded flows 
ranging from 1 to 9 dm3·s−1 during dry periods, 
suggesting infiltration. The flow meter’s probe 
gauges water level (via water level pressure mea-
surement) and average flow rate of stormwater 
(utilizing the Doppler effect). These measure-
ments, combined with the specific shape and 

dimensions of the canal, enable the built-in mi-
croprocessor to calculate the volumetric flow rate 
of stormwater. A rainfall station, conducting con-
tinuous rainfall measurements since 2008 at a 1 
– minute resolution, is located 2.5 km away from 
the catchment border.

RESEARCH METHODOLOGY

In this section the innovative and multicriteria 
methodology is presented, mainly based on the 
operational evaluation of stormwater networks 
(Figure 2). It considers two criteria, including:
 • specific flood volume, determining the unit 

flooding volume per 1 ha of the catchment:

  𝜆𝜆1 =
∑ 𝑉𝑉𝑡𝑡 (𝑖𝑖)𝐾𝐾
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 (1)

where: Vt is the volume of stormwater flooding 
from the i-th manhole, K is the number of 
manholes in the stormwater network, and 
Aimp is the impervious area,

 • degree of flooding, i.e. the degree of over-
flowed manholes in the stormwater network:
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where: ΣNK,f – the number of overflowed man-
holes in the stormwater network.

Figure 1. Investigated catchment in Kielce, Poland. MES-1 – flow meter, OV – overflow structure, 
DC – diversion chamber, STP – stormwater treatment plant
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According to Siekmann and Pinnekamp [11], a 
stormwater network requires urgent modernization 
for the values of λ1 > 13 m3·ha−1 and values of λ2 > 
0.32. The maximum values of λ1 and λ2 presented 
above constituted the basis for developing the logis-
tic regression models. Such parameters are the most 
important in decision making regarding the repair 
action of existing systems. The proposed compu-
tation algorithm consists of 6 modules (Figure 2). 
The development of algorithm includes four steps:
 • Modules 1, 2 – collecting the data and devel-

oping of mechanistic model, 
 • Module 3 – uncertainty analysis with GLUE 

method,
 • Modules 4, 5 – development of a logistic re-

gression model to assess the relationship be-
tween specific flood volume and degree of 
flooding with sensitivity analysis,

 • Module 6 – analysis of the dependence of the 
duration of rainfall that results in exceeding 
the thresholds of specific flood volume and 
degree of flooding.

Separation of independent rainfall events 
(DWA-A118) 

In the analysis the independent rainfall events 
(with uniformed distribution) for modeling of 
stormwater network operation were separated, 
based on continuous rainfall time series (2010–
2019). On the basis of the performed analysis of 
the rainfall data, it was observed that the num-
ber of rainfall events in any year ranged from 12 
to 30 (202 rainfall events), in which the rainfall 
depths were in the range of Pt = 5.2–80.2 mm, the 
maximum 30 – minute rainfall depths in a rainfall 
event in any year were equal to Pt=30 = 2.5–41.2 
mm, the rainfall durations were tr = 15–150 min 
and the dry period was trd = 6–336 h. Since the 
uncertainty of the SWMM parameters is included 
in the calculations, the selection of rainfall events 
for modeling of operation of the stormwater net-
work is not a simple task. The detailed methodol-
ogy is discussed by Szeląg et al. [25].

Rainfall frequency was established by con-
sidering rainfall characteristics such as depth and 
duration, utilizing the regional model for Poland 
introduced by Bogdanowicz and Stachy [36].

Mechanistic model of the catchment (SWMM)

Modeling of the investigated catchment was 
performed using a calibrated mechanistic model 

developed in SWMM. The analyses were based on 
a mechanistic model with an area of 62 ha, com-
prising 92 subcatchments with areas ranging from 
0.12 ha to 2.10 ha (as shown in Figure 1), whereas 
the imperviousness equaled 5–90%. The consid-
ered model consists of 72 pipes and 82 manholes. 
During calibration, it was determined that the re-
tention depth of the impervious areas Dimp = 2.50 
mm, pervious areas Dper = 6.0 mm, Manning rough-
ness coefficients of impervious and pervious areas 
were nimp = 0.025 m−1/3·s and nper

 = 0.10 m−1/3·s. The 
width of the run-off path was determined based on 
the dependence W = ω·A0.50, where ω = 1.35. The 
considered catchment model constituted the basis 
for the analyses related to the quantity and quality 
of stormwater, tank dimensioning, and operation 
of the stormwater overflow structure [9, 25].

In the applied approach, the stormwater oper-
ational parameters (specific flood volume, degree 
of flooding) were predicted using the “Flooding” 

Figure 2. Calculation algorithm of the methodology 
for analyzing the operation of a stormwater network 
in the context of the specific flood volume and the 

degree of flooding
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option for a single junction, which enables a re-
duction in the quantity of measurement data re-
quired [9].

Uncertainty analysis (GLUE) methodology

In this paper, the generalized likelihood un-
certainty estimation (GLUE) method was used 
for uncertainty analysis. The theoretical basis of 
the method is discussed in detail in the studies 
by Beven and Binley [37] and Romanowicz and 
Beven [38]. In the GLUE method, the basis for 
the identification of parameter distributions was 
Bayesian estimation, in which for the assumed a 
priori parameter distributions the so called a pos-
teriori distributions were determined by the like-
lihood function. The following parameters (uni-
form distribution) were included in the SWMM 
model: coefficient for flow path width (α), reten-
tion depth of impervious areas (Dimp), retention 
depth of pervious areas (Dper), Manning’s rough-
ness coefficient for impervious areas (nimp), Man-
ning’s roughness coefficient for pervious areas 
(nper), Manning’s roughness coefficient of sewer 
channels (nsew), correction coefficient for sub-
catchments slope (γ) and correction coefficient 
for percentage of impervious areas (β). Details on 
the parameters used are provided by Kiczko et al. 
[39] and Szeląg et al. [40].

Measures of goodness of fit of the results and 
a posteriori distributions were calculated based 
on simulations performed for the observed hyeto-
grams and hydrograms. For both events utilized 
in parameter identification (15 September 2010 
– Pt = 9.2 mm, tr = 286 min, and 8 July 2011 – Pt 
= 8.2 mm, tr = 60 min), 96% of observed points 
were encompassed by the confidence bands. In 
the validation sets 89% of observed points fell 
within the bands for the May 30, 2010 event (Pt = 
12.5 mm, tr = 107 min), and 60% for the July 30, 
2010 event (Pt = 16.5 mm, tr = 270 min).

Continuous simulation of stormwater systems

Based on the separated (M = 200) rainfall 
events for the catchment area, the operation of 
the stormwater drainage network was simulated 
by determining the volume of flooding for each 
i-th manhole and the number of overflowed man-
holes. There were 5000 simulations of SWMM 
parameters combinations – a priori distribution 
(Section: Uncertainty analysis (GLUE) method-
ology) of independent rainfall events, for which 

λ1 and λ2 were determined. The data obtained was 
used to develop a logit model, with 80% of the 
data used for training, 10% for testing, and the 
other 10% for validation. To simulate the storm-
water network operation, regarding the logistic 
regression models, rainfall events for which the 
rainfall depth Pt > 5.0 mm were selected. It re-
sulted in the rainfall duration in the range 10–135 
minutes.

Logistic regression model to predict   
the probability of the operation criteria

The logit model describes the following gen-
eral dependence:

 𝜆𝜆1 = ∑ 𝑉𝑉𝑡𝑡(𝑖𝑖)
𝐾𝐾
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where: p – probability of exceeding the maximum 
value of the specific flood volume (λ1) and 
the degree of flooding (λ2); α0 – absolute 
term; α1, α2, α3, αi – values of coefficients 
estimated with the maximum likelihood 
method, X – vector describing the linear 
combination of the independent variables; 
xi – independent variables describing rain-
fall characteristics, e.g., rainfall depth, its 
duration, and the parameters calibrated in 
the SWMM. Identification of independent 
variables was performed using a stepwise 
algorithm that also eliminates correlated 
independent variables [41].

In the performed analyses, identification of the 
data obtained from the SWMM simulation to the 
binary form was based on the following criteria:
a) when λ1 ≥ 13 m3·ha−1, then 1, in the remaining 

cases 0,
b) when λ2 ≥ 0.32, then 1, in the remaining cases 0.

Following literature findings [11], values λ1 ≥ 
13 m3·ha−1 and λ2 ≥ 0.32 correspond to p ≥ 0.5. 
Specificity (SPEC), sensitivity (SENS) and accu-
racy (ACC) were used to assess the goodness of 
fit between predictions and measurements.

Sensitivity analysis

In the performed investigations, the analysis 
of model sensitivity was carried out using local 
sensitivity analysis [24, 42, 43]. In the proposed 
solution the sensitivity coefficient was defined, 
described by the following Equation:
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where: xi – values of independent variables, λ 
– values of λ1 and λ2 parameters which 
constitute the basis for assessing the op-
eration of the stormwater network, p(xi,g + 
Δxi) – probability of exceeding λ1(λ2) for 
the value (xi,g + Δxi), p(xi,g, λ) – probability 
of exceeding the value λ1(λ2) for the set of 
independent variables involving rainfall 
characteristics and calibrated SWMM pa-
rameters. The individual steps for calcu-
lating the sensitivity coefficients accord-
ing to Equation 4 are given in Szeląg et 
al. [40]. On the basis of Equation 4, sensi-
tivity coefficients were calculated for the 
calibrated SWMM parameters using the 
models to predict the probability of spe-
cific flood volume and degree of flooding 
in the stormwater network. These calcula-
tions were done for tr = 15–135 min and 
C = 3, 5 assuming the SWMM parameters 
were determined from calibration [39].

Relationship between the specific flood 
volume and degree of flooding

Based on literature review [9, 11], it can be 
concluded that the probability of a specific flood 
volume (λ1) and a degree of flooding (λ2) depends 
on the rainfall data (rainfall depth and duration) 
and the parameters calibrated, used in SWMM 
(Dimp, Dper, nimp, nper, nsew, α, β, γ, etc.). It was as-
sumed, following Siekmann and Pinnekamp [11], 
that when the value of λ1 = 13 m3·ha−1 or λ2 = 0.32, 
then the stormwater network requires repair ac-
tion and the calculated values of the probability 
of a specific flood volume and the probability of a 
degree of flooding are equal to 0.5. For p = 0.50, 
by appropriately transforming Equation 3, it can 
be written that X = 0 (where X – linear combina-
tion of independent variables included in logis-
tic regression models). For the above assump-
tions, the ratio of rainfall durations for which λ1 
= 13 m3·ha−1 and λ2 = 0.32 can be written with an 
Equation of the form:

where: κ – coefficient in the form of tr2(λ2)·tr1(λ1)
−1, 

which describes the relative difference be-
tween the duration of rainfall for which λ1 
= 13 m3·ha−1 or λ2 = 0.32; α0

1, α1
1, α2

1, α3
1, 

α4
1, α5

1, α6
1, α7

1, α8
1, α9

1, α10
1 – coefficients 

estimated by the method of maximum 
likelihood in the logit model for predict-
ing specific flood volume; α0

2, α1
2, α2

2, α3
2, 

α4
2, α5

2, α6
2, α7

2, α8
2, α9

2, α10
2 – coefficients 

estimated by the method of maximum 
likelihood in the logit model for predict-
ing degree of flooding.

RESULTS AND DISCUSSION

Uncertainty analysis (GLUE)

Calculations of the stormwater network oper-
ation in the considered catchment accounting for 
uncertainty showed that the median values of the 
specific flood volume (λ1) in the range tr = 30–135 
min for return period C = 2, 3 and 5 were 19–24 
m3·ha−1, 36–44 m3·ha−1 and 53–70 m3·ha−1. The 
λ1 values for tr = 30 min and for C values of 2, 3, 
and 5 within the 95% confidence interval varied 
within the ranges 8–42 m3·ha−1, 21–67 m3·ha−1 
and 40–90 m3·ha−1 [9]. The median values of the 
degree of flooding (λ2) for tr = 30–135 min and for 
C values of 2, 3, and 5 were 0.10–0.65, 0.64–0.87 
and 0.87–0.93. The situation is shown in Figure 3.

Determination of the logistic regression 
model to predict the probability of the 
specific flood volume and the degree of 
flooding

The ROC AUC scores obtained for λ1 and λ2 
were 0.987 and 0.996, respectively. The coeffi-
cients (αi) determined in the models (using for-
ward stepwise algorithm), testing probability (ptest), 
standard deviation (S.dev) and measures of fit 
(SENS and SPEC) for the training, testing, and 
validation sets are presented in Table 1. Based 
on the data in Table 1, it can be determined that 
among the independent variables including rain-
fall characteristics and parameters calibrated in 
the SWMM (β, nsew, Dimp, nimp, α), only nper has no 
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statistically significant influence (for the assumed 
significance level of 0.05) on the calculation re-
sults of the probability of specific flood volume 
and probability of degree of flooding. Simultane-
ously, while analyzing the data in Table 1, it was 
noted that the developed logit models were char-
acterized by high prediction. This is confirmed by 
sufficiently high values of SENS > 94%, SPEC > 
93% and Acc > 92% for the training, testing, and 
validation sets, respectively.

Sensitivity analysis

The influence of the return period (assumed 
as C = 3, and 5), rainfall duration (tr = 15–135 
min) and the parameters calibrated in the SWMM 
on the sensitivity of the model for pλ1 and pλ2 
prediction was determined. The sensitivity co-
efficients for the calibrated SWMM parameters 
(α, β, γ, Dimp, Dper, nimp, nsew) with respect to the 
models for the pλ1 and pλ2 calculations are shown 

Figure 3. The rainfall duration (tr) and its frequency (C) effect on sewer performance measures: (a) λ1, (b) λ2 
accounting for the model uncertainty

Table 1. Values of the coefficients in the developed logit model and measures of fit between the results of 
calculations and measurements 

Variables
λ1 ≥ 13 m3·ha−1 λ2 ≥ 0.32

Value S. dev ptest Value S. dev ptest

Intercept -24.150 0.420 < 0.001 -21.222 0.44 < 0.001

C 3.743 0.043 < 0.001 4.33 0.089 < 0.001

tr -0.061 0.001 < 0.001 -0.152 0.003 < 0.001

α 0.860 0.033 < 0.001 0.841 0.056 < 0.001

nimp -247.016 3.960 < 0.001 -225.47 6.591 < 0.001

nper -1.242 1.531 < 0.424 1.023 2.672 < 0.702

Dimp -0.546 0.016 < 0.001 -0.206 0.027 < 0.001

Dper -0.129 0.011 < 0.001 -0.054 0.018 0.003

β 12.241 0.160 < 0.001 16.729 0.338 < 0.001

γ 1.430 0.105 < 0.001 1.458 0.179 < 0.001

nsew 408.920 4.366 < 0.001 568.55 10.568 < 0.001

Train SENS = 96.56%; SPEC = 97.86%
Acc = 95.92%

SENS = 94.48%; SPEC = 99.51%
Acc = 98.76%

Test SENS = 95.15%; SPEC = 93.10%
Acc = 92.15%

SENS = 95.48%; SPEC = 93.51%
Acc = 94.06%

Validation SENS = 95.23%; SPEC = 93.34%
Acc = 94.36%

SENS = 95.30%; SPEC = 91.20%
Acc = 92.12%

Note: variables in bold are statistically significant.

a) b)
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in Figure 4a and 4b. It was demonstrated that for 
tr = 15–135 min and C = 3–5, the correction co-
efficient for the percentage of impervious areas, 
Manning’s roughness coefficient for impervious 
areas and the Manning’s roughness coefficient of 
sewer had a key influence on the specific flood 
volume and the degree of flooding (Figure 4). 
The curves obtained and the range of variation in 
the sensitivity coefficients indicate that the oth-
er parameters of the SWMM model describing 
catchment retention (retention depth of impervi-
ous and pervious areas, width of the runoff path, 

average longitudinal slope of the catchment) are 
less important. It was shown that increasing the 
duration of rainfall for C = 3, and 5 led to an in-
crease in the sensitivity coefficients with respect 
to the calibrated SWMM parameters, and thus the 
models simulating the specific flood volume (λ1) 
and the degree of flooding (λ2). While analyzing 
the course of the obtained curves (Figure 4a and 
4b) for C = 3, and 5, it was found that the maxi-
mum values of the sensitivity coefficients (Sβ, Sα, 
Sγ, Snimp, Sdimp, Snsew) were obtained for tr = 105 
min. For example, for tr = 30 min and C = 5, the 

Figure 4. Influence of the rainfall duration (tr) and return period (C) on the sensitivity coefficient: 
a) S(λ1)xi, b) S(λ2)xi for the values of SWMM parameters (xi: α, β, γ, nimp, Dimp, Dper, nsew)
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sensitivity coefficient Sβ(λ1) = 0.10, while for tr = 
75 min, Sβ(λ1) = 2.24 was obtained. For tr = 30 min 
and C = 5, the sensitivity coefficient Sβ(λ2) = 0.01, 
and for tr = 75 min, Sβ(λ2) = 9.71. It was found 
that increasing the return period (C) and average 
rainfall intensity led to a decrease in the sensitivity 
coefficient Sxi, showing the influence of calibrated 
SWMM parameters on the pλ1 and pλ2 values. For 
C = 3, the influence of rainfall duration for tr = 15–
45 min on the calculation of Sxi with respect to the 
value of pλ1 is shown in Figure 4a. The results of 
the calculations performed for the probability of 
the degree of flooding and C = 3 showed a negli-
gible influence of the rainfall duration on the sen-
sitivity coefficients for tr > 105 min with respect 
to the identified SWMM parameters (Figure 4b). 

Determination of the relation between the 
degree of flooding depending on SWMM 
parameters

Based on Equation 5, the quotients of the 
rainfall duration (C = 5) determining the prob-
ability of the specific flood volume and the de-
gree of flooding equal to pλ1 = pλ2 = 0.50, which is 
equivalent to λ1 = 13 m3·ha−1 and λ2 = 0.32, were 

determined. Calculations were done for the val-
ues β = 0.8–1.0, Dimp = 1.0–4.0 mm, nimp = 0.013–
0.030 m−1/3·s and nsew = 0.013–0.025 m−1/3·s. The 
results of the analyses are presented in Figure 5.

It was found that the values of the degree of 
flooding in the stormwater network (λ2 = 0.32) 
were obtained for longer rainfall durations than 
those conditioning the specific flood volume at λ1 
= 13 m3·ha−1. This was confirmed by the calcu-
lated values of κ = tr2 · tr1

−1 (Figure 5), which are 
greater than one. It was proven that rainfall with a 
higher mean rainfall intensity led to λ1 exceeding 
13 m3·ha−1 rather than λ2 exceeding 0.32 and in-
dicates the need for stormwater network modern-
ization. The κ value is strongly influenced by the 
calibrated SWMM parameters describing reten-
tion catchment (Figure 5 a, b, c, d). It was found 
that increases in β and nsew led to a decrease in the 
κ value (Figure 5a and 5b). This means that the 
relative difference between the rainfall duration 
indicating the need for modernization in the con-
text of λ1 = 13 m3·ha−1 and λ2 = 0.32 decreased. 
An increase in nimp and Dimp led to an increase in κ, 
as indicated by an increase in the rainfall duration 
tr2 relative to tr1 conditioning λ2 = 0.32 and λ1 = 13 
m3·ha−1 (Figure 5c and 5d).

Figure 5. Influence of the identified SWMM parameters. (a) β, (b) nsew, (c) nimp and (d) Dimp on the value of κ 
for C = 5
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Discussion

Extensive sensitivity analysis

Based on the proposed sensitivity coeffi-
cients for the logistic regression model, calcula-
tions of their values with respect to the identi-
fied SWMM parameters were performed. The 
conducted calculations showed that the correc-
tion coefficient for the percentage of impervi-
ous areas (β), Manning’s roughness coefficient 
of sewer channels (nsew) and Manning’s rough-
ness coefficient for impervious areas (nimp) have 
key influences on the specific flood volume and 
degree of flooding. The calculation results ob-
tained in this paper are consistent with those of 
Fu et al. [44], who performed simulations for an 
urban catchment (200 ha) in the UK and showed 
the significant influence of the runoff coefficient 
on the volume flooding from each manhole. This 
was consistent with the calculations of Brown 
et al. [45] that were conducted for a large catch-
ment in southern England. Using the results of 
hydrograph measurements as the basis of the 
GLUE + GSA simulations, they showed that the 
retention depth of impervious areas and Man-
ning’s roughness coefficient of sewer channels 
have a strong influence on the results of catch-
ment runoff calculations. The abovementioned 
calculation results were also consistent with 
those of Thorndahl [46], who, while perform-
ing a continuous simulation of the stormwater 
network operation in the Freylev catchment, 
developed a statistical model using the FORM 
method to calculate stormwater flooding from 
each manhole. The calculation results obtained 
in the present study, compared to the study of 
other authors [45, 47], showed a large influence 
of the rainfall duration and the return period on 
the sensitivity coefficients. The consideration 
of rainfall intensity, which is usually omitted 
at this stage of sensitivity analysis, is of great 
importance from the point of view of selecting 
rainfall-runoff events for the identification of 
SWMM parameters and validation of the hy-
drodynamic catchment model [48]. The results 
obtained indicate that omitting rainfall intensity 
at the sensitivity analysis stage can lead to prob-
lems in determining which SWMM parameters 
can be omitted at the calibration step. This prob-
lem was signaled by Fraga et al. [30], who per-
formed sensitivity calculations for each rainfall 
event using the GSA method, obtaining different 
values of sensitivity coefficients.

The criteria for the functioning of the rainwater 
drainage network analysis

The consideration of two criteria of stormwa-
ter network operation (i.e., specific flood volume 
and degree of flooding) enabled the evaluation of 
the operation of the drainage system in the con-
text of making decisions concerning its modern-
ization, i.e., taking corrective measures including 
sewer channels cleaning or reducing their rough-
ness coefficient. The applied solution allowed the 
assessment of the performance of the stormwater 
system at the spatial scale in the qualitative as-
pect (degree of flooding) and in the quantitative 
aspect (specific flood volume). Current methods 
tend to focus on a local approach in which a hy-
drodynamic model of the catchment is developed 
using landscape and manhole design data, which 
are important for determining the depth and area 
of flooding [16, 49]. These models are complex 
to implement and require data that are not always 
easy to obtain, which can lead to problems with 
their calibration. The solution applied in the pres-
ent study, compared to the currently used meth-
ods [17] in which a criterion for the operation of 
the sewage network is imposed, allows its opti-
mal selection on the basis of κ values considering 
the variability of calibrated SWMM parameters. 

CONCLUSIONS

Currently, the analysis of stormwater network 
operation under hydraulic overload conditions is 
a frequently addressed issue because the simula-
tion tools are the basis for decision making on the 
modernization of the drainage system. For these 
tools to be useful for making such decisions, it is 
necessary to calibrate the models. In the present 
study a multicriteria methodology for simulation 
of specific flood volume and the degree of flood-
ing was provided, using the logistic regression 
method. The developed simulators enable the 
need for repair actions to be indicated and allow 
the determination of the key parameters of the 
SWMM model that need to be identified, which 
is important from the point of view of planning 
field tests prior to its calibration. The approach 
adopted in the study allows reducing the uncer-
tainty of the simulation results and improving the 
reliability of the obtained predictions, which is 
reflected in the achievement of the assumed effect 
of decrease in hydraulic load.
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Based on the sensitivity coefficients deter-
mined, the influence of calibrated SWMM pa-
rameters on the calculations results of the specific 
flood volume and degree of flooding was identi-
fied. The results of the calculations showed that 
the correction coefficients for the percentage of 
impervious areas, impervious area retention and 
Manning’s roughness coefficient of sewer chan-
nels had a key influence on the specific flood vol-
ume, and the degree of flooding. Moreover, given 
that the values of sensitivity coefficients depend-
ed on rainfall intensity, conducting the assess-
ment to appropriately select rainfall-runoff events 
for identifying and validating SWMM parameters 
seems to be advisable. 

Considering the usefulness of the obtained 
calculation results, further analysis is advisable 
to establish the minimum period of continuous 
rainfall measurements for the development of 
logit models, then verify the obtained models 
for the calculation of specific flood volume and 
the degree of flooding for urban catchments with 
other characteristics and determine the range of 
their applicability. It is also advisable to consider 
extending the models with the characteristics of 
other urban catchments (area, catchment imper-
viousness, slope, land use, etc.) and stormwater 
networks (channel retention, diameters including 
slope, length of pipes, etc.) and finally their spa-
tial arrangement.
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