
1

Advances in Science and Technology
Research Journal
Volume 7, No. 20, Dec. 2013, pp. 1–10
DOI: 10.5604/20804075.1073042

Research Article

Received: 2013.09.18
Accepted: 2013.10.14
Published: 2013.12.06

ENHANCE PERFORMANCE OF WEB PROXY CACHE CLUSTER USING
CLOUD COMPUTING

Najat O. Alsaiari1, Ayman G. Fayoumi2

1 Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz
University, Jeddah, Saudi Arabia, e-mail: nalsaiari@kau.edu.sa

2 Department of Information System, Faculty of Computing and Information Technology, King Abdulaziz
University, Jeddah, Saudi Arabia, e-mail: afayoumi@kau.edu.sa

ABSTRACT
Web caching is a crucial technology in Internet because it represents an effective means
for reducing bandwidth demands, improving web server availability and reducing net-
work latencies. However, Web cache cluster, which is a potent solution to enhance web
cache system’s capability, still, has limited capacity and cannot handle tremendous
high workload. Maximizing resource utilization and system capability is a very impor-
tant problem in Web cache cluster. This problem cannot be solved efficiently by merely
using load balancing strategies. Thus, along with the advent of cloud computing, we
can use cloud based proxies to achieve outstanding performance and higher resource
efficiency, compared to traditional Web proxy cache clusters. In this paper, we propose
an architecture for cloud based Web proxy cache cluster (CBWPCC) and test the ef-
fectiveness of the proposed architecture, compared with traditional one in term of
response time ,resource utilization using CloudSim tool.

Keywords: Web proxy cache cluster, resource utilization, load balancing, cloud com-
puting.

INTORDUCTION

Currently, the World Wide Web (WWW) is
considered as the most successful application for
providing simple access to a wide range of infor-
mation and services. As a result, the amount of
traffic over the Internet has experienced tremen-
dous growth and most clients browsing the web
and loading files through the Internet expect that
they should obtain a fast service and one of the
effective solutions of enhancing performance of
the Internet services is using Web proxy cache.
Proxy cache [1] is an important device to guar-
antee the quality of Web services, and it helps to
lower the demand for bandwidth and improves
request turnaround time by storing up the fre-
quently referenced web objects in its local cache.
However, in Web proxy system environments,
load state changes frequently and we cannot pre-
dict the time or height of peak load. To overcome

this issue, more resources added to guarantee sys-
tem has enough capacity in order to handle peak
load and maintain service quality level [7]. But,
adding more resource means lower resource utili-
zation and higher the system cost. Thus, a conflict
occurs in between enhancing service quality and
excelling efficiency of resources in web proxy
cache clusters. In this case, Web proxy cache
system often adopt load balancing strategies for
obtaining a trade-off between those two issues
of the system. However, performance analysis of
various loading balance techniques used in Web
cache proxy systems was well presented in [8].
The analysis indicates that both static and dy-
namic loading balance have a common issue re-
lated to resource provision i.e. whenever the load
is low, it causes wastage of resources, whereas
for being high the service quality deteriorates.
In extreme overloaded situation (worst case), the
Web proxy cache cluster drops services entirely.

Advances in Science and Technology – Research Journal vol. 7 (20) 2013

2

Therefore, the load balancing strategy alone is
unable to solve the conflict between improving
resource utilization and enhancing quality of ser-
vice. This conflict brings about the need to have
a proxy system which is dynamically scalable i.e.
having the capacity to adapting to the load that is
needed (makes use of new nodes when there is an
overloaded and removes nodes when there is light
load). This is where dynamic scalability or cloud
bursting is needed.

Cloud computing [9] is “a new paradigm, a
type of parallel and distributed system, consisting
of a collection of interconnected and virtualized
computers that are dynamically provisioned and
presented as one or more unified computing re-
sources based on service-level agreement”. And
Cloud bursting is a new paradigm that applies
an old concept to cloud computing, it represents
the dynamic part of computing in the cloud. It
describes the procedure in which new nodes are
rented if needed and returned if not needed any-
more. In proxy cache systems, cloud bursting
means that if the system is overloaded for any
reason, the load balancer automatically integrates
new nodes from the cloud. Our work makes the
following contribution:
 • proposing an architecture for a Cloud based

Web Proxy cache cluster system (CBWPCC),
 • extending the capability of the cloud broker

(as a user-level broker) to make the migra-
tion decision based on the application perfor-
mance,

 • evaluating the proposed architecture using
cloudsim toolkit by considering different per-
formance metrics.

RELATED WORKS

Significant number of work has been traced
out so far on exploiting cloud computing for ap-
plications of data-intensive systems and scientific
purposes. Systems for retrieving images based on
contents are comprised of tasks related to high
computations, as algorithms of those problems
are of higher orders of complexities and volume
of data are bigger. Therefore, to put up an image
retrieval system, NIR needs to utilize cloud re-
sources [3].

NIR is a kind of open source cloud which
facilitated content based image retrieving sys-
tems. In BPEL workflow systems, virtual ma-
chines play significant roles. Tim Dorneman [4]

employed it in Elastic Compute Cloud (Eci3 of
Amazon) and hence, it was possible to provide
new hosts in BPEL workflow systems and han-
dle peak load situations there as well. Results
obtained from experiments and assessments on
applications of computationally intensive video
analysis highlighted those solutions as feasible
and competent. Several concerns were concen-
trated on “cloud bursting” compute model as
throughput or response time of applications has
been found improved through elastic allocation
of cloud instances with local resources. Various
job scheduling strategies have been considered by
De Assuncao et al. and according to this concept
computer nodes were integrated both at local site
and the cloud [5].

There may stay possibilities of inclusion of
time constraints with each job and jobs are vet-
ted on submission following one of those job
scheduling strategies. The decision is made by
the system whether it needs the job to be exe-
cuted on the cluster or the job is redirected to the
cloud. Elastic sites (proposed by Marshall et al.)
[6] maintain transparency in extending compu-
tational limitations of local clusters to the cloud.
Computed decisions on EC2 for node (de)alloca-
tion are taken through middle-ware after assess-
ing job queue of local clusters. In contrast, our
proposed system makes calculated decisions on
bursting requests to cloud proxies based on the
requested documents type (miss/hit) and their av-
erage service time. Closely related research [7]
considers integrating local proxy cluster in cloud
environment.

In our study we present a fine grain architec-
ture of cloud based proxy cache cluster and con-
sider the response time, resource utilization and
the cost of this integration.

THE PROPOSED SYSTEM

Figure 1 shows high level architecture for
cloud based proxy system and its connections to
the corresponding components that together rep-
resent an interoperable solution for establishing a
cloud based web proxy cache cluster. There are
basically four main entities involved:
1) Cloud Information Service Registry (CISReg-

istry).
2) The broker.
3) Virtual Machines.
4) Physical Machines.

3

Advances in Science and Technology – Research Journal vol. 7 (20) 2013

Cloud Information Service Registry
(CISRegistry)

Public datacenters register their information
to the CISRegistry. It provides utility comput-
ing service to Cloud users/Brokers. The Broker
in turn use the utility computing service provided
by the CISRegistry to become SaaS providers and
provide services to their end users.

The broker

It is the key player in this model would be
able to make use of the results to provide means
for disturb and burst requests and it consists of
two components:
 • Load manager – has three main functions:

(1) It receives the user’s requests and process-
es them on FCFS basis, distributes the load
among its local/public proxies under round
robin policy and queuing the tasks when there
is a available capacity for them in the infra-
structure. (2) It takes the responsibility of
creating virtual machine image and their ini-
tiation on selected physical hosts. (3) It also
keeps track of the execution progress of ser-
vice requests i.e. the performance is periodi-
cally monitored to identify exceeding in the
predefined threshold and thus send a notifica-
tion trigger to Resource Allocator for taking
appropriate action.

 • Resource Allocator – its responsibility is to
handle the state of an overloaded system. The
allocator queries the CISRegistry for the data-
centers information when utilization goes over
the predefined threshold. The CISRegistry in
turn responds by sending a list of available
datacenters to the Resource Allocator in order
to start bursting the requests to the selected
public datacenter.

Virtual Machines

Multiple VMs can be started and stopped
dynamically to meet accepted service requests.
In addition, multiple VMs can concurrently run
applications based on different operating sys-
tem environments on a single physical machine
since every VM is completely isolated from one
another on the same physical machine. However,
we assume that cache application is composed of
one virtual machine that housed in local cluster
(private datacenter), which offer mechanisms for
dynamic scaling of server capacity.

Physical Machines

The cluster comprises multiple proxy servers
that provide resources to meet service demands.
CBWPCC has n + m back ends (including n local
nodes and m cloud nodes, where n > 0 and m >= 0).
Local nodes remains as part of the CBWPCC as

Fig. 1. Cloud based Proxy Web Cache Cluster Architecture

Advances in Science and Technology – Research Journal vol. 7 (20) 2013

4

long as they work normally. Cloud nodes are con-
structed using cloud resources and they act same
as local nodes functionally. The only difference
is that the cloud node number changes with load
status and the amount of available resources. In
perspective of hybrid supply mode, CBWPP has
the ability to use both local node and cloud node
at the same time. Our system uses cloud resources
for insuring of service quality and system perfor-
mance in case of being overloaded and for pro-
viding reliability of CBWPCC, local nodes are
used here. The proxies (local/cloud) retrieve and
process the assigned requests. If the data is stored
(i.e. hit cache), the requested document will be
retrieved from the local proxy. If the requested
document is not cached (i.e. misses cache), the
proxy will redirect the request to the original Web
server.

To ensure fast deployment of cache applica-
tion in public cloud, we use fully configure image
deployment method to construct cloud nodes for
our system [13]. In this deployment method, the
cache application is already installed and config-
ured to create virtual machine in clouds.

PERFORMANCE METRICS

A number of metrics have been commonly
used for evaluation of performance of the web
cache. These metrics are related to cache efficien-
cies. Hit Rate (HR) which is the ratio of docu-
ments attained from usages of cashing mecha-
nism against total documents required. Byte hit
rate can be evaluated from the ratio of the number
of bytes fetched from cache and the number of
bytes that have been accessed. There are other
two measures, named as user response time and
bandwidth utilization, which can mitigate volume
of bandwidth consumption. Besides, CPU and I/O
system utilization , the fractional part of available
CPU cycles or latency of disk and object retrieval
got considerable attention to end users as other
measures of the same objective.

In this paper, the response time is chosen for
evaluation and assessment of the performance of
web cache cluster. This performance metric is
vastly used in this arena. However, from response
time perspective, the existing web cache system
may be considered in an ideal condition, as long
as it can decrease the user’s response time sig-
nificantly. Still, because of the cache application’s
characteristic, some requests should be redirected

to the original server since their requested docu-
ments are not cached in the local disk of the proxy.
These requests are termed as ‘miss requests’
whose response times are influenced with some
attributes such as network conditions and process
capacity of the original server. During the time
of the congestion in the network or if the original
server is overloaded, the response time of ‘miss
request’ will be raised distinctly even if the load
in CBWPCC is low. Thus, response time cannot
be used as a direct performance index. Instead,
we adopt a relative performance index R from [7].
it is the ratio of average service time of hit re-
quests to original server average response time of
miss requests in a given period of time.

(local/cloud) retrieve and process the assigned requests. if the data is stored (i.e. hit cache), the
requested document will be retrieved from the local proxy. If the requested document is not cached (i.e.
miss cache), the proxy will redirect the request to the original Web server.

To ensure fast deployment of cache application in public cloud, we use fully configure image
deployment method to construct cloud nodes for our system [13]. In this deployment method, the cache
application is already installed and configured to create virtual machine in clouds.

4. PERFORMANCE METRICS
A number of metrics have been commonly used for evaluation of performance of the web cache.

These metrics are related to cache efficiencies. Hit Rate (HR) which is the ratio of documents attained
from usages of cashing mechanism against total documents required. Byte hit rate can be evaluated from
the ratio of the number of bytes fetched from cache and number of bytes those have been accessed.
There are other two measures, named as user response time and bandwidth utilization which can
mitigate volume of bandwidth consumption. Besides, CPU and I/O system utilization , the fractional part
of available CPU cycles or latency of disk and object retrieval got considerable attention to end users as
other measures of the same objective.

In this paper, the response time is chosen for evaluation and assessment of the performance of web
cache cluster. This performance metric is vastly used in this arena. However, from response time
perspective, the existing web cache system may be considered in an ideal condition as long as it can
decrease the user's response time significantly. Still and because of the cache application's
characteristic, some requests should be redirected to the original server since their requested documents
are not cached in the local disk of the proxy. These requests are termed as ‘miss requests’ whose
response times are influenced with some attributes such as network conditions and process capacity of
the original server. During the time of the congestion in the network or if the original server is
overloaded, the response time of ‘miss request’ will be raised distinctly even if the load in CBWPCC is
low. Thus, response time cannot be used as a direct performance index. Instead, we adopt a relative
performance index R from [7]. it is the ratio of average service time of hit requests to original server
average response time of miss requests in a given period of time.

R = AvgHitTime
AvgMissTime

 (1)

AvgHitTime = ∑ service time of hit request ii=number of hits
1

i
 (2)

 AvgMissTime = ∑ response time of miss request j j=number of miss
1

j
(3)

While using R, a threshold range of values need to be set such that whenever the value of R goes beyond
the threshold value, a new node is added to the cache cluster. In other cases, cloud nodes are removed
from the cache cluster. However, setting the threshold value is an important issue and it should be
decided at an optimum range for two reasons: the performance of the system should be maintained to an
acceptance level and frequency of node number’s alterations should be as low as possible to avoid
performance jitter.

 (1)

(local/cloud) retrieve and process the assigned requests. if the data is stored (i.e. hit cache), the
requested document will be retrieved from the local proxy. If the requested document is not cached (i.e.
miss cache), the proxy will redirect the request to the original Web server.

To ensure fast deployment of cache application in public cloud, we use fully configure image
deployment method to construct cloud nodes for our system [13]. In this deployment method, the cache
application is already installed and configured to create virtual machine in clouds.

4. PERFORMANCE METRICS
A number of metrics have been commonly used for evaluation of performance of the web cache.

These metrics are related to cache efficiencies. Hit Rate (HR) which is the ratio of documents attained
from usages of cashing mechanism against total documents required. Byte hit rate can be evaluated from
the ratio of the number of bytes fetched from cache and number of bytes those have been accessed.
There are other two measures, named as user response time and bandwidth utilization which can
mitigate volume of bandwidth consumption. Besides, CPU and I/O system utilization , the fractional part
of available CPU cycles or latency of disk and object retrieval got considerable attention to end users as
other measures of the same objective.

In this paper, the response time is chosen for evaluation and assessment of the performance of web
cache cluster. This performance metric is vastly used in this arena. However, from response time
perspective, the existing web cache system may be considered in an ideal condition as long as it can
decrease the user's response time significantly. Still and because of the cache application's
characteristic, some requests should be redirected to the original server since their requested documents
are not cached in the local disk of the proxy. These requests are termed as ‘miss requests’ whose
response times are influenced with some attributes such as network conditions and process capacity of
the original server. During the time of the congestion in the network or if the original server is
overloaded, the response time of ‘miss request’ will be raised distinctly even if the load in CBWPCC is
low. Thus, response time cannot be used as a direct performance index. Instead, we adopt a relative
performance index R from [7]. it is the ratio of average service time of hit requests to original server
average response time of miss requests in a given period of time.

R = AvgHitTime
AvgMissTime

 (1)

AvgHitTime = ∑ service time of hit request ii=number of hits
1

i
 (2)

 AvgMissTime = ∑ response time of miss request j j=number of miss
1

j
(3)

While using R, a threshold range of values need to be set such that whenever the value of R goes beyond
the threshold value, a new node is added to the cache cluster. In other cases, cloud nodes are removed
from the cache cluster. However, setting the threshold value is an important issue and it should be
decided at an optimum range for two reasons: the performance of the system should be maintained to an
acceptance level and frequency of node number’s alterations should be as low as possible to avoid
performance jitter.

(2)

(local/cloud) retrieve and process the assigned requests. if the data is stored (i.e. hit cache), the
requested document will be retrieved from the local proxy. If the requested document is not cached (i.e.
miss cache), the proxy will redirect the request to the original Web server.

To ensure fast deployment of cache application in public cloud, we use fully configure image
deployment method to construct cloud nodes for our system [13]. In this deployment method, the cache
application is already installed and configured to create virtual machine in clouds.

4. PERFORMANCE METRICS
A number of metrics have been commonly used for evaluation of performance of the web cache.

These metrics are related to cache efficiencies. Hit Rate (HR) which is the ratio of documents attained
from usages of cashing mechanism against total documents required. Byte hit rate can be evaluated from
the ratio of the number of bytes fetched from cache and number of bytes those have been accessed.
There are other two measures, named as user response time and bandwidth utilization which can
mitigate volume of bandwidth consumption. Besides, CPU and I/O system utilization , the fractional part
of available CPU cycles or latency of disk and object retrieval got considerable attention to end users as
other measures of the same objective.

In this paper, the response time is chosen for evaluation and assessment of the performance of web
cache cluster. This performance metric is vastly used in this arena. However, from response time
perspective, the existing web cache system may be considered in an ideal condition as long as it can
decrease the user's response time significantly. Still and because of the cache application's
characteristic, some requests should be redirected to the original server since their requested documents
are not cached in the local disk of the proxy. These requests are termed as ‘miss requests’ whose
response times are influenced with some attributes such as network conditions and process capacity of
the original server. During the time of the congestion in the network or if the original server is
overloaded, the response time of ‘miss request’ will be raised distinctly even if the load in CBWPCC is
low. Thus, response time cannot be used as a direct performance index. Instead, we adopt a relative
performance index R from [7]. it is the ratio of average service time of hit requests to original server
average response time of miss requests in a given period of time.

R = AvgHitTime
AvgMissTime

 (1)

AvgHitTime = ∑ service time of hit request ii=number of hits
1

i
 (2)

 AvgMissTime = ∑ response time of miss request j j=number of miss
1

j
(3)

While using R, a threshold range of values need to be set such that whenever the value of R goes beyond
the threshold value, a new node is added to the cache cluster. In other cases, cloud nodes are removed
from the cache cluster. However, setting the threshold value is an important issue and it should be
decided at an optimum range for two reasons: the performance of the system should be maintained to an
acceptance level and frequency of node number’s alterations should be as low as possible to avoid
performance jitter.

 (3)

While using R, a threshold range of values
need to be set such that whenever the value of R
goes beyond the threshold value, a new node is
added to the cache cluster. In other cases, cloud
nodes are removed from the cache cluster. How-
ever, setting the threshold value is an important is-
sue and it should be decided at an optimum range
for two reasons: the performance of the system
should be maintained to an acceptance level and
frequency of node number’s alterations should be
as low as possible to avoid performance jitter.

Assume that, a threshold range is set as (t1, t2)
where t1 is the lowest range value and t2 is the
highest range value of the threshold value rang-
es. Now, if R < t1, the system will drop or release
cloud resources if there are cloud nodes. If R > t2,
the system will acquire cloud resources and build
cloud nodes to increase proxy cache system’s
capacity. If R retains within this range, existing
cloud nodes will be kept in rent and stream of in-
coming requests will be disturbed amongst local
and cloud nodes. Figure 2 shows an activity dia-
gram of our system.

COMMUNICATION AMONG ENTITIES

We modified the original CloudSim communi-
cation flow to another one shown in Figure 3. First,
each public cloud datacenter registers itself with
the CISRegistry (Cloud Information Service).

5

Advances in Science and Technology – Research Journal vol. 7 (20) 2013

Fig. 2. Activity diagram

Fig. 3. Communication flow

Advances in Science and Technology – Research Journal vol. 7 (20) 2013

6

CISRegistry provides database level match-mak-
ing services for mapping user requests to suitable
Cloud providers. The broker queries the CIS-
Registry for a list of cloud datacenters which of-
fer less latency and response time services. In
case the match occurs and since we use an image
fully install cluster the broker only needs to send
requests directly to the selected Cloud datacen-
ter. The simulation ends after this process has
been completed in the original flow. Therefore,
we added a new entity, called User Workload
Generator, to periodically impose load on the
system for N steps/periods (time unit = second).
As can be seen from Figure 3, the performance
index R is calculated at each step/period. The
workload is defined as the number of requests
from end users.

PERFORMCNE EVALUATION

This section describes results from a detailed
evaluation study we performed. Particularly, we
evaluated the feasibility and performance of
CBWPCC.

Data Collection

In order to verify performance of the pro-
posed architecture, we have implemented a trace-
driven simulation of Web proxy cache cluster. We
select squid access log of NLANR to be the trace
in simulation compare CBWPCC with traditional
Web proxy cache clusters (TWPCC) which have
fixed node number and do not have the elasticity
feature. The traces used for this study are down-
loaded from the NLANR website: ftp://ircache.
nlanr.net/Traces. These one-day log traces were
collected from the proxy locations in Palo Alto,
CA. However, there are many possible responses
that a Web proxy can provide to a client request
[10], but we only considered GET requests such
that the cache returned a “200” or “206” response
code to its clients, Table 1.

Experimental Setup

This research utilizes a simulator environment
where the CloudSim-2.1.1 is used as a framework
[11] along with Java version 7 [12] and other nec-
essary execution setup. We have set the threshold
value R too (0.9, 1.2) and sample period to 120
seconds. The number for local nodes of CBW-
PCC is fixed to 8.

In this simulation setup, a broker received the
user’s requests and processed (queue, execute)
them on a FCFS basis. To evaluate the effective-
ness of the proposed system in response time and
resource utilization (CPU, memory and disk), two
test scenarios were simulated: in the first scenar-
io, all the workload was processed locally within
the local proxy cluster (private cloud). In the sec-
ond scenario, the workload (requests) could be
migrated to public cloud in case the workload in
local resources exceeds a predefined threshold.
In other words, the second scenario simulated a
CloudBurst by integrating the local private cloud
with public cloud for handing peak in service
demands. We assume that the broker migrate re-
quests to a public cloud with minimum latency
and response time.

In Figure 4, a comparison of performance
result is depicted between the CBTWPCC and
TWPCC, where number of fixed nodes were
8 and16. In this graph, from the initial point of
1000th period, the average response time curve of
CBTWPCC is similar with that 8-node TWPCC.
When the load of the system is enlarged, we can
see that 8-nodes TWPCC cannot afford enough
resources and its response time increased nota-
bly. While CBWPCC could get more resources
from cloud and capacity of the system could be
expanded dynamically. Therefore, the average re-
sponse time of our system is maintained at a rela-
tively lower level.

In case of the 16-node TWPCC, the begin-
ning point at 1000th period, the response time of
our system got raised as our system initially has
8 nodes only. After the beginning point, cloud

Response Code Description

TCP_HIT/200 valid document was made available to the client directly from the proxy cache

TCP_HIT/206 a partial transfer of the document directly from the proxy to the client

TCP_MISS/200 valid document was made available to the client by retrieving the document from another proxy
cache or from the originating server

TCP_MISS/206 a partial transfer of the document from the originating server

Table 1. HTTP Response Codes from [2]

7

Advances in Science and Technology – Research Journal vol. 7 (20) 2013

nodes are added into the system dynamically and
at the 18 000th period, the average response time
of the system is going almost the same with that
of 16-node TWPCC. It is noticeable that aver-
age response time curve of our system is slightly
higher than 16-node TWPCC because of the la-
tency incurred for those requests that are sent to
public cloud.

In Figure 5, a comparison of CPU utilization
is graphed depicting CBWPCC comparing with
TWPCCs. CPU utilization of 8-nodes TWPCC is
leading all, and all three curves are maintaining
approximately a constant distance to each other.
The curve of the TWPCC originated with the
same point of that of the proposed system. After
starting from the origin, curves of all three did not
raise much with progression of the period. But
from 0 to 1000 all of them raised sharply (with
exponential rise). All 8-nodes TWPCC and CB-
WPCC followed the same curve line rising sharp-
ly up to 65% CPU utilization at 1000 period. Af-
ter that period, CPU utilization of 8-node WPCC
goes little higher, as the curve raised very little,
due to the cloud elasticity feature of our system
cause the total number of requests processed lo-
cally less than total number of requests processed

Fig. 4. Performance comparison of proxy Web cache cluster

Fig. 5. CPU utilization

in 8-node TWPCC in a given period of time. On
the other hand, the curve of 16-nodes TWPCC is
significantly lower than that of other two. Even
up to 44 000 period of time, utilization of CPU
did not go above 55%. While it reached 90%
and 85% for 8-nodes TWPCC and CBWPCC re-
spectively. CPU utilization of CBWPCC is sig-
nificantly higher than 16-node TWPCC, since
our system has only 8-fixed local nodes and thus
they suffer CPU overhead higher than 16-nodes
TWPCC which has 16-fixed nodes.

Functionally CPU and RAM are co-related
to each other in a cache proxy systems. As CPU
utilization as resource is lower in CBWPCC to
8-nodes TWPCC, the scenario is the same for uti-
lization of memory as well, Figure 6. All three
curves tend to be unchanged after 1000 period of
time. However, sharp rising of edges were seen
from the origin to 1000 period. As all requests are
processed locally in 8-node TWPCC, it is getting
higher overhead from requests that are consuming
memory resources. While our CBWPCC has the
ability to migrate part of incoming requests into
cloud when R exceeds the predefined threshold,
its local memory resources face little overhead
because the number of requests processed locally

Advances in Science and Technology – Research Journal vol. 7 (20) 2013

8

become approximately a half of total number of
requests processed in 8-nodes TWPCC. In oth-
er hand and compared to 16-node TWPCC, our
system has higher significant memory overhead
since it has only 8 fixed local nodes with limited
memory spaces.

In CBWPCC, we noticed that CPU and mem-
ory usage increases slightly to 65% and 50% re-
spectively before acquiring new nodes from the
cloud and both CPU and memory resources did
not reach a critical overhead level. This is be-
cause our system is designed not to trigger on
CPU/memory metrics but on another metric R
crossing a threshold value.

In Figure 7, the utilization of I/O is much
more effective in CBWPCC than in 8- and 16-
node TWPCC. Though all three curves originated
from the same point, with the gradual growth of
workload rising, the curve of CBWPCC is higher
than that of the two traditional web proxy cache
clusters. Thus, our proposed system can handle
more contents of bytes in a given period of time

since relieving workload on our local nodes clus-
ter by bursting some requests to the cloud helps
in enhance the disk I/O utilization of CBWPCC
by 4.35%.

Result of VM cost with cost of data transfer
and total cost of adding cloud nodes is depicted
in a bar chart in Figure 8. The VM cost has four
components:
 • per processing cost,
 • per unit cost of memory,
 • per unit cost of storage and
 • per unit cost of used bandwidth.

Cost per memory and cost per storages are
incurred during creation of virtual machine. Cost
per bandwidth occurs during transfer of data.
Other costs, processing costs, are relevant to uses
of processing of resources. The pricing policy
was adopted from Amazon’s business model of
small instances ($0.06 per Standard On-Demand
instance per hour) which means that cost per in-
stances are charged hourly [14].

Fig. 6. RAM utilization

Fig. 7. I/O utilization

9

Advances in Science and Technology – Research Journal vol. 7 (20) 2013

CONCLUSION

Load balancing strategies are adopted gener-
ally by traditional web proxy cache clusters to
get a tradeoff in enhancing service qualities and
resource efficiencies. Though, the solution seems
to be reasonable, it will result in resource wast-
ing when the load of the system is low. When
the load is high, the service quality will be poor
and it will be dropped in its worst case situation
(when the system is exceedingly overloaded).
To overcome this issue, this paper proposed an
architecture for a cloud based Web proxy cache
cluster. By using on demand cloud resources,
the system to expands its capacity when the load
goes beyond its local capacity and released them
when the load gets down.

We evaluated the effectiveness of the pro-
posed architecture comparing with traditional
one which have fixed node number, in term of
response time ,resource utilization. Results of the
experiments shows that Cloud based Web proxy
cache cluster performs better in obtaining of
higher resource efficiency and lowering of sys-
tem cost. And since we deploy the cache appli-
cation in cloud environment, this may bring se-
curity issues. Therefore, our future direction will
focus on presenting a solution to avoid the in-
fluence of cloud security for the proposed cloud
based cache proxy system.

Acknowledgment

This paper contains the results and findings of
a research project that is funded by King Abdulaziz
City for Science and Technology (KACST), Grant
No: T-T-12-0938.

Fig. 8. Cost of bursting cache requests to public cloud

REFERENCES

1. Zeng D., Wang F., Liu M. Efficient web content
delivery using proxy caching techniques. Systems,
Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, Aug. 2004, 34(3):
270-280.

2. Mahanti A., Williamson C. Web proxy workload
characterization. Technical Report, Department of
Computer Science, University of Saskatchewan,
February 1999, http://www.cs.usask.ca/faculty/
carey/ papers/workloadstudy.ps

3. Yang Z., Kamata S., Ahrary A. NIR: Content based
image retrieval on cloud computing. [In:] Proc.
IEEE International Conference on Intelligent Com-
puting and Intelligent Systems, 2009, IEEE Com-
puter Society, Shanghai, China, 2009, p. 556-559.

4. Dornemann T., Juhnke E., Freisleben B. On-De-
mand Resource Provisioning for BPEL Workflows
Using Amazon’s Elastic Compute Cloud. [In:]
Proc. of the 9th IEEElACM International Sympo-
sium on Cluster Computing and the Grid, IEEE,
Shanghai, China, 2009, p. 140-147.

5. Assuncao M., Costanzo A., Buyya R. Evaluating
the Cost- Benefit of Using Cloud Computing to Ex-
tend the Capacity of Clusters. [In:] Proc. of High
Performance Distributed Computing (HPDC),
June 2009, p. 141-150.

6. Marshall P., Keahey K., Freeman T. Elastic Site:
Using Clouds to Elastically Extend Site Resources.
[In:] Proc. of Conference on Cluster, Cloud, and
Grid Computing (CCGRID), May 2010.

7. Duan Z.; Gu Z. EWPCC: An elastic Web proxy
cache cluster basing on cloud computing. [In:]
Proc. of the 3rd IEEE International Conference on
Computer Science and Information Technology
(ICCSIT), July 2010, 1(9-11): 85-88.

8. Alsaiari N., Fayoumi A. Load Balancing Tech-
niques for Web Proxy Cache Clusters. Interna-
tional Journal of Advanced Research in Computer
Science (IJARCS), Sep-Oct 2012, 3(5).

Advances in Science and Technology – Research Journal vol. 7 (20) 2013

10

9. Buyya R., Yeo C.S., Venugopal S. Market orient-
ed cloud computing: Vision, hype, and reality for
delivering IT services as computing utilities. [In:]
Proc. of the 10th IEEE International Conference on
Advanced Learning Technologies, July 2010.

10. Rodriguez P., Spanner C., Biersack E.W. Analysis
of Web caching architectures: hierarchical and dis-
tributed caching. Networking, IEEE/ACM Trans-
actions on, Aug 2001, 9(4): 404-418.

11. CloudSim: A Framework for Modeling and Simu-
lation of Cloud Computing Infrastructures and
Services. The Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, University of

Melbourne, 2011 (available from: http://www.
cloudbus.org/cloudsim/)

12. Java software version 7 downloaded from: http://
java.com/en/download/index.jsp (August 2013).

13. Krsul I., Ganguly A., Zhang J. VMPlants: Provid-
ing and Managing Virtual Machine Execution En-
vironments for Grid Computing. [In:] Proc. of the
ACM/IEEE Conference on Supercomputing, IEEE
Computer Society, Pittsburg, PA, USA, 2004: 1-12.

14. Amazon EC2 Pricing. Pay as You Go for Cloud
Computing Services. Amazon EC2, n.d. Web. 14
Sept. 2013. <http://aws.amazon.com/ec2/pricing/>

