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INTRODUCTION

Regardless of technological progress, where 
disc capacity (in local and cloud environments) 
continues to grow, offering steady cost reduction 
of storing data, compression still finds its use 
driven mainly by economic reasons. Images and 
video compression can be divided into lossy and 
lossless, and the selection of one of them depends 
on the application. This study focuses on lossless 
compression; however, some of the aspects de-
scribed here can be used to improve lossy meth-
ods as well. For simplicity, the presented results 
refer to the coding of the grayscale images. 

One of the main applications of lossless im-
age and video compression is archiving medical 
images [1, 2]. This includes not only 2D and 3D 
but also 4D (three-dimensional video sequences) 
[3, 4]. Another significant use is a compression 
of astronomical and satellite images [5, 6]. More-
over, the lossless mode is often required during 
digital photo processing, creating advertising 
materials, and film post-production [7]. In such 
cases, lossy methods, such as JPEG or JPEG2000 
cannot be used. Although these standards have 
lossless modes, they are not particularly efficient. 
For this reason, new solutions to improve com-
pression efficiency are still being developed.
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Modern compression methods typically con-
sist of two phases: decorrelation (data decomposi-
tion) and entropy coding, among which arithmetic 
and Huffman codes are the most efficient [8]. The 
purpose of data decorrelation is to remove most 
of the redundancy from it to achieve the best effi-
ciency during the final coding. Linear and nonlin-
ear prediction methods are often used at this stage, 
and this stage requires the highest computational 
complexity. For this reason, most papers discuss-
ing new approaches to lossless image compres-
sion treat descriptions of the second phase (coding 
of data after redundancy removal using prediction 
methods) in a limited manner. In this paper, the au-
thors wanted to show the importance of connect-
ing these two stages together in order to achieve 
the highest possible compression efficiency.

Depending on different requirements, com-
pression methods can be divided into three main 
categories in terms of encoding and decoding 
time. The first one requires fast time of encoding 
and decoding (time symmetric). Typical exam-
ples of this category are JPEG-LS [9] and CALIC 
[10]. WebP [11] is one of the newest in this class. 
The second one is characterized by long encoding 
and short decoding time. This is due to the fact 
that compression requires adaptation of param-
eters and multiple attempts to data coding. It uses 
forward-adaptation (prior knowledge about the 
coded image) and requires saving large-sized in-
formation (already tuned final parameters for the 
decompression algorithm) in the header section 
of output file. In this category, one can find e.g. 
TMW (1997) [12] or its later enhancement TM-
WLEGO (2001) [13]. The most efficient in this cat-
egory is the new version of MRP 0.5 codec pre-
sented under the name ‘VBS & new-cost’ (2005) 
[14]. The third category is the most complex in 
terms of computation and is characterized by long 
encoding and decoding time. In such solutions, 
backward-adaptation is generally used (parame-
ters are tuned on the fly after receiving new data), 
and there is no need to store a large header block 
for the decoder. Several known mechanisms can 
be found in the algorithms of this category, such 
as RLS [15] and OLS/WLS [16], where coding 
and decoding of each consecutive pixel is ac-
companied by a linear predictor’s coefficients 
adaptation. This adversely affects the encoding 
and decoding time, but also enables the use of 
high-order predictors without the need to increase 
the size of header. In this paper, the results of the 
three proposed solutions were presented, one for 

each of the three described categories. There are 
other approaches to data modeling. Some of these 
methods use wavelet transforms e.g. JPEG2000 
[17] or ICER [18]. In recent years, methods based 
on deep learning that fully utilize nonlinear neu-
ral networks [19, 20] have also been developed. 
They are also characterized by high computation-
al complexity and short (not in all cases) encod-
ing/decoding time is achieved owing to the pos-
sibility of high-level parallelization using GPU/
NPU technologies only. Insight into different ap-
proaches to lossless compression can be found in 
the literature [21, 22]. 

 The basics of linear prediction, context-de-
pendent constant removal, and other mechanisms 
for decreasing the average prediction error are 
described in the Basics of data modeling sec-
tion. Unlike most works which focus on describ-
ing prediction methods, this one is dedicated to 
show various aspects of prediction error encoding 
widely. The Efficient prediction errors encoding 
section presents a broad view of prediction error 
encoding methods, such as context modeling or 
nonlinear quantization of prediction errors. The 
two-stage method proposed as a final encoding 
solution for data with geometrical distribution 
utilizes an adaptive Golomb coder of prediction 
errors as a first step, and then, as a second, its bi-
nary output is coded with a context-adaptive bi-
nary arithmetic coder. A separate mechanism for 
encoding the sign information of the prediction 
error was also presented. A similar context arith-
metic coder concept is used to compress the pre-
diction coefficients. All three codecs proposed in 
this paper were compared to the solutions known 
from literature against the compression efficiency 
and implementation complexity (with distinction 
to encoding and decoding time). In addition, the 
usefulness of individual improvements, which 
may be used to design new efficient methods for 
lossless image compression, was analyzed.

BASICS OF DATA MODELING

Application of linear prediction

In two-dimensional signals, such as images, 
the data modeling phase boils down to remove as 
much mutual information between neighboring 
pixels (spatial correlation) as possible. To do this, 
the predicted value 𝑥𝑥𝑛𝑛  

 
 (rounded to an integer 

value) of the encoded pixel xn is calculated, and 
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then the difference between these two, known as 
prediction error, is encoded: 

	 𝑒𝑒𝑛𝑛 = 𝑥𝑥𝑛𝑛 − [𝑥𝑥𝑛𝑛] (1) 
 

𝑥𝑥𝑛𝑛 =∑𝑏𝑏𝑗𝑗
𝑟𝑟

𝑗𝑗=1
∙ 𝑃𝑃(𝑗𝑗) (2) 

 
 

𝑒𝑒𝑛𝑛 =  𝑥𝑥𝑛𝑛 − [𝑥𝑥𝑛𝑛 + 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚] (3) 
 

𝜎̂𝜎2 =∑(𝑥𝑥𝑛𝑛 − 𝑧𝑧𝑖𝑖)2 
8

𝑖𝑖=1
(4) 

 

𝐿𝐿(𝑛𝑛) =

{
 
 

 
 1 − 𝑒𝑒− 

1
√2𝜎𝜎 𝑛𝑛 = 0

1
2 (𝑒𝑒

−|𝑛𝑛|−0.5𝜎𝜎/√2 − 𝑒𝑒−
|𝑛𝑛|+0.5
𝜎𝜎/√2 ) 0 < |𝑛𝑛| < 𝑁𝑁 

1
2 𝑒𝑒

−|𝑛𝑛|−0.5𝜎𝜎/√2 |𝑛𝑛| = 𝑁𝑁

. (5)  

 
𝑒𝑒𝑛𝑛  𝑒𝑒𝑛𝑛 + 256, if 𝑒𝑒𝑛𝑛 < −128 
𝑒𝑒𝑛𝑛  𝑒𝑒𝑛𝑛 − 256, if 𝑒𝑒𝑛𝑛 > 128 . (6) 

 
𝑒𝑒𝑛𝑛  2 ∙ |𝑒𝑒𝑛𝑛 |, if 𝑒𝑒𝑛𝑛 ≥ 0 
𝑒𝑒𝑛𝑛  2 ∙ |𝑒𝑒𝑛𝑛 | − 1, if 𝑒𝑒𝑛𝑛 < 0

. (7) 
 
Algorithm 1. Prediction error mapping 
 = nx̂ ;  
 if ( > (xmax − ))   xmax − ;  
 if (|en| > ) 𝑒𝑒𝑛𝑛 ← ⌊|𝑒𝑒𝑛𝑛|+𝜃𝜃+12 ⌋ ⋅ (1 − 2 ⋅ ((|𝑒𝑒𝑛𝑛| + 𝜃𝜃)&1)); 
 
Algorithm 2. Reversing prediction error mapping 
 if ( nx̂  (xmax − nx̂ )) { 

   = nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en  2|en| −  − 1; 
   else en  2|en| −  ; 
  } 
 } else { 
   = xmax − nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en   − 2|en| + 1; 
   else en   − 2|en|; 
  } 
 } 
 
 

𝐺𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛−1, (8) 
 

𝐺̅𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛, (9) 
 

N𝑒𝑒(𝑖𝑖) = ⌊𝑓𝑓 ∙ 0.8𝑖𝑖⌋ + 1, (10) 

	 (1)

In general, prediction errors en tend to be small 
values oscillating around zero and their probabili-
ty distribution is close to the Laplace distribution. 
The predicted value can be calculated using the 
r-order linear predictor:
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where:	bj are the prediction coefficients that form 
a vector B = [b1, b2,..., br] and P(j) is the 
j-th nearest neighbor of the currently en-
coded pixel xn. 

Figure 1 illustrates the 48 numbered near-
est neighbors of a coded pixel xn, where j-th 
number is used to indicate pixel P(j) and pre-
diction error e(j). This is a relative numbering 
to the currently encoded pixel (index 0), mean-
ing that it can be translated into xn = P(0) and 
en = e(0). The image is coded row by row from 
left to right. The simplest possible predictors 
are the values of the individual pixels (r = 1 
and b1 = 1), for example, 𝑥𝑥𝑛𝑛  

 
 = P(4) means that 

the predicted value of pixel xn is the value of 
its 4th neighbour. 

The methods utilizing higher-order predic-
tors are usually based on MMSE because of the 
simplicity of calculating the vector B of pre-
diction coefficients [8]. However, this implies 
that the distribution of prediction errors is close 
to the Gaussian distribution. Experiments have 
proven that a better distribution for achieving 
higher compression efficiency is the Laplace 
distribution, which can be obtained by MMAE 
[23]. A wider explanation of the influence of 
MMSE on entropy was discussed in [24].

Constant component removal

Prediction methods tend to introduce a con-
stant component (bias) in the calculated predic-
tion errors, which depend on the characteristics 
of the individual context. Hence, many solutions 
propose an adaptive method for constant com-
ponent removal (bias cancelation), also known 
as context-based error correction techniques. By 
adding a new context-dependent constant compo-
nent removing (CDCCR) block, which removes 
the constant component Cmix correlated with a cer-
tain context, it is possible to continue increasing 
precision of prediction. This idea has been used 
in earlier codecs, such as JPEG-LS and CALIC. 
The constant component Cmix removal correlated 
with one of the 1024 contexts results in a slight 
modification of Equation 1:
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where:	 𝑥𝑥𝑛𝑛  
 

 is calculated using Equation 2. 

The context number к for each of subsequen-
tial encoded pixel xn can be determined using a 
set of binary rules. If zi > 𝑥𝑥𝑛𝑛  

 
, then bit кi = 1, oth-

erwise кi = 0. The nearest neighboring pixels or 
their linear combination can be used as a zi. The 
example set of eight zi values to create an 8-bit 
number к7к6к5к4к3к2к1к0 which offers highly ef-
ficient contextual division is following: {P(1), 
P(2), P(3), P(4), P(5), P(6), 2P(1) - P(5), 2P(2) 
- P(6)}. If an additional 2-bit (four-state) quan-
tizer with three thresholds {300, 2000, 8000} is 
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   if (en < 0) en  2|en| −  − 1; 
   else en  2|en| −  ; 
  } 
 } else { 
   = xmax − nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en   − 2|en| + 1; 
   else en   − 2|en|; 
  } 
 } 
 
 

𝐺𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛−1, (8) 
 

𝐺̅𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛, (9) 
 

N𝑒𝑒(𝑖𝑖) = ⌊𝑓𝑓 ∙ 0.8𝑖𝑖⌋ + 1, (10) 

	 (4)

then 10-bit context number is obtained. Each of 
the 1024 contexts has its own sum of prediction 
errors (updated on the fly). This sum, divided 

Figure 1. Neighborhood pixel numbering
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by the current number of occurrences in this 
context, gives us a context-dependent constant 
Cmix. The value of Cmix changes over time in each 
context. These fluctuations, recorded in an ex-
ample context, are shown in Figure 2. More de-
tails about the building of context number and 

CDCCR block usage are discussed in [25]. Fig-
ure 3 shows a fragment of the probability dis-
tribution for the Lennagrey image after coding 
using linear prediction. The solid line represents 
the probability obtained without context compo-
nent removal, whereas the dashed line shows the 

Figure 2. Value Cmix of example context, which adapts during encoding of subsequent pixels of the image

Figure 3. Probability distribution for Lennagrey after linear prediction encoding without CDCCR (solid line) 
and with CDCCR (dashed line)
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results with context-dependent constant compo-
nent removal. In the latter case, it is possible to 
notice a greater concentration of prediction er-
rors among values that are close to zero.

Basic improvements in codecs

The vast majority of publications skips less 
important implementation details, leaving readers 
clueless about the integrated improvements. For 
this reason, the paper closely looked at the basic 
mechanisms that can be used to improve com-
pression efficiency.

Pixel encoding and decoding process usually 
has a sequential flow – row by row, starting from 
left to right. Linear prediction uses the left and 
upper neighboring pixels of the currently coded 
one. The fundamental problem of using linear 
prediction of a higher order is the need to access 
data outside the image boundaries. Taking the 
first row as an example, it was quickly found out 
that there are no upper pixels that can be accessed 
following the numbering scheme (Figure 1). To 
overcome this, a special margin is being built 
around the original image (excluding the bottom). 
Different approaches to fill this margin exist, and 
the easiest approach is to fill every cell with a 0. 
A much better solution is to encode the first row 
with differential code (prediction error is calculat-
ed as the difference between current pixel xn and 
its left neighbour P(1)). A similar procedure is 
applied to the first left column, but everything is 
done vertically (difference between current pixel 
xn and its top neighbor P(2)). The first row and 

first left column can then be copied n times into 
the margin area, as shown in Figure 4.

The second improvement is a mechanism for 
detecting flat regions, useful especially for artifi-
cially generated images. The detection is limited 
to checking whether the four nearest pixels {P(1), 
P(2), P(3), P(4)} are equal. When this condition 
is satisfied, the default predictor is replaced with 
the value of the pixel P(1).

The next improvement can be optional, de-
pending on the number of different shades used 
in a certain image. If the number of shades is sig-
nificantly lower than the maximum (in the case 
of 8-bit images, there can be up to 256 different 
shades), then the range of shades can be reduced. 
The information which shades have been used in 
original image must be saved in header data for 
decoder. Each consecutive shade present in an 
image is assigned with a number from 0 to h – 1, 
where h is the total number of shades in use [26]. 
Figure 5 shows an example of reducing 9 shades 
present in an image with a 16 – shade palette 
into new shades in a form of consecutive num-
bers (symbol X indicates a non-existent shade in 
image). In the last row, the index values next to 
the new shade values indicate the original shade 
number. In the header section of the file, a vec-
tor consisting of 256 bits is placed with h ones 
(representing the shades present in the image) and 
256 – h zeros (representing the shades that did not 
appear in the image). Thus, the decoder can re-
construct the original shades after main decoding 
process. In addition, this vector can be encoded 
using a binary adaptive arithmetic coder.

Figure 4. Scheme of filling margins surrounding coded image
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There is also a possibility of utilizing revers-
ible image transformation involving n rotations 
by 90° (with n = {0, 1, 2, 3}, there are four phases 
of rotation). If mirroring is included, eight loss-
less image transformations are obtained. This 
improvement requires eight complete or simpli-
fied encodings, which has a negative impact on 
encoding time, but it has no significant impact on 
decoding time.

There are few examples when even the most 
complex high-order prediction methods are less 
efficient than a first-order predictor that uses 
one of the neighboring values e.g. 4 – th or 6 – 
th neighbor (known as the special mode). After 
coding with the main method, a mechanism that 
checks the outcome influence of fast encoding 
with a first-order predictor multiple times can be 
integrated. An example of image with such char-
acteristics is discussed in the Performance analy-
sis of the individual improvements section.

Further data modeling

Linear and nonlinear prediction may result 
in prediction errors of normal distribution when 
using MMSE or Laplace distribution when using 
MMAE. MMAE usually has a better efficiency, 
but the downside is a computational complexity, 
as for example in simplex method it has expo-
nential worst-case complexity. In the paper [23] 
lowering of the complexity is discussed; howev-
er, the taken steps seem to be insufficient. If it is 
assumed that the optimal solution is not as much 
important because at the end, the bit average of 
file is to be minimized, and not mean absolute er-
ror, then minimizing methods that give approxi-
mate local minimum can be used. The second 
argument for introducing simplifications in mini-
mizing mean absolute error is the fact that accord-
ing to Equation 1 predicted values are rounded to 
the nearest integer. The iterative reweighted least 
squares (IRLS) method offers that with relatively 
short execution time. Its improved variant was 
proposed in [27]. It requires approximately two 
times fewer iterations than the classic solutions. 

This approach has been integrated in the Multi-
ctx 2 and 7-ctx MMAE codecs, which will be de-
scribed in the upcoming sections.

For practical implementation of Laplace dis-
tribution for integer numbers n from range [-N,N] 
(e.g. of prediction error, n is replaced by en) with 
the assumption that the average is equal to 0 and 
variation equals σ2, the following equation can be 
used [28, 29]:

	

𝑒𝑒𝑛𝑛 = 𝑥𝑥𝑛𝑛 − [𝑥𝑥𝑛𝑛] (1) 
 

𝑥𝑥𝑛𝑛 =∑𝑏𝑏𝑗𝑗
𝑟𝑟

𝑗𝑗=1
∙ 𝑃𝑃(𝑗𝑗) (2) 

 
 

𝑒𝑒𝑛𝑛 =  𝑥𝑥𝑛𝑛 − [𝑥𝑥𝑛𝑛 + 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚] (3) 
 

𝜎̂𝜎2 =∑(𝑥𝑥𝑛𝑛 − 𝑧𝑧𝑖𝑖)2 
8

𝑖𝑖=1
(4) 

 

𝐿𝐿(𝑛𝑛) =

{
 
 

 
 1 − 𝑒𝑒− 

1
√2𝜎𝜎 𝑛𝑛 = 0

1
2 (𝑒𝑒

−|𝑛𝑛|−0.5𝜎𝜎/√2 − 𝑒𝑒−
|𝑛𝑛|+0.5
𝜎𝜎/√2 ) 0 < |𝑛𝑛| < 𝑁𝑁 

1
2 𝑒𝑒

−|𝑛𝑛|−0.5𝜎𝜎/√2 |𝑛𝑛| = 𝑁𝑁

. (5)  

 
𝑒𝑒𝑛𝑛  𝑒𝑒𝑛𝑛 + 256, if 𝑒𝑒𝑛𝑛 < −128 
𝑒𝑒𝑛𝑛  𝑒𝑒𝑛𝑛 − 256, if 𝑒𝑒𝑛𝑛 > 128 . (6) 

 
𝑒𝑒𝑛𝑛  2 ∙ |𝑒𝑒𝑛𝑛 |, if 𝑒𝑒𝑛𝑛 ≥ 0 
𝑒𝑒𝑛𝑛  2 ∙ |𝑒𝑒𝑛𝑛 | − 1, if 𝑒𝑒𝑛𝑛 < 0

. (7) 
 
Algorithm 1. Prediction error mapping 
 = nx̂ ;  
 if ( > (xmax − ))   xmax − ;  
 if (|en| > ) 𝑒𝑒𝑛𝑛 ← ⌊|𝑒𝑒𝑛𝑛|+𝜃𝜃+12 ⌋ ⋅ (1 − 2 ⋅ ((|𝑒𝑒𝑛𝑛| + 𝜃𝜃)&1)); 
 
Algorithm 2. Reversing prediction error mapping 
 if ( nx̂  (xmax − nx̂ )) { 

   = nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en  2|en| −  − 1; 
   else en  2|en| −  ; 
  } 
 } else { 
   = xmax − nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en   − 2|en| + 1; 
   else en   − 2|en|; 
  } 
 } 
 
 

𝐺𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛−1, (8) 
 

𝐺̅𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛, (9) 
 

N𝑒𝑒(𝑖𝑖) = ⌊𝑓𝑓 ∙ 0.8𝑖𝑖⌋ + 1, (10) 

	(5)

Considering usage of discrete probability dis-
tribution suited for integer numbers, in the paper 
[30] it was pointed out, that if en = 0, then no-
ticeable deviation of the actual probability value 
from the theoretical value can occur. Therefore, 
a special modified distribution called Laplace+δ 
can be used.

In the research [31], Deng and Ye have em-
phasized the importance of differentiating be-
tween probability distributions, suggesting that 
Laplace distribution works well when it comes to 
the distribution of prediction errors for the entire 
image. However, the Gaussian distribution (as-
sociated with minimizing mean square error) is 
more suitable for modeling local characteristics. 
This is especially true for the methods incorpo-
rating forward adaptation, where predicted val-
ues are determined based on causal neighboring 
pixels, which was confirmed by the experiments 
presented in [16]. The hardest part is to specify 
which distribution is most favorable when for-
ward adaptation is in use with a simultaneous im-
age division into small blocks [23]. 

Shrinking 8-bit prediction errors range by half 
from [-255, 255] to [0, 255], can be beneficial for 
adaptive coding of prediction errors. Shrinking 
algorithm has two stages [32, 33], the first one is:
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 1 − 𝑒𝑒− 

1
√2𝜎𝜎 𝑛𝑛 = 0

1
2 (𝑒𝑒

−|𝑛𝑛|−0.5𝜎𝜎/√2 − 𝑒𝑒−
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2 𝑒𝑒

−|𝑛𝑛|−0.5𝜎𝜎/√2 |𝑛𝑛| = 𝑁𝑁

. (5)  

 
𝑒𝑒𝑛𝑛  𝑒𝑒𝑛𝑛 + 256, if 𝑒𝑒𝑛𝑛 < −128 
𝑒𝑒𝑛𝑛  𝑒𝑒𝑛𝑛 − 256, if 𝑒𝑒𝑛𝑛 > 128 . (6) 

 
𝑒𝑒𝑛𝑛  2 ∙ |𝑒𝑒𝑛𝑛 |, if 𝑒𝑒𝑛𝑛 ≥ 0 
𝑒𝑒𝑛𝑛  2 ∙ |𝑒𝑒𝑛𝑛 | − 1, if 𝑒𝑒𝑛𝑛 < 0

. (7) 
 
Algorithm 1. Prediction error mapping 
 = nx̂ ;  
 if ( > (xmax − ))   xmax − ;  
 if (|en| > ) 𝑒𝑒𝑛𝑛 ← ⌊|𝑒𝑒𝑛𝑛|+𝜃𝜃+12 ⌋ ⋅ (1 − 2 ⋅ ((|𝑒𝑒𝑛𝑛| + 𝜃𝜃)&1)); 
 
Algorithm 2. Reversing prediction error mapping 
 if ( nx̂  (xmax − nx̂ )) { 

   = nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en  2|en| −  − 1; 
   else en  2|en| −  ; 
  } 
 } else { 
   = xmax − nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en   − 2|en| + 1; 
   else en   − 2|en|; 
  } 
 } 
 
 

𝐺𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛−1, (8) 
 

𝐺̅𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛, (9) 
 

N𝑒𝑒(𝑖𝑖) = ⌊𝑓𝑓 ∙ 0.8𝑖𝑖⌋ + 1, (10) 

	 (6)

Figure 5. Shade range reduction scheme
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The second stage, which is often used in au-
dio compression, enables building of a one-sided 
distribution:
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. (7) 
 
Algorithm 1. Prediction error mapping 
 = nx̂ ;  
 if ( > (xmax − ))   xmax − ;  
 if (|en| > ) 𝑒𝑒𝑛𝑛 ← ⌊|𝑒𝑒𝑛𝑛|+𝜃𝜃+12 ⌋ ⋅ (1 − 2 ⋅ ((|𝑒𝑒𝑛𝑛| + 𝜃𝜃)&1)); 
 
Algorithm 2. Reversing prediction error mapping 
 if ( nx̂  (xmax − nx̂ )) { 

   = nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en  2|en| −  − 1; 
   else en  2|en| −  ; 
  } 
 } else { 
   = xmax − nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en   − 2|en| + 1; 
   else en   − 2|en|; 
  } 
 } 
 
 

𝐺𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛−1, (8) 
 

𝐺̅𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛, (9) 
 

N𝑒𝑒(𝑖𝑖) = ⌊𝑓𝑓 ∙ 0.8𝑖𝑖⌋ + 1, (10) 

	 (7)

However, another more efficient error map-
ping approach that works smoothly along with 
the context arithmetic coder (described later in 
this paper) exists. It is noteworthy that the predic-
tion error can take 256 different values. For ex-
ample, when xn = 5, the prediction error range is 
[-250, 5]. The distribution is symmetric between 
[-5, 5] and remaining [-250, -6] forms a sort of 
long tail. The tail can be balanced by alternatingly 
casting each next value from that range into nega-
tive and positive: -6 and 6, -7 and 7 etc. By doing 
so, the distribution becomes symmetric and mean 
absolute error is decreased. To perform prediction 
error mapping, the algorithm 1 is used. xmax is the 
maximum shade value, and n & 1 operation re-
turns the least significant bit of n (the same opera-
tion can be achieved with n mod 2). Algorithm 1 
limits en range to [-128, 128]. For example, when 
xmax = 255, xn = 105, and 𝑥𝑥𝑛𝑛  

 
 = 25 prediction er-

ror equals en = 105 - 25 = 80. The application of 
algorithm 1 reduces the value of coded error to en 
= -53, which cannot be achieved using Equation 
6. Algorithm 2 is used in decoder to reverse map-
ping process and recover the original prediction 
error value.
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 Algorithm 2. Reversing prediction error mapping
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  } 
 } else { 
   = xmax − nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en   − 2|en| + 1; 
   else en   − 2|en|; 
  } 
 } 
 
 

𝐺𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛−1, (8) 
 

𝐺̅𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛, (9) 
 

N𝑒𝑒(𝑖𝑖) = ⌊𝑓𝑓 ∙ 0.8𝑖𝑖⌋ + 1, (10) 

	

Because of the practical aspects of designing 
an adaptive arithmetic coder, one should strive to-
wards a one-sided Laplace distribution. For this 
purpose, instead of using Equation 7, the sym-
metry of distribution received after applying al-
gorithm 1 shall be used, then both absolute value 
of prediction error |en| and its sign shall be coded 
separately. Hence, instead of using the Laplace 
distribution, it is easier to use the geometric distri-
bution, which in classic approach is calculated as:

	

𝑒𝑒𝑛𝑛 = 𝑥𝑥𝑛𝑛 − [𝑥𝑥𝑛𝑛] (1) 
 

𝑥𝑥𝑛𝑛 =∑𝑏𝑏𝑗𝑗
𝑟𝑟

𝑗𝑗=1
∙ 𝑃𝑃(𝑗𝑗) (2) 

 
 

𝑒𝑒𝑛𝑛 =  𝑥𝑥𝑛𝑛 − [𝑥𝑥𝑛𝑛 + 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚] (3) 
 

𝜎̂𝜎2 =∑(𝑥𝑥𝑛𝑛 − 𝑧𝑧𝑖𝑖)2 
8

𝑖𝑖=1
(4) 

 

𝐿𝐿(𝑛𝑛) =

{
 
 

 
 1 − 𝑒𝑒− 

1
√2𝜎𝜎 𝑛𝑛 = 0

1
2 (𝑒𝑒

−|𝑛𝑛|−0.5𝜎𝜎/√2 − 𝑒𝑒−
|𝑛𝑛|+0.5
𝜎𝜎/√2 ) 0 < |𝑛𝑛| < 𝑁𝑁 

1
2 𝑒𝑒

−|𝑛𝑛|−0.5𝜎𝜎/√2 |𝑛𝑛| = 𝑁𝑁

. (5)  

 
𝑒𝑒𝑛𝑛  𝑒𝑒𝑛𝑛 + 256, if 𝑒𝑒𝑛𝑛 < −128 
𝑒𝑒𝑛𝑛  𝑒𝑒𝑛𝑛 − 256, if 𝑒𝑒𝑛𝑛 > 128 . (6) 

 
𝑒𝑒𝑛𝑛  2 ∙ |𝑒𝑒𝑛𝑛 |, if 𝑒𝑒𝑛𝑛 ≥ 0 
𝑒𝑒𝑛𝑛  2 ∙ |𝑒𝑒𝑛𝑛 | − 1, if 𝑒𝑒𝑛𝑛 < 0

. (7) 
 
Algorithm 1. Prediction error mapping 
 = nx̂ ;  
 if ( > (xmax − ))   xmax − ;  
 if (|en| > ) 𝑒𝑒𝑛𝑛 ← ⌊|𝑒𝑒𝑛𝑛|+𝜃𝜃+12 ⌋ ⋅ (1 − 2 ⋅ ((|𝑒𝑒𝑛𝑛| + 𝜃𝜃)&1)); 
 
Algorithm 2. Reversing prediction error mapping 
 if ( nx̂  (xmax − nx̂ )) { 

   = nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en  2|en| −  − 1; 
   else en  2|en| −  ; 
  } 
 } else { 
   = xmax − nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en   − 2|en| + 1; 
   else en   − 2|en|; 
  } 
 } 
 
 

𝐺𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛−1, (8) 
 

𝐺̅𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛, (9) 
 

N𝑒𝑒(𝑖𝑖) = ⌊𝑓𝑓 ∙ 0.8𝑖𝑖⌋ + 1, (10) 

	 (8)
where:	n denotes a positive natural number. 

Because in place of n the integer value of ab-
solute prediction error |en| is to be used, to include 
value 0 as well, it would be more convenient to 
modify equation into:

	

𝑒𝑒𝑛𝑛 = 𝑥𝑥𝑛𝑛 − [𝑥𝑥𝑛𝑛] (1) 
 

𝑥𝑥𝑛𝑛 =∑𝑏𝑏𝑗𝑗
𝑟𝑟

𝑗𝑗=1
∙ 𝑃𝑃(𝑗𝑗) (2) 

 
 

𝑒𝑒𝑛𝑛 =  𝑥𝑥𝑛𝑛 − [𝑥𝑥𝑛𝑛 + 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚] (3) 
 

𝜎̂𝜎2 =∑(𝑥𝑥𝑛𝑛 − 𝑧𝑧𝑖𝑖)2 
8

𝑖𝑖=1
(4) 

 

𝐿𝐿(𝑛𝑛) =

{
 
 

 
 1 − 𝑒𝑒− 

1
√2𝜎𝜎 𝑛𝑛 = 0

1
2 (𝑒𝑒

−|𝑛𝑛|−0.5𝜎𝜎/√2 − 𝑒𝑒−
|𝑛𝑛|+0.5
𝜎𝜎/√2 ) 0 < |𝑛𝑛| < 𝑁𝑁 

1
2 𝑒𝑒

−|𝑛𝑛|−0.5𝜎𝜎/√2 |𝑛𝑛| = 𝑁𝑁

. (5)  

 
𝑒𝑒𝑛𝑛  𝑒𝑒𝑛𝑛 + 256, if 𝑒𝑒𝑛𝑛 < −128 
𝑒𝑒𝑛𝑛  𝑒𝑒𝑛𝑛 − 256, if 𝑒𝑒𝑛𝑛 > 128 . (6) 

 
𝑒𝑒𝑛𝑛  2 ∙ |𝑒𝑒𝑛𝑛 |, if 𝑒𝑒𝑛𝑛 ≥ 0 
𝑒𝑒𝑛𝑛  2 ∙ |𝑒𝑒𝑛𝑛 | − 1, if 𝑒𝑒𝑛𝑛 < 0

. (7) 
 
Algorithm 1. Prediction error mapping 
 = nx̂ ;  
 if ( > (xmax − ))   xmax − ;  
 if (|en| > ) 𝑒𝑒𝑛𝑛 ← ⌊|𝑒𝑒𝑛𝑛|+𝜃𝜃+12 ⌋ ⋅ (1 − 2 ⋅ ((|𝑒𝑒𝑛𝑛| + 𝜃𝜃)&1)); 
 
Algorithm 2. Reversing prediction error mapping 
 if ( nx̂  (xmax − nx̂ )) { 

   = nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en  2|en| −  − 1; 
   else en  2|en| −  ; 
  } 
 } else { 
   = xmax − nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en   − 2|en| + 1; 
   else en   − 2|en|; 
  } 
 } 
 
 

𝐺𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛−1, (8) 
 

𝐺̅𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛, (9) 
 

N𝑒𝑒(𝑖𝑖) = ⌊𝑓𝑓 ∙ 0.8𝑖𝑖⌋ + 1, (10) 

	 (9)
where:	n is a non-negative integer.

EFFICIENT PREDICTION ERRORS 
ENCODING

Practical basics of prediction error coding

The data modeling methods discussed above 
are just preparing the data for the main coding pro-
cedure, during which prediction errors are trans-
formed into a sequence of bits to save in the output 
file. In addition, there is an approach that entirely 
skips the prediction stage and instead of predic-
tion errors it directly adaptively encodes pixel val-
ues [34], however it is the least popular. Usually, 
this results in very high computational complexity 
compared to the methods described in this chap-
ter. To achieve high compression efficiency, the 
Huffman code (or its variations appropriate for 
geometric distribution, such as Golomb or Rice 
codes) and arithmetic code are usually used.

Both Huffman and multi-value arithmetic 
code have an advantage over Rice and Golomb 
codes that the probability distribution is unre-
stricted to any particular type and can be non-
monotonous. It must be stressed, that the classic 
Huffman code is optimal among codes, which can 
be described in the form of a tree. Despite this, 
it also has some disadvantages, for example the 
shortest possible codeword can be 1 bit long, and 
the optimal probability of such coded symbol is 
1/2 (in the case of higher probabilities, the effi-
ciency of Huffman code decreases). Arithmetic 
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code does not suffer from flaws like this, owing to 
algorithm which allows information to be saved 
on a “bit fraction” (sending one bit to the output 
can be a consequence of encoding several infor-
mation modifying floating point base value). For 
this reason, many modern lossless image com-
pression methods use various variants of arith-
metic code, including adaptive binary arithmetic 
code. The integer implementation is described 
in detail in [8]. The use of any of the mentioned 
codes requires a high level of knowledge about 
the data probability distribution. It can be either 
complete knowledge about distribution (static 
data saved in header section of output file, which 
size can have noticeable negative influence on 
compression efficiency) or partial – in form of 
concise parameters description of one of the clas-
sical probability distributions. 

Both approaches can be used in adaptive al-
gorithms. In this case, an initial probability dis-
tribution is determined by knowing the values of 
the parameters. For example, with a geometric 
distribution, the initialization of the probability 
vector is simple and can be defined using a single-
parameter equation [35]:

	

𝑒𝑒𝑛𝑛 = 𝑥𝑥𝑛𝑛 − [𝑥𝑥𝑛𝑛] (1) 
 

𝑥𝑥𝑛𝑛 =∑𝑏𝑏𝑗𝑗
𝑟𝑟

𝑗𝑗=1
∙ 𝑃𝑃(𝑗𝑗) (2) 

 
 

𝑒𝑒𝑛𝑛 =  𝑥𝑥𝑛𝑛 − [𝑥𝑥𝑛𝑛 + 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚] (3) 
 

𝜎̂𝜎2 =∑(𝑥𝑥𝑛𝑛 − 𝑧𝑧𝑖𝑖)2 
8

𝑖𝑖=1
(4) 

 

𝐿𝐿(𝑛𝑛) =

{
 
 

 
 1 − 𝑒𝑒− 

1
√2𝜎𝜎 𝑛𝑛 = 0

1
2 (𝑒𝑒

−|𝑛𝑛|−0.5𝜎𝜎/√2 − 𝑒𝑒−
|𝑛𝑛|+0.5
𝜎𝜎/√2 ) 0 < |𝑛𝑛| < 𝑁𝑁 

1
2 𝑒𝑒

−|𝑛𝑛|−0.5𝜎𝜎/√2 |𝑛𝑛| = 𝑁𝑁

. (5)  

 
𝑒𝑒𝑛𝑛  𝑒𝑒𝑛𝑛 + 256, if 𝑒𝑒𝑛𝑛 < −128 
𝑒𝑒𝑛𝑛  𝑒𝑒𝑛𝑛 − 256, if 𝑒𝑒𝑛𝑛 > 128 . (6) 

 
𝑒𝑒𝑛𝑛  2 ∙ |𝑒𝑒𝑛𝑛 |, if 𝑒𝑒𝑛𝑛 ≥ 0 
𝑒𝑒𝑛𝑛  2 ∙ |𝑒𝑒𝑛𝑛 | − 1, if 𝑒𝑒𝑛𝑛 < 0

. (7) 
 
Algorithm 1. Prediction error mapping 
 = nx̂ ;  
 if ( > (xmax − ))   xmax − ;  
 if (|en| > ) 𝑒𝑒𝑛𝑛 ← ⌊|𝑒𝑒𝑛𝑛|+𝜃𝜃+12 ⌋ ⋅ (1 − 2 ⋅ ((|𝑒𝑒𝑛𝑛| + 𝜃𝜃)&1)); 
 
Algorithm 2. Reversing prediction error mapping 
 if ( nx̂  (xmax − nx̂ )) { 

   = nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en  2|en| −  − 1; 
   else en  2|en| −  ; 
  } 
 } else { 
   = xmax − nx̂ ;  
  if (|en| > ) { 
   if (en < 0) en   − 2|en| + 1; 
   else en   − 2|en|; 
  } 
 } 
 
 

𝐺𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛−1, (8) 
 

𝐺̅𝐺(𝑛𝑛) = (1 − 𝑝𝑝) ∙ 𝑝𝑝𝑛𝑛, (9) 
 

N𝑒𝑒(𝑖𝑖) = ⌊𝑓𝑓 ∙ 0.8𝑖𝑖⌋ + 1, (10) 	 (10)
where:	 i is a value from [0.255] range, and f is an 

amplitude. 

Good results were obtained when f = 10. Here, 
symmetry of the distribution for negative numbers 
is assumed. 

Adaptation means that after reading and 
encoding each next absolute prediction error 
|en| =  |e(0)|, the values stored in vector Ne under 
index |en| are updated by 1: Ne(|en|) ¬ Ne(|en|) + 1. 
The current probability of value |en| is calculated 
as a ratio of the Ne(|en|)  to the total count of all 
encoded prediction errors so far. It is noteworthy 
that the initial setting is usually non-optimal. Sec-
ondly, randomly incoming data at the beginning 
can noticeably alert temporary probability distri-
bution (comparing to the real distribution of the 
entire file content). For this reason, it is worth to 
experimentally estimate the initial probabilities.

As an example, the binary distribution was 
analyzed, where two fractions 1/2 and 6/18 give 
the same result 0.5, which is the initial probabil-
ity of occurrence of bit 0. During encoding phase, 
after receiving another 0, the probabilities were 
updated to 2/3 in the first case, and to 9/17 in the 
second case (here, the percentage increase is much 

lower). Without knowledge about the real distribu-
tion, even in such trivial case it cannot be judged 
which version is more efficient. A lot of depends 
on what was the expected probability value (aver-
age of whole file, which could be equal to e.g. 0.3) 
and if the first adaptation causes change forwards 
correct or the opposite (distancing from expected 
decisively) direction. Therefore, when designing 
a codec that uses the adaptive form of probability 
distribution, the value of the parameter f in Equa-
tion 10 should be determined on the basis of pre-
liminary statistical analysis using a training set.

Moreover, the possibility of variability in 
distribution features in different areas of the en-
coded image (non-stationary data) should be con-
sidered. This is why it is worth introducing the 
forgetting mechanism to reduce occurrence coun-
ters that have not been encoded lately or have oc-
curred rarely in comparison to earlier encoding 
stages [36]. For this purpose, it is necessary to 
monitor the total count of values encoded so far 
(more specifically, the counter that increases by 
one each time |en| is encoded). When the counter 
reaches Nmax = 2s, then all elements from vector 
of occurrences are halved using the assignment:

	 Ne(𝑖𝑖) ← ⌊Ne(𝑖𝑖)
2 ⌋ + 1, for 𝑖𝑖 ∈ [0, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚] (11) 

 
𝜔𝜔1 = max {2.3|𝑒𝑒(1)|, 2|𝑒𝑒(2)|1.6|𝑒𝑒(4)|, 0.95(|𝑒𝑒(3)| + |𝑒𝑒(4)|), 1.25(|𝑒𝑒(5)| + |𝑒𝑒(10)|),

 1.3|(𝑒𝑒(3)|,1.375(|𝑒𝑒(1)| + |𝑒𝑒(2)|),0.4(|𝑒𝑒(6)| + |𝑒𝑒(7)|),0.4(|𝑒𝑒(8)| + |𝑒𝑒(9)|)} (12) 

 

𝜔𝜔2 = 1
𝛿𝛿 ∑ 𝑑̅𝑑𝑗𝑗 ∙ |𝑒𝑒(𝑗𝑗)|,

𝑚𝑚

𝑗𝑗=1
(13) 

 

𝛿𝛿 = ∑ 𝑑̄𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1
, (14) 

 

𝑑̄𝑑𝑗𝑗 = 1

√(𝛥𝛥𝑥𝑥𝑗𝑗)2 + (𝛥𝛥𝑦𝑦𝑗𝑗)2
, (15)

 

 
𝜔𝜔3 = 𝑚𝑚𝑚𝑚𝑚𝑚{ |𝑃𝑃(1) − 𝑃𝑃(3)|, |𝑃𝑃(2) − 𝑃𝑃(4)|, 1.1|𝑃𝑃(1) − 𝑃𝑃(2)|, 0.7|𝑃𝑃(2) − 𝑃𝑃(3)|,
 0.9|𝑃𝑃(1) − 𝑃𝑃(4)|, 0.9|𝑃𝑃(3) − 𝑃𝑃(4)|} (16) 

 
𝜔𝜔 = ℎ1 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚{ 2.1 ⋅ ℎ3 ⋅ 𝜔𝜔1, 11.5 ⋅ 𝜔𝜔2} +

+ 0.5 ⋅ ℎ2
3𝑑𝑑 + 1 ⋅ 𝜔𝜔3 (17) 

 

𝑉𝑉(𝑖𝑖) =
(2 ⋅ 𝑖𝑖 + 1) ⋅ ℎ

32 , for 𝑖𝑖 = 1, . . . ,16 (18) 

 

𝑝𝑝 = 𝑆𝑆
𝑆𝑆 + 1 (19) 

 

𝑚𝑚 = ⌈− log10( 1 + 𝑝𝑝)
log10 𝑝𝑝 ⌉ (20) 

 

𝑢𝑢𝐺𝐺 = ⌊
|𝑒𝑒𝑛𝑛|
𝑚𝑚 ⌋ (21) 

 
𝑣𝑣𝐺𝐺 = |𝑒𝑒𝑛𝑛| − 𝑢𝑢𝐺𝐺 ⋅ 𝑚𝑚 (22) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑢𝑢 = 6 ⋅ (24 ⋅ 𝑏𝑏Golomb + 𝑏𝑏main ctx) + 𝑏𝑏unary (23) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑣𝑣 = 24 ⋅ (2 ⋅ 𝑏𝑏Golomb + 𝑏𝑏phased-in) +

+ 23 ⋅ 𝑏𝑏𝜔𝜔 + 22 ⋅ 𝑏𝑏binary + 𝑏𝑏unary2
(24)

 

 

	 (11)

After scaling, the total occurrence counter is 
recalculated as the sum of all i elements from the 
vector of occurrences Ne. Good results are offered 
by s ≥ 10. This mechanism can be described as a 
long-term adaptation.

Use cases of CMTF method

Similarly to linear prediction a classic Move To 
Front (MTF) method is used for data modeling. Data 
obtained after transformation with MTF is character-
ized by a more favorable probability distribution.

For some images (especially those with a high 
level of noise), even a highly efficient prediction 
method does not yield a decreasing probability 
distribution function of the absolute prediction er-
rors |en|, which is the case with a geometric distri-
bution. In this situation, the modified conditional 
MTF (CMTF) method can be used. The version 
proposed here is beneficial in arrangement of val-
ues |en| by the decreasing occurrence number, but 
it is happening gradually after successively en-
coded prediction errors. Assuming that the prob-
ability distribution of |en| is unknown, a 2-row 
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table is built before coding begins. The first row 
stores sequentially arranged values {0, 1, 2,..., 
|emax|}, while the second row stores the occurrence 
counters of each |en|. Initially, all elements in the 
second row are set to 0. During encoding phase 
of |en|, the value of index In to the table element 
associated with |en| is determined. For example, if 
|en| = 5, then the initial index is In = 5. The index 
is then encoded with arithmetic code, and the oc-
currence counter associated with the prediction 
error |en| = 5 is incremented by 1. In addition, a 
comparison between the two adjacent indices is 
performed: In = 5 and its preceding index Ileft = 
4. If occurrence counters are not sorted descend-
ingly, they are swapped (like in bubble sort). This 
means that if the next encoded value would be |en| 
= 5 once again, then its index in table would be 
In = 4, therefore 4 would be encoded. In this way, 
the most frequent |en| values in table are gradually 
moving towards the beginning of index table (in 
classic MTF each |en| occurrence moves itself to 
the front without checking how many times this 
value occurred earlier). 

The proposed CMTF method can be option-
ally activated at the stage of tuning the parameters 
of the arithmetic encoder.

Context based division in arithmetic code

Beside long-term adaptation described earlier 
in the Practical basics of prediction error coding 
chapter, the fact that there are short-term depen-
dencies between successively encoded data can 
also be used by analyzing the nearest neighbor-
hood consisting of pixels P(j) and prediction er-
rors e(j) (consistent with the spatial arrangement 
presented in Figure 1).

On the basis of the characteristics of neighbor-
ing prediction errors, it is possible to determine 
approximate type of probability distribution of 
currently encoded |en| value quite accurately. Ac-
cording to this assumption, a contextual arithme-
tic coder that does not have one, but t probability 
distributions associated with appropriate context 
numbers (classes of different characteristics) from 
0 to t – 1 can be designed. Theoretically, with an 
increase in the number of contexts, improvement 
of compression efficiency is expected. Assuming 
that the distributions are not known beforehand, 
because their form is being built with the back-
ward adaptation method, the problem of context 
dilution is encountered, which results in too slow 
adaptation of distributions. Adaptive distribution 

adaptation is expected to quickly estimate the 
target form for each of t distribution. Therefore, 
a compromise must be made between the number 
of contexts and the speed of the distribution ad-
aptation. Sometimes, only few contexts are used 
(4 in [37] or 8 in [38]). However, the most com-
mon method is to use a dozen, for example, 12 
used in [39] or 16 used in [40]. In one case, as 
many as 20 contexts were used [41]. An analysis 
of the influence of the number of contexts on the 
bit average was presented in [42]. In this paper, 
using 16 contexts was proposed, and the context 
division details were described in the Rules of 
context number calculation – proposal 1 section.

The first idea for a twice as fast adaptation of 
distributions in the case of many contexts is the 
fact of prediction error distribution symmetry and 
separate encoding of the absolute error |en| value 
and its sign bit (for 0, there is no need to store sign 
data). The second idea is to use range encoder.

Range encoder

In contextual encoding, additional mecha-
nisms are often used to increase the speed of 
adaptation of distributions associated with an ap-
propriate context. One of them is to divide the |en| 
values into two ranges [43]. The first one is used 
in 95% of the cases and it covers typical errors 
from range [0; D]. The second one covers values 
larger than D, which rarely occur. Both ranges are 
encoded using different probability distributions. 
Saving of value |en| > D requires encoding of es-
cape signal in the form: (D + 1), and then comple-
mentary value in the form |en| - D, but based on 
the probability of rare values. This idea can be 
extended to more ranges, which requires iterative 
usage of escape signal [37].

The second approach, which also divides |en| 
values into ranges is based on |en| quantization 
[22]. The |en| values from range [0, 255] are cast-
ed into a smaller range k, for example from 0 to 
17. This technique is used in many coding meth-
ods, including the JPEG standard [8] being one of 
them. The quantization technique, together with 
lossless prediction error encoding, is designed to 
divide a single |en| into two values. Then, they are 
encoded with different distributions (it is some-
times assumed that the residue value left after 
quantization is encoded as a bit stream without 
compression). The quantization and encoding 
phases are described below.

At the beginning, having an example set of 
consecutive quantization thresholds T = {0, 1, 
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2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 32, 64, 
128} the value of k is calculated using relation 
T(k) ≤  |en| < T(k + 1). The quantized value k is 
then sent to multi-value arithmetic coder, and 
encoded after associating it with an appropriate 
probability distribution assigned to given context. 
Residue eq = |en| - T(k) produced after quantiza-
tion is treated as q(k) bit value where q(k) is read 
as k-th value from vector q = {0, 0, 0, 0, 0, 0, 0, 0, 
1, 1, 1, 1, 2, 2, 3, 5, 6, 7}. If q(k) > 0, then eq can 
be sent to the output as a sequence of q(k) bits or 
encoded via one of the seven adaptive arithmetic 
coders (of index q(k)).

To decode, the k value is read. k is an index 
pointing to the threshold vector T and to the vec-
tor q that stores the number of quantization bits. 
When q(k) > 0, then decoder (of index q(k)) reads 
residue eq value, otherwise eq = 0. In the next step, 
|en| is determined using relation: |en| = T(k) + eq.

Let |en| = 29, then T(14) = 24 ≤ 29 < T(15) = 32, 
which means k = 14, T(14) = 24, eq = 29 – 24 = 5, 
q(14) = 3, therefore value eq = 5 is encoded using 
third arithmetic coder for quantization residues 
(which encodes 3-bit integer values from 0 to 7). 
On the decoder side, value is reconstructed as |en| 
= T(14) + eq = 24 + 5 = 29.

Instead of quantizing prediction errors to en-
code |en|, a binary arithmetic coder can be used. 
This will be discussed in the Binary adaptive 
arithmetic coder section.

In addition to coding with backward adapta-
tion for updating probability distributions, an-
other possibility emerges, in which initial and 
fairly accurate average probability distributions 
are assumed for each context. The version with 
forward adaptation requires saving of distribu-
tion parameters in header section. In this case, an 
arithmetic coder can be designed that determines 
the individual probability distribution for each 
consecutively encoded pixel. This is a very com-
plex problem, because it is needed to find the best 
possible mathematical description of distribution 
that matches a certain image or class of images. 
An analysis of this approach, based on Laplace, 
Gaussian, Student’s t-distribution and general-
ized Gaussian distributions was performed in 

[44]. Its conclusions were used in [40], where 
generalized Gaussian distribution was utilized 
to set individual parameter for every context. A 
similar solution, but based on Student’s t distri-
bution, was applied in the TMW method [12], 
where probability distribution blending was also 
introduced. 

Rules of context number calculation – proposal 1

The proposed solution consists of 16 main 
contexts with pre-initialized distributions and an 
adaptive rule for their update along with each next 
encoded pixel. This enables to use both multi-val-
ue and binary variant of arithmetic code. 

An important factor affecting compression 
efficiency is the correct choice of decision rule 
that determines the context number (it is a form 
of short-term adaptation). The first rule presented 
here extends the concept proposed by Deng et al. 
[41, 45]. Value ω1 is calculated based on predic-
tion errors e(j) from nearest neighborhood, where 
j is a neighbor index (see Figure 1) (Equation 12).

Slightly different approaches were used in 
[14, 42]. In the solution proposed here, similarly 
to [14], the next parameter ω2 is calculated as 
weighted average of m = 28 absolute errors |e(j)| 
from nearest neighborhood:
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where the normalizing factor δ is calculated as:
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and weights as:
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where: Dxj and Dyj are horizontal and vertical dis-
tance between pixels P(j) and P(0). 

The next step is to use the correlation between 
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𝜔𝜔3 = 𝑚𝑚𝑚𝑚𝑚𝑚{ |𝑃𝑃(1) − 𝑃𝑃(3)|, |𝑃𝑃(2) − 𝑃𝑃(4)|, 1.1|𝑃𝑃(1) − 𝑃𝑃(2)|, 0.7|𝑃𝑃(2) − 𝑃𝑃(3)|,
 0.9|𝑃𝑃(1) − 𝑃𝑃(4)|, 0.9|𝑃𝑃(3) − 𝑃𝑃(4)|} (16) 

 
𝜔𝜔 = ℎ1 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚{ 2.1 ⋅ ℎ3 ⋅ 𝜔𝜔1, 11.5 ⋅ 𝜔𝜔2} +

+ 0.5 ⋅ ℎ2
3𝑑𝑑 + 1 ⋅ 𝜔𝜔3 (17) 

 

𝑉𝑉(𝑖𝑖) =
(2 ⋅ 𝑖𝑖 + 1) ⋅ ℎ

32 , for 𝑖𝑖 = 1, . . . ,16 (18) 

 

𝑝𝑝 = 𝑆𝑆
𝑆𝑆 + 1 (19) 

 

𝑚𝑚 = ⌈− log10( 1 + 𝑝𝑝)
log10 𝑝𝑝 ⌉ (20) 

 

𝑢𝑢𝐺𝐺 = ⌊
|𝑒𝑒𝑛𝑛|
𝑚𝑚 ⌋ (21) 

 
𝑣𝑣𝐺𝐺 = |𝑒𝑒𝑛𝑛| − 𝑢𝑢𝐺𝐺 ⋅ 𝑚𝑚 (22) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑢𝑢 = 6 ⋅ (24 ⋅ 𝑏𝑏Golomb + 𝑏𝑏main ctx) + 𝑏𝑏unary (23) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑣𝑣 = 24 ⋅ (2 ⋅ 𝑏𝑏Golomb + 𝑏𝑏phased-in) +

+ 23 ⋅ 𝑏𝑏𝜔𝜔 + 22 ⋅ 𝑏𝑏binary + 𝑏𝑏unary2
(24)
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On the basis of parameters ωi the final value 
of ω can be calculated:

	

Ne(𝑖𝑖) ← ⌊Ne(𝑖𝑖)
2 ⌋ + 1, for 𝑖𝑖 ∈ [0, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚] (11) 

 
𝜔𝜔1 = max {2.3|𝑒𝑒(1)|, 2|𝑒𝑒(2)|1.6|𝑒𝑒(4)|, 0.95(|𝑒𝑒(3)| + |𝑒𝑒(4)|), 1.25(|𝑒𝑒(5)| + |𝑒𝑒(10)|),

 1.3|(𝑒𝑒(3)|,1.375(|𝑒𝑒(1)| + |𝑒𝑒(2)|),0.4(|𝑒𝑒(6)| + |𝑒𝑒(7)|),0.4(|𝑒𝑒(8)| + |𝑒𝑒(9)|)} (12) 

 

𝜔𝜔2 = 1
𝛿𝛿 ∑ 𝑑̅𝑑𝑗𝑗 ∙ |𝑒𝑒(𝑗𝑗)|,

𝑚𝑚

𝑗𝑗=1
(13) 

 

𝛿𝛿 = ∑ 𝑑̄𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1
, (14) 

 

𝑑̄𝑑𝑗𝑗 = 1

√(𝛥𝛥𝑥𝑥𝑗𝑗)2 + (𝛥𝛥𝑦𝑦𝑗𝑗)2
, (15)

 

 
𝜔𝜔3 = 𝑚𝑚𝑚𝑚𝑚𝑚{ |𝑃𝑃(1) − 𝑃𝑃(3)|, |𝑃𝑃(2) − 𝑃𝑃(4)|, 1.1|𝑃𝑃(1) − 𝑃𝑃(2)|, 0.7|𝑃𝑃(2) − 𝑃𝑃(3)|,
 0.9|𝑃𝑃(1) − 𝑃𝑃(4)|, 0.9|𝑃𝑃(3) − 𝑃𝑃(4)|} (16) 

 
𝜔𝜔 = ℎ1 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚{ 2.1 ⋅ ℎ3 ⋅ 𝜔𝜔1, 11.5 ⋅ 𝜔𝜔2} +

+ 0.5 ⋅ ℎ2
3𝑑𝑑 + 1 ⋅ 𝜔𝜔3 (17) 

 

𝑉𝑉(𝑖𝑖) =
(2 ⋅ 𝑖𝑖 + 1) ⋅ ℎ

32 , for 𝑖𝑖 = 1, . . . ,16 (18) 

 

𝑝𝑝 = 𝑆𝑆
𝑆𝑆 + 1 (19) 

 

𝑚𝑚 = ⌈− log10( 1 + 𝑝𝑝)
log10 𝑝𝑝 ⌉ (20) 

 

𝑢𝑢𝐺𝐺 = ⌊
|𝑒𝑒𝑛𝑛|
𝑚𝑚 ⌋ (21) 

 
𝑣𝑣𝐺𝐺 = |𝑒𝑒𝑛𝑛| − 𝑢𝑢𝐺𝐺 ⋅ 𝑚𝑚 (22) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑢𝑢 = 6 ⋅ (24 ⋅ 𝑏𝑏Golomb + 𝑏𝑏main ctx) + 𝑏𝑏unary (23) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑣𝑣 = 24 ⋅ (2 ⋅ 𝑏𝑏Golomb + 𝑏𝑏phased-in) +

+ 23 ⋅ 𝑏𝑏𝜔𝜔 + 22 ⋅ 𝑏𝑏binary + 𝑏𝑏unary2
(24)

 

 

	(17)

where:	 parameter d is the maximal allowed error 
value in near-lossless mode [46, 47] (loss-
less mode is obtained with d = 0). 

In basic version the scaling parameters h1, h2 
and h3 are equal to 1. They can be used for ad-
ditional adaptation to currently encoded image, 
however, it requires many repetitions of predic-
tion errors encoding.

The value ω is a subject to non-uniform quan-
tization (of an approximately logarithmic nature) 
with t  –1 thresholds Th(i) to obtain arithmetic 
context number connected to current probability 
distribution. For example, with t = 16 the thresh-
olds are Th = {3, 7, 12, 18, 24, 31, 39, 49, 59, 72, 
90, 115, 140, 170, 210}.

Figures 6a and 6b show two examples of 
probability distributions of k (quantized accord-
ing to the description in Range encoder section) 
in context of number 0 and 4 for test image Hotel.

Rules of context number calculation – proposal 2

Although in most cases the contextual di-
vision based on the set of rules described in 
previous section works well, for some images, 
a completely different approach may be more 
cost-efficient. The next proposition also uses t 
= 16 main contexts. It can be used for images 
with clusters of visibly uneven distribution of 
grayscale values, to which the adaptive scalar 
quantizer easily adjusts. 

After using shade reduction mechanism, 
input data values from 0 to h  –  1 are obtained. 

Therefore, the use of any prediction method will 
lead to calculating predicted value 𝑥𝑥𝑛𝑛  

 
 within the 

same range. It can be quantized to one of 16 val-
ues, which then will become a main context num-
ber. Because of adaptive nature of the algorithm, 
a centroid is initialized as:

	

Ne(𝑖𝑖) ← ⌊Ne(𝑖𝑖)
2 ⌋ + 1, for 𝑖𝑖 ∈ [0, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚] (11) 

 
𝜔𝜔1 = max {2.3|𝑒𝑒(1)|, 2|𝑒𝑒(2)|1.6|𝑒𝑒(4)|, 0.95(|𝑒𝑒(3)| + |𝑒𝑒(4)|), 1.25(|𝑒𝑒(5)| + |𝑒𝑒(10)|),

 1.3|(𝑒𝑒(3)|,1.375(|𝑒𝑒(1)| + |𝑒𝑒(2)|),0.4(|𝑒𝑒(6)| + |𝑒𝑒(7)|),0.4(|𝑒𝑒(8)| + |𝑒𝑒(9)|)} (12) 

 

𝜔𝜔2 = 1
𝛿𝛿 ∑ 𝑑̅𝑑𝑗𝑗 ∙ |𝑒𝑒(𝑗𝑗)|,

𝑚𝑚

𝑗𝑗=1
(13) 

 

𝛿𝛿 = ∑ 𝑑̄𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1
, (14) 

 

𝑑̄𝑑𝑗𝑗 = 1

√(𝛥𝛥𝑥𝑥𝑗𝑗)2 + (𝛥𝛥𝑦𝑦𝑗𝑗)2
, (15)

 

 
𝜔𝜔3 = 𝑚𝑚𝑚𝑚𝑚𝑚{ |𝑃𝑃(1) − 𝑃𝑃(3)|, |𝑃𝑃(2) − 𝑃𝑃(4)|, 1.1|𝑃𝑃(1) − 𝑃𝑃(2)|, 0.7|𝑃𝑃(2) − 𝑃𝑃(3)|,
 0.9|𝑃𝑃(1) − 𝑃𝑃(4)|, 0.9|𝑃𝑃(3) − 𝑃𝑃(4)|} (16) 

 
𝜔𝜔 = ℎ1 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚{ 2.1 ⋅ ℎ3 ⋅ 𝜔𝜔1, 11.5 ⋅ 𝜔𝜔2} +

+ 0.5 ⋅ ℎ2
3𝑑𝑑 + 1 ⋅ 𝜔𝜔3 (17) 

 

𝑉𝑉(𝑖𝑖) =
(2 ⋅ 𝑖𝑖 + 1) ⋅ ℎ

32 , for 𝑖𝑖 = 1, . . . ,16 (18) 

 

𝑝𝑝 = 𝑆𝑆
𝑆𝑆 + 1 (19) 

 

𝑚𝑚 = ⌈− log10( 1 + 𝑝𝑝)
log10 𝑝𝑝 ⌉ (20) 

 

𝑢𝑢𝐺𝐺 = ⌊
|𝑒𝑒𝑛𝑛|
𝑚𝑚 ⌋ (21) 

 
𝑣𝑣𝐺𝐺 = |𝑒𝑒𝑛𝑛| − 𝑢𝑢𝐺𝐺 ⋅ 𝑚𝑚 (22) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑢𝑢 = 6 ⋅ (24 ⋅ 𝑏𝑏Golomb + 𝑏𝑏main ctx) + 𝑏𝑏unary (23) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑣𝑣 = 24 ⋅ (2 ⋅ 𝑏𝑏Golomb + 𝑏𝑏phased-in) +

+ 23 ⋅ 𝑏𝑏𝜔𝜔 + 22 ⋅ 𝑏𝑏binary + 𝑏𝑏unary2
(24)

 

 

	 (18)

The initial occurrence counter for each cen-
troid was set to 8. Then, during encoding of each 
subsequent pixel, the number of the winning i-th 
centroid is adapted (occurrence counter is incre-
mented by 1) and based on 𝑥𝑥𝑛𝑛  

 
 centroid value is 

also updated (arithmetic mean of previous values 
assigned to i-th centroid). After initial learning 
phase centroid values reflects central points of 
clusters quite well.

Binary adaptive arithmetic coder

Although in the case of a multi-valued 
arithmetic encoder, the proposition to quantize 
prediction errors and to make use of prediction 
errors distribution symmetry increases speed of 
distribution adaptation in many contexts, there 
is competitive solution that can offer even high-
er efficiency, namely CABAC. CABAC uses a 
higher number of contexts and an individual ap-
proach towards every bit. Moreover, assuming 
geometric distribution, adaptive Golomb code 
can be used at the initial stage and its binary 
output can be passed to one of the three adap-
tive binary arithmetic coders. Each of these 
coders has its own method for determining the 
context number, which is associated with the 
individual occurrence probability distribution 
of bits 0 and 1.

Figure 6. Probability distribution of k in image Hotel in context: (a) 0, (b) 4
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Adaptive Golomb code

Division into 16 main contexts described in 
the Rules of context number calculation – pro-
posal 1 section refers to the short-term energy 
variation of the prediction error signal, but it is 
not sufficient to satisfactorily consider all the de-
pendencies that affect the best possible estimation 
of the probability distribution for the currently 
encoded value |en|. In the case of the prediction er-
ror stream, the assumption is made about the me-
dium-term stationarity of its distribution, which 
is usually close to the geometrical distribution 
(see Equation 9). Data with such characteristics 
can be encoded in a highly efficient manner us-
ing the Golomb code family, which was used, i.a. 
LOCO-I [9].

The integer group value m (also called the 
Golomb code order) is selected according to the 
fit of the data to the distribution G(n), which is 
dependent on the parameter p. This translates into 
approximation pm ≈ 1/2.

To consider the variability of the medium-
term characteristics of the probability distribu-
tion, an individual group number m is calculated 
for each sequentially coded |en|. For this purpose, 
the method of adaptive average cost of coding 
with the Golomb code using one of six appro-
priately selected probability distributions can be 
used. This means, that six values of m are allowed 
to be in the vector m. To calculate the current pre-
dicted value of m, it is needed to firstly calculate 
p using the following formula:

	

Ne(𝑖𝑖) ← ⌊Ne(𝑖𝑖)
2 ⌋ + 1, for 𝑖𝑖 ∈ [0, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚] (11) 

 
𝜔𝜔1 = max {2.3|𝑒𝑒(1)|, 2|𝑒𝑒(2)|1.6|𝑒𝑒(4)|, 0.95(|𝑒𝑒(3)| + |𝑒𝑒(4)|), 1.25(|𝑒𝑒(5)| + |𝑒𝑒(10)|),

 1.3|(𝑒𝑒(3)|,1.375(|𝑒𝑒(1)| + |𝑒𝑒(2)|),0.4(|𝑒𝑒(6)| + |𝑒𝑒(7)|),0.4(|𝑒𝑒(8)| + |𝑒𝑒(9)|)} (12) 

 

𝜔𝜔2 = 1
𝛿𝛿 ∑ 𝑑̅𝑑𝑗𝑗 ∙ |𝑒𝑒(𝑗𝑗)|,

𝑚𝑚

𝑗𝑗=1
(13) 

 

𝛿𝛿 = ∑ 𝑑̄𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1
, (14) 

 

𝑑̄𝑑𝑗𝑗 = 1

√(𝛥𝛥𝑥𝑥𝑗𝑗)2 + (𝛥𝛥𝑦𝑦𝑗𝑗)2
, (15)

 

 
𝜔𝜔3 = 𝑚𝑚𝑚𝑚𝑚𝑚{ |𝑃𝑃(1) − 𝑃𝑃(3)|, |𝑃𝑃(2) − 𝑃𝑃(4)|, 1.1|𝑃𝑃(1) − 𝑃𝑃(2)|, 0.7|𝑃𝑃(2) − 𝑃𝑃(3)|,
 0.9|𝑃𝑃(1) − 𝑃𝑃(4)|, 0.9|𝑃𝑃(3) − 𝑃𝑃(4)|} (16) 

 
𝜔𝜔 = ℎ1 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚{ 2.1 ⋅ ℎ3 ⋅ 𝜔𝜔1, 11.5 ⋅ 𝜔𝜔2} +

+ 0.5 ⋅ ℎ2
3𝑑𝑑 + 1 ⋅ 𝜔𝜔3 (17) 

 

𝑉𝑉(𝑖𝑖) =
(2 ⋅ 𝑖𝑖 + 1) ⋅ ℎ

32 , for 𝑖𝑖 = 1, . . . ,16 (18) 

 

𝑝𝑝 = 𝑆𝑆
𝑆𝑆 + 1 (19) 

 

𝑚𝑚 = ⌈− log10( 1 + 𝑝𝑝)
log10 𝑝𝑝 ⌉ (20) 

 

𝑢𝑢𝐺𝐺 = ⌊
|𝑒𝑒𝑛𝑛|
𝑚𝑚 ⌋ (21) 

 
𝑣𝑣𝐺𝐺 = |𝑒𝑒𝑛𝑛| − 𝑢𝑢𝐺𝐺 ⋅ 𝑚𝑚 (22) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑢𝑢 = 6 ⋅ (24 ⋅ 𝑏𝑏Golomb + 𝑏𝑏main ctx) + 𝑏𝑏unary (23) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑣𝑣 = 24 ⋅ (2 ⋅ 𝑏𝑏Golomb + 𝑏𝑏phased-in) +

+ 23 ⋅ 𝑏𝑏𝜔𝜔 + 22 ⋅ 𝑏𝑏binary + 𝑏𝑏unary2
(24)

 

 

	 (19)

where:	 the expected value S = ω2 (see Equation 
13) with m = 48. 

Having p calculated, m can be calculated us-
ing formula presented in [48, 49]:

	

Ne(𝑖𝑖) ← ⌊Ne(𝑖𝑖)
2 ⌋ + 1, for 𝑖𝑖 ∈ [0, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚] (11) 

 
𝜔𝜔1 = max {2.3|𝑒𝑒(1)|, 2|𝑒𝑒(2)|1.6|𝑒𝑒(4)|, 0.95(|𝑒𝑒(3)| + |𝑒𝑒(4)|), 1.25(|𝑒𝑒(5)| + |𝑒𝑒(10)|),

 1.3|(𝑒𝑒(3)|,1.375(|𝑒𝑒(1)| + |𝑒𝑒(2)|),0.4(|𝑒𝑒(6)| + |𝑒𝑒(7)|),0.4(|𝑒𝑒(8)| + |𝑒𝑒(9)|)} (12) 

 

𝜔𝜔2 = 1
𝛿𝛿 ∑ 𝑑̅𝑑𝑗𝑗 ∙ |𝑒𝑒(𝑗𝑗)|,

𝑚𝑚

𝑗𝑗=1
(13) 

 

𝛿𝛿 = ∑ 𝑑̄𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1
, (14) 

 

𝑑̄𝑑𝑗𝑗 = 1

√(𝛥𝛥𝑥𝑥𝑗𝑗)2 + (𝛥𝛥𝑦𝑦𝑗𝑗)2
, (15)

 

 
𝜔𝜔3 = 𝑚𝑚𝑚𝑚𝑚𝑚{ |𝑃𝑃(1) − 𝑃𝑃(3)|, |𝑃𝑃(2) − 𝑃𝑃(4)|, 1.1|𝑃𝑃(1) − 𝑃𝑃(2)|, 0.7|𝑃𝑃(2) − 𝑃𝑃(3)|,
 0.9|𝑃𝑃(1) − 𝑃𝑃(4)|, 0.9|𝑃𝑃(3) − 𝑃𝑃(4)|} (16) 

 
𝜔𝜔 = ℎ1 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚{ 2.1 ⋅ ℎ3 ⋅ 𝜔𝜔1, 11.5 ⋅ 𝜔𝜔2} +

+ 0.5 ⋅ ℎ2
3𝑑𝑑 + 1 ⋅ 𝜔𝜔3 (17) 

 

𝑉𝑉(𝑖𝑖) =
(2 ⋅ 𝑖𝑖 + 1) ⋅ ℎ

32 , for 𝑖𝑖 = 1, . . . ,16 (18) 

 

𝑝𝑝 = 𝑆𝑆
𝑆𝑆 + 1 (19) 

 

𝑚𝑚 = ⌈− log10( 1 + 𝑝𝑝)
log10 𝑝𝑝 ⌉ (20) 

 

𝑢𝑢𝐺𝐺 = ⌊
|𝑒𝑒𝑛𝑛|
𝑚𝑚 ⌋ (21) 

 
𝑣𝑣𝐺𝐺 = |𝑒𝑒𝑛𝑛| − 𝑢𝑢𝐺𝐺 ⋅ 𝑚𝑚 (22) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑢𝑢 = 6 ⋅ (24 ⋅ 𝑏𝑏Golomb + 𝑏𝑏main ctx) + 𝑏𝑏unary (23) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑣𝑣 = 24 ⋅ (2 ⋅ 𝑏𝑏Golomb + 𝑏𝑏phased-in) +

+ 23 ⋅ 𝑏𝑏𝜔𝜔 + 22 ⋅ 𝑏𝑏binary + 𝑏𝑏unary2
(24)

 

 

	 (20)

It is also possible to use the fact that there 
is a linear relationship between m and S values 
that equals m ≈ ln(2)·S [50]. Experimental studies 
have shown that in the case of image encoding, 
the best fit to vector m is achieved by quantizing 
the value ln(2)·S into one of six intervals with the 
following quantization thresholds {0.01, 1.5, 3.6, 
11.0, 16.0}. This gives us an index (integer value 
from 0 to 5, hereinafter referred to as bGolomb) to 
corresponding value in the vector m = {1, 1, 2, 

3, 4, 12}. It automatically becomes the number 
of probability distribution (one of six). The value 
bGolomb is a fragment of the context number and is 
invariant during encoding all bits of next Golomb 
codeword that represents |en|.

Such mechanism of selecting parameter 
bGolomb in a highly flexible manner adapts to the 
local features of probability distribution of cur-
rently encoded prediction errors, as well as to the 
rate of change of the features of this distribution. 
Selection of the parameter m from only six val-
ues is a compromise approach with regard to the 
constant adaptation of each probability distribu-
tion, which are used by binary arithmetic coder 
that encodes the binary output of Golomb coder.

The Golomb codeword encoding |en| value 
consist of two elements. The first one is the uG 
which determines group number:

	

Ne(𝑖𝑖) ← ⌊Ne(𝑖𝑖)
2 ⌋ + 1, for 𝑖𝑖 ∈ [0, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚] (11) 

 
𝜔𝜔1 = max {2.3|𝑒𝑒(1)|, 2|𝑒𝑒(2)|1.6|𝑒𝑒(4)|, 0.95(|𝑒𝑒(3)| + |𝑒𝑒(4)|), 1.25(|𝑒𝑒(5)| + |𝑒𝑒(10)|),

 1.3|(𝑒𝑒(3)|,1.375(|𝑒𝑒(1)| + |𝑒𝑒(2)|),0.4(|𝑒𝑒(6)| + |𝑒𝑒(7)|),0.4(|𝑒𝑒(8)| + |𝑒𝑒(9)|)} (12) 

 

𝜔𝜔2 = 1
𝛿𝛿 ∑ 𝑑̅𝑑𝑗𝑗 ∙ |𝑒𝑒(𝑗𝑗)|,

𝑚𝑚

𝑗𝑗=1
(13) 

 

𝛿𝛿 = ∑ 𝑑̄𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1
, (14) 

 

𝑑̄𝑑𝑗𝑗 = 1

√(𝛥𝛥𝑥𝑥𝑗𝑗)2 + (𝛥𝛥𝑦𝑦𝑗𝑗)2
, (15)

 

 
𝜔𝜔3 = 𝑚𝑚𝑚𝑚𝑚𝑚{ |𝑃𝑃(1) − 𝑃𝑃(3)|, |𝑃𝑃(2) − 𝑃𝑃(4)|, 1.1|𝑃𝑃(1) − 𝑃𝑃(2)|, 0.7|𝑃𝑃(2) − 𝑃𝑃(3)|,
 0.9|𝑃𝑃(1) − 𝑃𝑃(4)|, 0.9|𝑃𝑃(3) − 𝑃𝑃(4)|} (16) 

 
𝜔𝜔 = ℎ1 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚{ 2.1 ⋅ ℎ3 ⋅ 𝜔𝜔1, 11.5 ⋅ 𝜔𝜔2} +

+ 0.5 ⋅ ℎ2
3𝑑𝑑 + 1 ⋅ 𝜔𝜔3 (17) 

 

𝑉𝑉(𝑖𝑖) =
(2 ⋅ 𝑖𝑖 + 1) ⋅ ℎ

32 , for 𝑖𝑖 = 1, . . . ,16 (18) 

 

𝑝𝑝 = 𝑆𝑆
𝑆𝑆 + 1 (19) 

 

𝑚𝑚 = ⌈− log10( 1 + 𝑝𝑝)
log10 𝑝𝑝 ⌉ (20) 

 

𝑢𝑢𝐺𝐺 = ⌊
|𝑒𝑒𝑛𝑛|
𝑚𝑚 ⌋ (21) 

 
𝑣𝑣𝐺𝐺 = |𝑒𝑒𝑛𝑛| − 𝑢𝑢𝐺𝐺 ⋅ 𝑚𝑚 (22) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑢𝑢 = 6 ⋅ (24 ⋅ 𝑏𝑏Golomb + 𝑏𝑏main ctx) + 𝑏𝑏unary (23) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑣𝑣 = 24 ⋅ (2 ⋅ 𝑏𝑏Golomb + 𝑏𝑏phased-in) +

+ 23 ⋅ 𝑏𝑏𝜔𝜔 + 22 ⋅ 𝑏𝑏binary + 𝑏𝑏unary2
(24)

 

 

	 (21)

and is saved in unary form (sequence of uG ze-
ros terminated with one). The second part is vG, 
which is known as number of elements in group 
(remainer of division by m):

	

Ne(𝑖𝑖) ← ⌊Ne(𝑖𝑖)
2 ⌋ + 1, for 𝑖𝑖 ∈ [0, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚] (11) 

 
𝜔𝜔1 = max {2.3|𝑒𝑒(1)|, 2|𝑒𝑒(2)|1.6|𝑒𝑒(4)|, 0.95(|𝑒𝑒(3)| + |𝑒𝑒(4)|), 1.25(|𝑒𝑒(5)| + |𝑒𝑒(10)|),

 1.3|(𝑒𝑒(3)|,1.375(|𝑒𝑒(1)| + |𝑒𝑒(2)|),0.4(|𝑒𝑒(6)| + |𝑒𝑒(7)|),0.4(|𝑒𝑒(8)| + |𝑒𝑒(9)|)} (12) 
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, (15)

 

 
𝜔𝜔3 = 𝑚𝑚𝑚𝑚𝑚𝑚{ |𝑃𝑃(1) − 𝑃𝑃(3)|, |𝑃𝑃(2) − 𝑃𝑃(4)|, 1.1|𝑃𝑃(1) − 𝑃𝑃(2)|, 0.7|𝑃𝑃(2) − 𝑃𝑃(3)|,
 0.9|𝑃𝑃(1) − 𝑃𝑃(4)|, 0.9|𝑃𝑃(3) − 𝑃𝑃(4)|} (16) 

 
𝜔𝜔 = ℎ1 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚{ 2.1 ⋅ ℎ3 ⋅ 𝜔𝜔1, 11.5 ⋅ 𝜔𝜔2} +

+ 0.5 ⋅ ℎ2
3𝑑𝑑 + 1 ⋅ 𝜔𝜔3 (17) 

 

𝑉𝑉(𝑖𝑖) =
(2 ⋅ 𝑖𝑖 + 1) ⋅ ℎ

32 , for 𝑖𝑖 = 1, . . . ,16 (18) 

 

𝑝𝑝 = 𝑆𝑆
𝑆𝑆 + 1 (19) 

 

𝑚𝑚 = ⌈− log10( 1 + 𝑝𝑝)
log10 𝑝𝑝 ⌉ (20) 

 

𝑢𝑢𝐺𝐺 = ⌊
|𝑒𝑒𝑛𝑛|
𝑚𝑚 ⌋ (21) 

 
𝑣𝑣𝐺𝐺 = |𝑒𝑒𝑛𝑛| − 𝑢𝑢𝐺𝐺 ⋅ 𝑚𝑚 (22) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑢𝑢 = 6 ⋅ (24 ⋅ 𝑏𝑏Golomb + 𝑏𝑏main ctx) + 𝑏𝑏unary (23) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑣𝑣 = 24 ⋅ (2 ⋅ 𝑏𝑏Golomb + 𝑏𝑏phased-in) +

+ 23 ⋅ 𝑏𝑏𝜔𝜔 + 22 ⋅ 𝑏𝑏binary + 𝑏𝑏unary2
(24)

 

 

	 (22)

where: vG is coded by phased-in binary code 
(variant of Huffman code for sources with 
m equally probable symbols [49]). 

Specifying the parameter k as [log2m], means 
that, in each group, the first l = 2k – m elements 
of vG are encoded using k – 1 bits, and remaining 
m – l are encoded using k bits as a number vG + 
l [8]. An example set of Golomb codewords for 
|en| < 32 with the parameters m = 3 and m = 12 is 
presented in Table 1.

Rules for determining context number

Binary streams representing uG and vG are en-
coded by separate arithmetic coders, and hence, 
also by using a separate method for determining 
the context number. The context number ctxu used 
for encoding series of uG zeros terminated with 
one is calculated for each consecutively encoded 
bit as follows:

Ne(𝑖𝑖) ← ⌊Ne(𝑖𝑖)
2 ⌋ + 1, for 𝑖𝑖 ∈ [0, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚] (11) 

 
𝜔𝜔1 = max {2.3|𝑒𝑒(1)|, 2|𝑒𝑒(2)|1.6|𝑒𝑒(4)|, 0.95(|𝑒𝑒(3)| + |𝑒𝑒(4)|), 1.25(|𝑒𝑒(5)| + |𝑒𝑒(10)|),

 1.3|(𝑒𝑒(3)|,1.375(|𝑒𝑒(1)| + |𝑒𝑒(2)|),0.4(|𝑒𝑒(6)| + |𝑒𝑒(7)|),0.4(|𝑒𝑒(8)| + |𝑒𝑒(9)|)} (12) 

 

𝜔𝜔2 = 1
𝛿𝛿 ∑ 𝑑̅𝑑𝑗𝑗 ∙ |𝑒𝑒(𝑗𝑗)|,

𝑚𝑚

𝑗𝑗=1
(13) 

 

𝛿𝛿 = ∑ 𝑑̄𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1
, (14) 

 

𝑑̄𝑑𝑗𝑗 = 1

√(𝛥𝛥𝑥𝑥𝑗𝑗)2 + (𝛥𝛥𝑦𝑦𝑗𝑗)2
, (15)

 

 
𝜔𝜔3 = 𝑚𝑚𝑚𝑚𝑚𝑚{ |𝑃𝑃(1) − 𝑃𝑃(3)|, |𝑃𝑃(2) − 𝑃𝑃(4)|, 1.1|𝑃𝑃(1) − 𝑃𝑃(2)|, 0.7|𝑃𝑃(2) − 𝑃𝑃(3)|,
 0.9|𝑃𝑃(1) − 𝑃𝑃(4)|, 0.9|𝑃𝑃(3) − 𝑃𝑃(4)|} (16) 

 
𝜔𝜔 = ℎ1 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚{ 2.1 ⋅ ℎ3 ⋅ 𝜔𝜔1, 11.5 ⋅ 𝜔𝜔2} +

+ 0.5 ⋅ ℎ2
3𝑑𝑑 + 1 ⋅ 𝜔𝜔3 (17) 

 

𝑉𝑉(𝑖𝑖) =
(2 ⋅ 𝑖𝑖 + 1) ⋅ ℎ

32 , for 𝑖𝑖 = 1, . . . ,16 (18) 

 

𝑝𝑝 = 𝑆𝑆
𝑆𝑆 + 1 (19) 

 

𝑚𝑚 = ⌈− log10( 1 + 𝑝𝑝)
log10 𝑝𝑝 ⌉ (20) 

 

𝑢𝑢𝐺𝐺 = ⌊
|𝑒𝑒𝑛𝑛|
𝑚𝑚 ⌋ (21) 

 
𝑣𝑣𝐺𝐺 = |𝑒𝑒𝑛𝑛| − 𝑢𝑢𝐺𝐺 ⋅ 𝑚𝑚 (22) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑢𝑢 = 6 ⋅ (24 ⋅ 𝑏𝑏Golomb + 𝑏𝑏main ctx) + 𝑏𝑏unary (23) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑣𝑣 = 24 ⋅ (2 ⋅ 𝑏𝑏Golomb + 𝑏𝑏phased-in) +

+ 23 ⋅ 𝑏𝑏𝜔𝜔 + 22 ⋅ 𝑏𝑏binary + 𝑏𝑏unary2
(24)

 

 

	(23)

The bunary value is an integer number from 0 
to 5, indicating current bit number of currently 
encoded unary representation of uG. When the 
bit number is greater than 5, then bunary = 5.  
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bmain ctx is a 4-bit main context number deter-
mined according to the description presented in 
the Rules of context number calculation – pro-
posal 1 section. Therefore, 24·6·6 = 576 contexts 
ctxu are obtained.

In the case of the second coder used to encode 
the vG number, there are slightly fewer, since 25·6 
= 192 contexts. The ctxv number is calculated as:

	

Ne(𝑖𝑖) ← ⌊Ne(𝑖𝑖)
2 ⌋ + 1, for 𝑖𝑖 ∈ [0, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚] (11) 

 
𝜔𝜔1 = max {2.3|𝑒𝑒(1)|, 2|𝑒𝑒(2)|1.6|𝑒𝑒(4)|, 0.95(|𝑒𝑒(3)| + |𝑒𝑒(4)|), 1.25(|𝑒𝑒(5)| + |𝑒𝑒(10)|),

 1.3|(𝑒𝑒(3)|,1.375(|𝑒𝑒(1)| + |𝑒𝑒(2)|),0.4(|𝑒𝑒(6)| + |𝑒𝑒(7)|),0.4(|𝑒𝑒(8)| + |𝑒𝑒(9)|)} (12) 

 

𝜔𝜔2 = 1
𝛿𝛿 ∑ 𝑑̅𝑑𝑗𝑗 ∙ |𝑒𝑒(𝑗𝑗)|,

𝑚𝑚

𝑗𝑗=1
(13) 

 

𝛿𝛿 = ∑ 𝑑̄𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1
, (14) 

 

𝑑̄𝑑𝑗𝑗 = 1

√(𝛥𝛥𝑥𝑥𝑗𝑗)2 + (𝛥𝛥𝑦𝑦𝑗𝑗)2
, (15)

 

 
𝜔𝜔3 = 𝑚𝑚𝑚𝑚𝑚𝑚{ |𝑃𝑃(1) − 𝑃𝑃(3)|, |𝑃𝑃(2) − 𝑃𝑃(4)|, 1.1|𝑃𝑃(1) − 𝑃𝑃(2)|, 0.7|𝑃𝑃(2) − 𝑃𝑃(3)|,
 0.9|𝑃𝑃(1) − 𝑃𝑃(4)|, 0.9|𝑃𝑃(3) − 𝑃𝑃(4)|} (16) 

 
𝜔𝜔 = ℎ1 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚{ 2.1 ⋅ ℎ3 ⋅ 𝜔𝜔1, 11.5 ⋅ 𝜔𝜔2} +

+ 0.5 ⋅ ℎ2
3𝑑𝑑 + 1 ⋅ 𝜔𝜔3 (17) 

 

𝑉𝑉(𝑖𝑖) =
(2 ⋅ 𝑖𝑖 + 1) ⋅ ℎ

32 , for 𝑖𝑖 = 1, . . . ,16 (18) 

 

𝑝𝑝 = 𝑆𝑆
𝑆𝑆 + 1 (19) 

 

𝑚𝑚 = ⌈− log10( 1 + 𝑝𝑝)
log10 𝑝𝑝 ⌉ (20) 

 

𝑢𝑢𝐺𝐺 = ⌊
|𝑒𝑒𝑛𝑛|
𝑚𝑚 ⌋ (21) 

 
𝑣𝑣𝐺𝐺 = |𝑒𝑒𝑛𝑛| − 𝑢𝑢𝐺𝐺 ⋅ 𝑚𝑚 (22) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑢𝑢 = 6 ⋅ (24 ⋅ 𝑏𝑏Golomb + 𝑏𝑏main ctx) + 𝑏𝑏unary (23) 

 
𝑐𝑐𝑐𝑐𝑥𝑥𝑣𝑣 = 24 ⋅ (2 ⋅ 𝑏𝑏Golomb + 𝑏𝑏phased-in) +

+ 23 ⋅ 𝑏𝑏𝜔𝜔 + 22 ⋅ 𝑏𝑏binary + 𝑏𝑏unary2
(24)

 

 

	 (24)

Value bunary2 = min{bunary, 3}. bbinary is the MSB 
of vG (the first encoded bit). bω is a 1-bit value 
obtained after quantizing ω with 49 threshold 
(see Equation 17), and bphased-in is a value indicat-
ing current bit number (counting from most to 
least significant) of currently encoded vG. When 
bit number bphased-in is greater than 0, then bphased-in = 
1. In must be stressed, that when bphased-in = 0, then 
bbinary is being set to 0 by default. 

Long-term adaptation of probability distribution

In the case of context-adaptive binary arith-
metic coder, every context number is associated 
with individual probability distribution. This dis-
tribution consists of only two values: p(0) and p(1) 
– corresponding to frequency of appearance of ze-
ros and ones, respectively. In practice, occurrence 
counters denoted as Ne(0) and Ne(1) are used, then 

p(0) = Ne(0)/(Ne(0) + Ne(1)), and p(1) = 1 - p(0). 
The ongoing adaptation of distribution consists 
of incrementing (in a given context) occurrence 
counter of currently encoded bit by 1 – which is 
why even with multi-context approach, there is 
no need to provide the decoder with information 
about hundreds of probability distributions.

In the proposed solution, a form of long-term 
adaptation is also used. When the total amount of 
occurrences of zeros and ones in a given context 
exceeds a predefined Nmax, then both counters are 
divided by 2 – which is an equivalent to the long-
term forgetting mechanism (see Equation 11). In 
all contexts of uG coder Nmax = 210 was set, and the 
counters Ne(0) and Ne(1) were initialized to the 
value 1. In the case of vG coder Nmax = 211 and the 
counters were initialized to: Ne(0) = Ne(1) = 16.

Sign bit encoding

Due to symmetry of probability distribution 
of prediction errors, it is more convenient to en-
code their absolute values |en|. This enables a fast-
er distribution adaptation in the individual con-
texts of arithmetic coder. The bit sign is encoded 
separately, whereby information about it must be 
preserved only for non-zero values of en, which 
is particular feature of the coder presented in this 
paper, and it requires the sign bit to be encoded 
after encoding of |en| (regardless of whether the 

Table 1. Golomb codewords for parameters m = 3 and m = 12, where uG i vG are separated with colon
m = 3 m = 12

|en| Codeword |en| Codeword |en| Codeword |en| Codeword

0 1:0 16 000001:10 0 1:000 16 01:1000

1 1:10 17 000001:11 1 1:001 17 01:1001

2 1:11 18 0000001:0 2 1:010 18 01:1010

3 01:0 19 0000001:10 3 1:011 19 01:1011

4 01:10 20 0000001:11 4 1:1000 20 01:1100

5 01:11 21 00000001:0 5 1:1001 21 01:1101

6 001:0 22 00000001:10 6 1:1010 22 01:1110

7 001:10 23 00000001:11 7 1:1011 23 01:1111

8 001:11 24 000000001:0 8 1:1100 24 001:000

9 0001:0 25 000000001:10 9 1:1101 25 001:001

10 0001:10 26 000000001:11 10 1:1110 26 001:010

11 0001:11 27 0000000001:0 11 1:1111 27 001:011

12 00001:0 28 0000000001:10 12 01:000 28 001:1000

13 00001:10 29 0000000001:11 13 01:001 29 001:1001

14 00001:11 30 00000000001:0 14 01:010 30 001:1010

15 000001:0 31 00000000001:10 15 01:011 31 001:1011
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prediction error is encoded with multi-value or 
binary arithmetic code).

Unlike the solution proposed here, in most 
known methods (especially in lossless audio 
compression) negative numbers are cast by cal-
culating their absolute value and subtracting 1 
from it. This causes two, not entirely symmet-
ric, probability distributions to be combined (the 
highest disproportion can be observed, when 
number –1 is casted to 0 with information about 
negative bit sign). Some algorithms do not intro-
duce a special method of bit sign encoding and 
save unchanged value of this bit to the output 
file. Work [51] is one of the few exceptions in 
which contextual division has been connected 
with binary arithmetic code.

The proposed method is also based on an 
adaptive arithmetic coder with division into 128 
contexts. The distribution of this two-symbol 
source is initially uniform in each context (initial 
values of occurrence counters for bit 0 and 1 are 
set to Ne(0) = Ne(1) = 1).

The context number consists of 7 bits: 
κ6κ5κ4κ3κ2κ1κ0. The first two bits κ1κ0 are deter-
mined as a integer number from 0 to 3, based on 
a four-level (2-bit) quantizer of the value |en| with 
thresholds {3, 6, 16}. The next two bits depend 
on the predicted value. If 𝑥𝑥𝑛𝑛  

 
 > 0.5∙xmax, then κ2 

= 1, otherwise κ2 = 0, where xmax represents the 
maximum shade value of encoded image. When 
shade reduction is applied, for some images, xmax 
can be significantly less than 255. The second 
condition is based on predicted value which is 
compared with expression xcausal = 0.1·(2·(P(1) + 
P(2)) + P(3) + P(4) + P(5) + P(10) + P(18) + 
P(28)). If 𝑥𝑥𝑛𝑛  

 
 > xcausal, then κ3 = 1, otherwise κ3 = 0.

The experiments showed that the fractional 
part of the predicted value (including the value 
of the Cmix constant component – see Equation 3), 
which occurs at the calculation stage in most of 
more complex prediction methods, also has a sig-
nificant impact on the efficiency of encoding of 
prediction error sign bit. Therefore, a condition 
can be introduced to check the sign of (𝑥𝑥𝑛𝑛  

 
 – [𝑥𝑥𝑛𝑛  

 
]), 

where [𝑥𝑥𝑛𝑛  
 

] means rounding to the nearest integer. 
When 𝑥𝑥𝑛𝑛  

 
 > [𝑥𝑥𝑛𝑛  

 
], then κ4 = 1, otherwise κ4 = 0.

The two most significant bits κ6κ5 of context 
number are the sign of prediction error of left and 
top neighbor of currently encoded |en|: sgn(e(1)) 
and sgn(e(2)). 

Prediction coefficients encoding

The usage of variability of features in dif-
ferent regions of image is not limited to the 
arithmetic coding stage, where the main context 
number is calculated. Local features can also be 
used by dividing the image into small blocks 
(e.g. 8 × 8 pixel) and assigning to them an in-
dividual predictive model (from a limited set). 
The introduction of such solution dictates a need 
to save additional header information containing 
a set of e.g. 16 linear predictors (including in-
formation about assignment of predictor number 
to block). Such method is implemented in MRP 
0.5 coder [40]. Instead of dividing into blocks, 
a condition for dividing into many contexts de-
pending on closest neighborhood of encoded 
pixel (backward adaptation) can be introduced. 
Then, for each pixel, a context number is de-
termined individually, which has been assigned 
with a separate predictor.

Minimizing the bit average is not a trivial 
problem because of the large number of factors af-
fecting the final length of the encoded file. Along 
with increasing prediction order and with increas-
ing number of contexts, it is expected to decrease 
average absolute error. On the other hand, the re-
quirement to save coefficients of many predictors 
negatively influences the header section size. For 
this reason, in the developed 7-ctx MMAE codec, 
a compromise number of 7 predictors with maxi-
mal order r = 80 was set. It can be assumed that 
every prediction coefficient is saved using (N + 
2) bits, where 1 bit is dedicated for sign, 1 bit for 
integer part and N bits for fractional part. Despite 
the relatively small number of only 7 contexts for 
512 × 512 images the cost of the header when N = 
8, r = 80 equals 0.0211 b/pixel.

Even though the defined acceptable range 
for coefficients is quite wide (from –1.999 to 
1.999), for the majority of cases they are small 
values, and their arithmetic mean (after analy-
sis of probability distribution of selected coef-
ficient) oscillates around zero. In general, the 
higher the index j of coefficient bj, the smaller 
its absolute value. This fact can be used to com-
press the prediction coefficients with a context 
binary arithmetic coder.

Unlike the previously discussed binary cod-
ers, in this case the distribution is static, there-
fore coder is not adaptive. With training images 
dataset one can build approximate probability 
distributions for each of r coefficients. These 
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distributions are then transformed into proba-
bility distributions of individual bits of a given 
coefficient (saved using N + 2 bits). The bit sign 
of coefficient is encoded in the first place, fol-
lowed by the bit of integer part (0 or 1), and 
then the N bits of fractional part in order from 
MSB to LSB.

At the same time, a contextual division for 
the bits of the fractional part of the coefficient 
can be introduced, which takes into account sev-
eral distributions for a given bit owing to prior 
information about previously encoded bits (used 
to build the context number). For this purpose, 
the information contained in two bits which were 
encoded in the first place is used. The first one is 
a sign bit s1 of prediction coefficient. The second 
bit of a context number is calculated on an ongo-
ing basis based on information whether at least 
one bit of value 1 occurred among previously en-
coded most significant bits of given coefficient, if 
yes, then s2 = 1, otherwise s2 = 0. In this way, 2 – 
bit value s2s1 with values bounded between 0 and 
3 is obtained. It is added to the bit number of the 
fractional part in the range from 1 to N multiplied 
by 4, producing the current context number. This 
number refers to the individual binary distribu-
tion corresponding to the currently encoded bit 
(in practice, it is sufficient to store only one value 
– probability of occurrence of bit 0). The coder 
and decoder have an embedded database with a 
set of 4·N probabilities for each of (r - 1) predic-
tion coefficients (first coefficient is not encoded, 
since on decoder side it can be reconstructed, 
with an assumption that sum of all coefficients 
from vector B is equal to 1).

Two observations were made. Firstly, the less 
significant the bit of precision coefficient, the 
more random it is, i.e. less susceptible to com-
pression. Secondly, the higher the prediction or-
der, the lower the average cost per encoded coeffi-
cient. The average cost of saving single prediction 
coefficient in relation to precision is presented in 
Table 2 for two cases r = 42 and r = 80 (results ob-
tained for test images dataset). For example, with 
r = 80, N = 8 it was possible to achieve a reduc-
tion of header size by 46.64% on average.

Experiments

The solutions proposed in this chapter were 
used in the Multi-ctx 2 codec. Table 3 shows 
bit average of encoding a sequence of sign bits 
and sequences of Golomb codeword elements uG 
and vG. This table contains the total bit average, 
which, in addition to the sum of the values from 
the last three columns, takes into account the size 
of file header. The results are the average ob-
tained by encoding 45 images from the test image 
dataset [52].  Similarly to the solution proposed 
in Long-term adaptation of probability distribu-
tion section, two-stage codec can be designed for 
prediction errors produced after prediction phase 
in case of audio data, which is characterized by 
higher than 8 number of bits per sample. This so-
lution is presented in [53].

EFFICINECY ANALYSIS OF VARIOUS 
CODECS

Three proposed codecs 

In this work, the experiments were carried 
out using three proposed codecs of different im-
plementation complexities, and each of them be-
longing to one of three different classes defined 
at the beginning of this paper. A representative of 
the first class, characterized by fast coding and 
decoding time is Multi-ctx 2, which is an im-
proved variant of codec described in [25]. Both 
coder and decoder of Multi-ctx 2 have relatively 
low complexity, close to other fast methods like 
CALIC. The coding and decoding times for Len-
nagrey image (512 × 512 pixels) (i5-4670 3,4 
GHz processor, Windows 7, 8 GB RAM, SSD 
and non-optimized code of Multi-ctx 2) equals 

Table 2. Average bit number required to save prediction coefficient after arithmetic encoding depending on 
precision of input data
Coefficients precision (N + 2) bits 8 9 10 11

Average cost at r = 42 3.961 4.906 5.889 6.886

Average cost at r = 80 3.470 4.372 5.336 6.325

Table 3. Bit average of individual streams encoded using 
the original CABAC method implemented in the Multi-
ctx 2 codec obtained for a dataset of 45 test images
Total bit-average uG vG Sign bit

4.02799 2.37562 0.84097 0.81140
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0.307 and 0.303 s, respectively, and do not de-
pend on the coded image content, but linearly on 
its number of pixels.

The second proposed codec is 7-ctx MMAE 
[27], which represents a class with a long en-
coding and short decoding time. It incorporates 
an initial training mechanism, in which a set of 
7 predictors of maximum order r = 80 is opti-
mized. The encoding time is variable (parameter 
adaptation phase depends on the encoded image 
content) and for images with a resolution 512 × 
512 pixels ranges between 58.1 s (with r = 10) 
and 184.7 s (with r = 80). The 7-ctx MMAE de-
coding time is even shorter than in Multi-ctx 2, 
ranging between 0.2295 s and 0.261 s for r = 10 
and r = 80, respectively.

The third proposed codec, Blend-28, is an 
improved version of the method described in 
[54]. It represents a class with a long encoding 
and decoding time. For the Lennagrey image, the 
measured times are 222.1 s and 189.55 s, respec-
tively. At the encoding phase of Blend-28 there 
is a pre-checking stage of the improvements 
described in the Basic improvements in codecs 
section (lossless rotation by a multiple of 90 de-
grees and the possibility of using a first order 
predictor) – this makes 4.32% of total encoding 

time (9.6 s). In addition, in encoding stage of 
Blend-28 (similarly to 7-ctx MMAE) there is an 
additional parameters adaptation step. Not only 
for prediction parameters but for arithmetic en-
coding as well (selecting values of parameters: 
h1, h2, h3. See Equation  17), and also checking 
the cost-efficiency of the alternative way of de-
termining main contexts number (see Rules of 
context number calculation – proposal 2 sec-
tion). The adaptations in Blend-28 case take 
9.77% of the total encoding time (21.7 s).

The general encoding scheme in all three co-
decs is quite similar. Basic blocs are presented 
in Figure 7. The differences are mainly in the 
complexity of the prediction block, which can be 
based on linear or nonlinear prediction.

In all of the three codecs a two-stage pre-
diction error compression method was used. 
The adaptive Golomb coder of prediction er-
rors as a first step, and then, as a second, its bi-
nary output is coded with the context-adaptive 
binary arithmetic coder CABAC as described 
in the Binary adaptive arithmetic coder section. 
In the last step, the sign of prediction error is 
encoded. For this purpose, an adaptive arithme-
tic coder with 128 contexts is used (see Sign bit 
encoding section).

Figure 7. Block diagram of the proposed cascade coding

Table 4. Set of results for the Lennagrey image
Coding method MSE MAE p0 Entropy Bit average

Predictor P(1) 128.558 6.459 8.516 5.04881 4.35257

Predictor P(3) 186.100 7.545 7.580 5.25041 4.45274

Predictor MMSE r = 10 28.225 3.548 11.679 4.26207 4.02489

Predictor MMAE r = 10 28.843 3.544 11.791 4.25798 4.01717

+ Active colour casting 28.787 3.542 11.795 4.25736 4.01736

+ Active flat region 28.787 3.542 11.794 4.25734 4.01733

+ Active Algorithm 1 28.701 3.540 11.794 4.25682 4.01700

+ Active Cmix 27.438 3.460 12.280 4.22477 3.99124

+ Additional adaptation of arithmetic coder 27.438 3.460 12.280 4.22477 3.98729

Multi-ctx 2 method 25.587 3.366 12.553 4.18780 3.96701

7-ctx MMAE method 24.786 3.284 12.846 4.14969 3.94393

Blend-28 method 20.625 3.013 14.110 4.02887 3.83181
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Table 5. Set of results for the Frog image
Coding method MSE MAE p0 Entropy Bit average

Predictor P(1) 483.973 16.231 20.271 5.28230 5.42532

Predictor P(3) 538.836 16.063 27.617 4.95369 5.09851

Predictor MMSE r = 10 274.644 12.687 3.130 6.06386 5.96582

Predictor MMAE r = 10 278.146 12.692 3.158 6.06722 5.96714

+ Active colour casting 77.287 6.691 5.811 5.15122 5.02971

+ Active flat region 77.338 6.683 6.559 5.14895 5.00404

+ Active Algorithm 1 76.199 6.660 6.559 5.14245 4.99978

+ Active Cmix 73.539 6.553 6.904 5.11793 4.99136

+ Additional adaptation of arithmetic coder 73.539 6.553 6.904 5.11793 4.95583

Multi-ctx 2 method 74.942 6.630 6.740 5.13740 5.00284

7-ctx MMAE method 68.427 6.290 7.429 5.06304 4.91232

Blend-28 method 64.897 6.023 10.791 4.98775 4.84719

7-ctx MMAE method + special mode 179.064 9.002 28.829 4.00259 3.97763

Blend-28 method + special mode 179.064 9.002 28.829 4.00259 3.98395

Table 6. Set of results for the Noisesquare image
Coding method MSE MAE p0 Entropy Bit average

Predictor P(1) 224.766 11.031 2.971 5.75220 5.50798

Predictor P(3) 279.938 11.409 3.033 5.78073 5.53577

Predictor MMSE r = 10 121.949 8.826 3.069 5.40800 5.34126

Predictor MMAE r = 10 129.337 8.855 3.127 5.39361 5.33018

+ Active colour casting 99.085 8.406 3.076 5.30218 5.29626

+ Active flat region 99.089 8.406 3.076 5.30223 5.29631

+ Active Algorithm 1 93.534 8.255 3.076 5.21611 5.22089

+ Active Cmix 92.826 8.233 3.146 5.21042 5.21753

+ Additional adaptation of arithmetic coder 92.826 8.233 3.146 5.21042 5.16766

Multi-ctx 2 method 98.826 8.456 3.188 5.28050 5.26953

7-ctx MMAE method 87.291 8.036 3.198 5.12086 5.12540

Blend-28 method 87.498 8.058 2.977 5.11741 5.11435

Table 7. Set of results for the Shapes image
Coding method MSE MAE p0 Entropy Bit average

Predictor P(1) 106.789 2.406 70.786 2.20811 1.23396

Predictor P(3) 147.060 3.587 59.671 2.95044 1.49407

Predictor MMSE r = 10 32.552 1.347 72.697 1.93634 1.23753

Predictor MMAE r = 10 38.808 1.069 79.171 1.46343 0.98922

+ Active colour casting 38.806 1.069 79.172 1.46335 0.98920

+ Active flat region 38.805 1.067 79.358 1.45653 0.98053

+ Active Algorithm 1 31.142 1.000 79.358 1.45208 0.97975

+ Active Cmix 30.248 0.935 80.411 1.35503 0.96549

+ Additional adaptation of arithmetic coder 30.248 0.935 80.411 1.35503 0.93919

Multi-ctx 2 method 28.616 0.975 80.941 1.37009 0.97629

7-ctx MMAE method 31.021 0.899 83.359 1.18996 0.86839

Blend-28 method 21.982 0.646 89.255 0.87503 0.65968
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Performance analysis of the individual 
improvements

In Tables 4 to 7 the results obtained for 4 
test images: Lennagrey, Frog, Noisesquare and 
Shapes are shown. The first image represents the 
most typical category of photos. The other three 
were selected for their unique features, enabling 
a broader view of the individual stages of cod-
ing in modern codecs, which should be able to 
adjust to many different categories of encoded 
images. Among these atypical images there is 
Noisesquare – an image with high noise level, 
and Shapes – artificially generated image with 
soft tonal gradations and low noise level. To 
draw conclusions, five measures were used in re-
lation to the prediction errors stream. These are 
the mean square error (MSE), mean absolute er-
ror (MAE), percentage probability of prediction 
errors equal to 0 (marked as p0), first-order entro-
py, and bit average – the real average cost of en-
coding a single pixel expressed in bits. Although 
there is a large correlation between these param-
eters, it should be highlighted that the main goal 
is to minimize the bit average.

It must be stressed that the bit average results 
refer to the complex two-stage codec based on 
the Golomb and context-adaptive binary arithme-
tic code. Owing to its adaptive nature and large 
number of contexts, the proposed encoder to a 
large extent takes into account the local variabil-
ity of image characteristics, hence in most of the 
cases the bit average is lower than the first-order 
entropy. The better the prediction, the entropy is 
usually lower, but at the same time, the differ-
ence between entropy and bit average become 
smaller. In Tables 4 to 7, the first two rows with 
results refer to simple prediction method, where 
predicted value is a neighboring pixel P(1) and 
P(3), respectively (first-order predictor). In the 
third row a linear predictor of order r = 10 (using 
10 nearest pixel neighbors) determined based on 
MMSE is used. In most cases, the improvement 
was significant for each of the five tested param-
eters. The Frog image is an exception, where 
regardless of a significant decrease in MSE and 
MAE, the result of entropy and bit average turned 
out to be worse. Therefore, it is worth examin-
ing the parameter p0, which has decreased sev-
eral times (from 20.27% with predictor P(1) to 
only 3.13%). This shows, that classical approach 
to minimizing the mean squared error does not 
always translate into compression improvement. 

One of the reasons might be the fact that the 
coder works on prediction errors rounded to the 
nearest integer, while mathematical approach of 
MMSE uses also fractional parts. In addition, the 
problem of individual treatment of prediction er-
rors equal to 0 is discussed in [30].

In the fourth row MMSE method has been 
replaced with our novel version of minimizing 
mean absolute error (MMAE) based on IRLS 
algorithm. With the same order of r = 10, the 
results improved slightly, but it depends on 
data. The largest improvement in measure-
ments (excluding MSE, which rose in all cases) 
was achieved for the Shapes image (with low 
noise level).

The next five rows refer to the linear predic-
tion method of order r = 10 (MMAE), and an 
additional coder mechanism was activated with 
each next row. The first mechanism is shade re-
duction, which gives a noticeable improvement 
for images with number of shades in use being 
significantly lower than the maximal 256 (for ex-
ample, Frog image has only 102 shades in use). 
The second mechanism is flat region detection, 
and it was the most beneficial for the Shapes im-
age. The third mechanism in an introduction of 
Algorithm 1, which was the most efficient for the 
Noisesquare image (with the highest variance 
of prediction errors). The fourth mechanism re-
moves context-dependent constant component 
Cmix. This mechanism is beneficial for all cases. 
The fifth, and the last mechanism, is to adapt the 
parameters of arithmetic coder (which requires 
performing a multiple encodings). This mecha-
nism was used in 7-ctx MMAE and Blend-28 
codecs. A noticeable improvement was also ob-
served for the Noisesquare image, among others, 
owing to activation of second proposition of de-
termining main context number (see the Rules of 
context number calculation – proposal 2 section) 
and usage of CMTF method. The last three rows 
present the results of three codecs proposed in 
this paper. The exceptions are two additional 
rows of Table 5, where two versions of the 7-ctx 
MMAE and Blend-28 codecs with and without 
enabling special mode can be compared. Hav-
ing in mind that the Frog image is an exception, 
there is rationale for the implementation of a 
preliminary analysis of the special mode usage, 
where instead of complex prediction methods, it 
may be more beneficial to use one of the 4 to 
6 nearest pixels from the neighborhood as the 
predicted value.
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Coding time in competitive solutions

The three codecs proposed by us are char-
acterized by reasonable encoding and decoding 
time compared to the other solutions (among 
the same class of codecs). For example, encod-
ing time of the Lennagrey image with MRP 0.5 
(second category of codecs with long encoding 
and short decoding time) is 420 s. Methods such 
as xMRP [55], or GPR-BP [56] are extensions 
of MRP 0.5, therefore they have even higher 
estimated implementation complexity of the en-
coder (although the proportions of the increase 
in coding time, and especially in decoding time, 
compared to the relatively fast MRP 0.5, are not 
known). In the case of MRP-SSP [57], the authors 
provided average encoding performance of 600 
pixels/s (i7 3.2 GHz processor), which translates 
into approximately 7 min for the Lennagrey im-
age. In the third category (long both encoding and 
decoding time), a wide range of encoding time 
is encountered e.g. for LA-OLS it is only 5.86 s 
[16]. Other representative Vanilc WLS-D (52.5 
s) [58] and Extended Multi-WLS (107.4 s) [16]. 
The newest high-efficient approach PMO 2019 
[59] deserves particular attention. It does not have 
separate stages for data decomposition and en-
coding, although its implementation complexity 
is much higher than of the Extended Multi-WLS 
and Blend-28. The average time of encoding 
and decoding 512 × 512 image (Intel Xeon@2.6 
GHz, 64 GB RAM) with PMO 2019 is said to 
be 102 min and 18 min, respectively. Contrary to 
Blend-28, where encoding/decoding time is al-
most non-dependent from image structure (only 
approximately linearly from the number of pixels 

of the image), in PMO 2019 the discrepancies 
are significant e.g. encoding of the 512 × 512 im-
ages Airplane and Baboon equals 4771 and 6498 
s, respectively. Later introduction of neural net-
works in its next version PMO 2022 [60] caused 
a drastic reduction (by over 96%) in the coding 
time. It is characterized by improved efficiency in 
comparison to PMO 2019 and it is approximately 
1/3 faster in encoding than Blend-28. There is no 
information about LTAP Pixel CNN++ (Locally 
Trained Adaptive Prediction PixelCNN++ [61]) 
complexity; however, preliminary analysis of the 
algorithm indicates that the coding time can be ex-
pected to be no less than in the case of PMO 2019.

Experimental results

One of the most popular sets of test images 
consist of 13 images in 3 different resolutions: 
(three 256 × 256 images: Camera, Couple, Nois-
esquare, six 512 × 512 images: Airplane, Baboon, 
Peppers, LenaTMW, Lennagrey, Shapes, and four 
720 × 576 images from ISO/IEC 10918-1 image 
test set: Balloon, Barb, Barb2, Gold), which was 
used for the first time in the work [12] (archive 
available at [52]). Because of the presence of 
small images, as well as two atypical (artificially 
generated Shapes with soft tonal gradations and 
Noisesquare with high noise level) using this set, 
one can indicate how universal a given codec is. 

Unfortunately, in our opinion, the authors of 
some publications deliberately omitted some of 
these 13 images from their results (not making the 
implementation publicly available). Therefore, to 
provide fairly broad comparison with other pa-
pers, it was decided to extract a few comparisons 

Table 8. Bit average for various codecs – image set I

Images JPEG2000 
[34]

WebP lossless 
1.3 [11]

FLIF 
0.3 
[34]

SWAP 
[64]

RALP 
[65]

Multi-
ctx 2

TMW 
[12]

PMO
2018 [34]

GLICBA
WLS [35]

Vanilc 
WLS-D 

[58]

7-ctx
MMAE

Camera 4.535 4.329 4.285 4.39 4.24 4.042 4.098 3.960 4.208 3.995 4.000

Couple256 3.915 3.727 3.677 3.75 3.63 3.439 3.446 3.415 3.543 3.459 3.400

Airplane 4.013 3.936 3.794 3.58 3.71 3.603 3.601 3.632 3.668 3.575 3.572

Baboon 6.107 5.899 6.078 5.86 5.81 5.762 5.738 5.727 5.666 5.678 5.718

Lennagrey 4.303 4.158 4.252 3.95 3.95 3.966 3.908 3.944 3.901 3.856 3.944

Peppers 4.629 4.512 4.595 4.25 4.27 4.306 4.251 4.267 4.246 4.187 4.191

Balloon 3.031 2.961 2.856 2.49 2.55 2.686 2.649 2.673 2.640 2.626 2.600

Barb 4.600 4.589 4.500 4.12 4.12 4.184 4.084 3.997 3.916 3.815 4.029

Barb2 4.789 4.693 4.656 4.55 4.51 4.383 4.378 4.287 4.318 4.231 4.288

Gold 4.603 4.495 4.518 4.30 4.32 4.292 4.266 4.476 4.276 4.229 4.229

Average 4.453 4.330 4.321 4.124 4.111 4.066 4.042 4.038 4.038 3.965 3.997
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Table 9. Bit average for various codecs – image set I

Images xMRP
[55]

MRP 0.5
[14]

LA-OLS 
[16]

BMF
[59]

GPR-BP  
[56]

MRP-SSP
[57]

PMO 
2019
[59]

Extended 
Multi-WLS 

[16]

Selective 
PMO

2022 [60]

LTAP Pixel 
CNN++ [61] Blend-28

Camera 3.971 3.949 4.001 3.952 3.964 3.901 3.833 3.920 3.804 3.753 3.862

Couple256 3.389 3.388 3.414 3.275 3.339 3.323 3.281 3.345 3.269 3.180 3.297

Airplane 3.590 3.591 3.568 3.535 3.451 3.536 3.546 3.547 3.529 3.474 3.515

Baboon 5.662 5.663 5.643 5.677 5.641 5.635 5.698 5.622 5.611 5.598 5.602

Lennagrey 3.885 3.889 3.881 3.863 3.880 3.877 3.845 3.847 3.825 3.824 3.832

Peppers 4.208 4.199 4.153 4.177 4.170 4.163 4.176 4.101 4.161 4.173 4.087

Balloon 2.613 2.579 2.576 2.649 2.544 2.548 2.584 2.546 2.573 2.563 2.509

Barb 3.817 3.815 3.832 3.804 3.821 3.764 3.733 3.705 3.708 3.805 3.663

Barb2 4.226 4.216 4.214 4.163 4.184 4.175 4.146 4.126 4.122 4.197 4.079

Gold 4.216 4.207 4.198 4.179 4.178 4.173 4.191 4.170 4.171 4.157 4.136

Average 3.958 3.950 3.948 3.927 3.917 3.910 3.903 3.893 3.877 3.872 3.856

Table 10. Bit average for various codecs – image set II

Images Multi-
ctx 2

Vanilc 
WLS-D 

[58]

7-ctx
MMAE

LA-OLS
[16]

xMRP
[55]

MRP 0.5
[14]

Pixel 
CNN++ 

[62]

PMA 
CNN [63]

Extended 
Multi-WLS+ 

[16]

PMO
2019
[59]

Selective 
PMO 2022 

[60]
Blend-28

Camera 4.042 3.995 4.000 4.001 3.971 3.949 3.749 3.748 3.917 3.833 3.804 3.862

Couple256 3.439 3.459 3.400 3.414 3.389 3.388 3.176 3.176 3.344 3.281 3.269 3.297

Noisesquare 5.283 5.159 5.128 5.194 5.301 5.270 5.387 5.375 5.167 5.296 5.274 5.114

Airplane 3.603 3.575 3.572 3.568 3.590 3.591 3.486 3.481 3.547 3.546 3.529 3.515

Baboon 5.762 5.678 5.718 5.643 5.662 5.663 5.610 5.608 5.622 5.698 5.611 5.602

Peppers 4.306 4.187 4.191 4.153 4.208 4.199 4.194 4.192 4.100 4.176 4.161 4.087

Shapes 1.087 1.302 0.868 1.109 0.769 0.685 0.747 0.720 0.903 0.497 0.490 0.660

Balloon 2.686 2.626 2.600 2.576 2.613 2.579 2.579 2.573 2.547 2.584 2.573 2.509

Barb 4.184 3.815 4.029 3.832 3.817 3.815 3.914 3.905 3.704 3.733 3.708 3.663

Barb2 4.383 4.231 4.288 4.214 4.226 4.216 4.270 4.266 4.121 4.146 4.122 4.079

Gold 4.292 4.229 4.229 4.198 4.216 4.207 4.170 4.166 4.168 4.191 4.171 4.136

Average 3.915 3.841 3.820 3.809 3.797 3.778 3.753 3.746 3.740 3.726 3.701 3.684

Table 11. Bit average for various codecs – image set III [19]

Images BPG PNG LCIC JPEG
2000

JPLEG-
LS

JPEG-
XL FLIF WebP L3C CWPLIC

LCIC
duplex 

[19]

Multi-
ctx 2

7-ctx
MMAE Blend-28

Airplane 4.32 4.26 3.99 4.00 3.80 3.71 3.82 3.87 4.56 3.69 3.69 3.579 3.546 3.487

Barbara 5.06 5.22 4.61 4.61 4.70 4.40 4.56 4.55 5.44 4.35 4.36 4.186 4.034 3.670

Coastguard 5.70 5.06 4.82 4.83 4.86 4.73 4.93 4.81 5.82 4.80 4.83 4.579 4.332 4.258

Comic 6.15 5.84 5.63 5.65 5.30 5.07 5.50 5.45 6.60 4.83 4.83 4.816 4.793 4.650

Flowers 5.18 5.08 4.91 4.92 4.62 4.51 4.74 4.76 5.53 4.41 4.35 4.329 4.323 4.209

Goldhill 4.95 4.70 4.58 4.59 4.43 4.37 4.50 4.47 5.27 4.33 4.33 4.208 4.170 4.079

Lennagrey 4.54 4.61 4.31 4.31 4.24 4.16 4.28 4.14 4.95 4.13 4.08 3.966 3.944 3.832

Mandrill 6.61 6.23 6.11 6.11 6.04 5.98 6.14 5.89 6.97 5.95 5.89 5.764 5.721 5.604

Monarch 4.10 4.26 3.82 3.82 3.70 3.54 3.68 3.73 4.37 3.40 3.45 3.394 3.347 3.247

Pepper 4.77 4.90 4.63 4.63 4.51 4.48 4.58 4.50 5.38 4.67 4.38 4.297 4.185 4.080

Ppt3 2.20 2.35 2.41 2.41 2.04 1.84 1.87 2.06 3.71 2.14 2.07 1.761 1.745 1.615

Zebra 5.83 5.19 4.89 4.89 4.81 4.66 4.84 4.86 6.08 4.65 4.68 4.507 4.361 4.243

Average 4.951 4.808 4.559 4.564 4.421 4.288 4.453 4.424 5.390 4.279 4.245 4.116 4.042 3.915
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(in presented tables the best result of bit average 
is underlined). Because of GPR-BP and MRP-
SSP codecs, in Tables 8 and 9 the comparison 
of bit average for 10 test images is presented. 
Due to the newest codecs: Pixel CNN++ [62] 
and PMA CNN [63], which are based on neural 
networks, the results in Table 10 are limited to 
11 images. In each comparison, the best aver-
age among the entire set was achieved using the 
proposed Blend-28 method. However, it can be 
seen that for some images with lower resolutions, 
competing solutions have proven to be better. 
The Selective PMO 2022 showed its advantage 
over all other solutions mainly for the artificially 
generated Shapes image, while Pixel CNN++ and 
PMA CNN won for two images (digital photos) 
with the lowest resolution (although they did not 
manage to achieve good results for the atypically 
noisy Noisesquare image with the same resolu-
tion of 256 × 256 pixel).

From [19] another set of test images was in-
cluded (8-bit grayscale – see Table 11), because 
it is one of the few papers referring to neural net-
works, in which the bit average for individual en-
coded images is shown (unfortunately, in the case 
of many deep learning works, there is usually 
one average result for the entire image database, 
which makes it difficult to analyzes in depth the 
capabilities offered by individual codecs for dif-
ferent types of images).

The obtained results allow stating that, in 
comparison to the classic modern WebP codec 
(in lossless version 1.3 offering compression effi-
ciency similar to JPEG-LS), the Blend-28 method 
achieved the bit average smaller by about 10.95% 
and 11.51% for test image set I and III, respec-
tively. In addition, this method turned out to be, 
on average, the most efficient among state-of-the-
art solutions known from the literature (including 
those based on deep learning).

CONCLUSIONS

As a part of this review paper, the mechanism 
for efficient prediction errors encoding (used in 
three codecs of varying degrees of implementa-
tion complexity: Multi-ctx 2, 7-ctxMMAE and 
Blend-28) was presented. It is based on a two-
stage approach, where in the first step, the val-
ues of prediction errors are encoded by adaptive 
Golomb encoder, and then its output stream is 
compressed using a CABAC. A separate encoder 

for the prediction error sign bit and an encoder 
for predictor coefficients, which sometimes take 
a lot of space in header data, have also been in-
troduced. The key role in the adaptive coder is 
a proper way of contextual division, where data 
with different characteristics of nearest neigh-
borhood are grouped into separate classes to 
compress data among every group in the most 
efficient way. An original method Conditional 
Move To Front for improving the efficiency of 
prediction, which can be useful in compressing 
images with high noise level (high variance of 
input data), was proposed. For images with low 
variance, it was proven that MMAE has a notice-
able advantage over MMSE for determining lin-
ear predictive models.

Owing to the proposed solutions, a further 
increase in compression efficiency has been 
achieved. Two-stage encoding Golomb-CABAC 
allows for fast adaptation to the variability of data 
in certain image regions, which in combination 
with highly efficient prediction method imple-
mented in our Blend-28 codec, enabled to reduce 
bit average by 11% on average in comparison to 
the modern WebP codec.
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