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INTRODUCTION

Recently, the need to build infrastructure and 
housing projects has been increasing dramatically 
with strong economic development and continu-
ous population growth. Most construction mate-
rials are sourced from nature, which consumes 
energy and has high costs. The waste from the 
exploitation and production of construction ma-
terials causes serious environmental pollution. 
The commonly used construction material is or-
dinary Portland cement (OPC), which has high 

mechanical strength and durability [1]. However, 
the cement production process consumes enor-
mous energy and has a very high investment 
cost. Furthermore, this industrial production 
emits a large amount of CO2, which accounts for 
5-8% of global CO2 emissions [2–4]. Therefore, 
the need to find low-cost, energy-efficient, and 
eco-friendly materials to replace traditional ce-
ment is very urgent. 

Rice husk ash (RHA) obtained from the py-
rolysis process has a high amount of amorphous 
silica content with a large surface area, good 
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pozzolanic properties, and linking ability with 
aggregates like traditional cement [5–8]. There-
fore, research on using RHA as a partial matter for 
enhancing the performance of cement-based ma-
terials has attracted many scientists [9, 10]. RHA 
with a high amorphous silica content increased 
the chemical activity (or the pozzolanic reaction 
between SiO2 and CH) [11, 12]. Therefore, this 
promotes the hydration of cement in the later 
stage and improves the resistance to chloride ion 
penetration of cement-based materials [13, 14]. 
Generally, the compatible pozzalanic reaction 
between RHA and cement is detected when RHA 
contains 85–95% amorphous silica [15]. Further-
more, the strength of concrete is improved due to 
RHA containing amorphous silica [16, 17]. Thus, 
the production of RHA with a high percentage 
of amorphous silica is necessary for green mate-
rial construction. Therefore, RHA-derived amor-
phous silica is of interest as a sustainable mate-
rial with the potential to partially replace cement 
or serve as supplementary cementitious materi-
als (SCMs) for construction applications. The 
RHA production process with a high amount of 
amorphous silica depends on the burning meth-
od, rice husk characteristics, pretreatment of rice 
husk before incineration, pyrolysis temperature, 
and time [15, 18]. An open-field burning of rice 
husk without a controlled temperature leads to 
RHA with a low carbon content [19, 20]. Oth-
erwise, some previous studies recommended the 
complete incineration of rice husk at 500–750 
°C obtain the RHA with the highest amorphous 
silica [18, 21, 22]. However, when the combus-
tion temperature reached 600 °C, the crystalline 
transformation to tridymite and cristobalite hap-
pened [23]. According to Bazargan et al. [24], the 
chemical composition of RHA can influence the 
pyrolysis temperature at which the phase transi-
tion occurs. The pretreatment of rice husk, such 
as acid leaching and water soaking, was also a 
required method to achieve a high specific sur-
face area and purity of amorphous silica [25–28]. 
The characteristics of rice husk were another fac-
tor that impacted the production of amorphous 
silica [29]. The high impurity in rice husks may 
require a more stringent controlled temperature 
during pyrolysis to avoid the crystalline transi-
tion phase [30, 31].

In Thua Thien Hue province, approximately 
54.1 thousand hectares cultivate rice, and about 
620.0 thousand tons of dry straw are discharged 
annually. Most rice-growing areas in Phong Dien, 

Quang Dien, Huong Tra, Phu Vang, and Phu Loc 
districts are adjacent to more than 70 km of Tam 
Giang lagoon. Therefore, the phenomenon of salt-
water intrusion in areas of Thua Thien Hue prov-
ince is happening more and more, affecting the 
rice cultivation process. According to statistics 
from the Department of Agriculture and Rural 
Development of Quang Dien district, the area of ​​
rice land affected by saltwater intrusion was 530 
hectares in 2014. Similarly, the process of saline 
intrusion affecting the area of ​​rice cultivation land 
in Phu Vang district is also very significant. Fur-
thermore, due to harsh climatic conditions, most 
rice cultivation soil has a low pH (or acid sulphate 
soil), and most rice cultivation soil lacks irriga-
tion water. Most rice husks are used for different 
purposes with low economic value, like fertilizer, 
animal feed, or burning matter. These purposes 
also cause environmental pollution and increase 
global warming. Therefore, converting rice husk 
into RHA with a high ratio of amorphous silica 
seems to be the better solution to lessen gas emis-
sions and enhance economic value. 

This study aims to optimize the recovery 
process of amorphous silica from the rice husk 
cultivated under different soil conditions, which 
are experiencing significant fluctuations due to 
climate change in many rice-producing countries. 
The research also identifies how soil types influ-
ence the characteristics of rice husk and affect the 
quality and yield of amorphous silica, as well as 
its suitability as a supplementary cementitious 
material. These findings support the development 
of sustainable SCMs from agricultural by-prod-
ucts, providing feasible solutions to enhance the 
performance and durability of cementitious ma-
terials while promoting environmentally friendly 
practices in agriculture and construction.

MATERIALS AND METHODS

Materials

Rice husks of the most popular type of rice in 
Thua Thien Hue province, Huong Thom 1 (HT1), 
were collected in 2022 for research. To investi-
gate the difference in RHA properties after the py-
rolysis process, four rice husks of HT1 cultivated 
in four conditions, including normal, saline, acid, 
and drought cultivation conditions, were selected 
as raw material sources. Rice husk samples are 
washed, naturally dried, and dried to a moisture 
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content of 10–15% before pyrolysis according to 
the previous method [32]. Rice husks from rice 
cultivated under normal, drought, saline, and 
acidic soil conditions are abbreviated as “nor-
mal soil RHA,” “drought soil RHA,” “saline soil 
RHA,” and “acidic soil RHA,” respectively.

Experimental methods

The preparation and pyrolysis processes of 
rice husks are illustrated in Figure 1. The rice 
husks are rinsed to eliminate waste, and then the 
wet rice husks are dried in a drying cabinet to 
achieve the desired humidity before the pyroly-
sis stage. In each pyrolysis condition, four sealed 
ceramic pots of different rice husks are pyrolyzed 
at the same time using a specialized furnace, the 
Nabertherm N7/H/B400, made in Germany. The 
pyrolyzed temperatures were 700 °C, 800 °C, and 
900 °C, and the pyrolyzed duration was 1 hour and 
2 hours, respectively. To obtain the target pyroly-
sis temperature, the heating process is controlled 
by the slow pyrolysis heating rate of 10 °C/min at 
room temperature. After a 1- or 2-hour pyrolysis 
process, leave the RHAs out in the ambient con-
ditions to cool down naturally.

The RHA properties of four different types 
of rice husk were analyzed by scanning elec-
tron microscope (SEM) and X-ray diffraction 
(XRD). SEM is used to analyze the surface 
structure of RHA by using an SEM device 
(Jeol, Japan). The XRD patterns of RHAs were 
achieved using a Bruker D8 Advance Eco op-
erated at 2 Theta between 10° and 80°. The op-
erating conditions for the pyrolysis process are 
summarized in Table 1.

RESULTS AND DISCUSSION

The effect of pyrolysis temperature 

Figures 2, 3, 4, and 5 revealed the inside layer 
morphology of 4 RHA samples cultivated in dif-
ferent conditions, including normal soil, saline 
soil, drought soil, and acidic soil. The pyrolysis 
temperature and time were 700 °C and 1 hour, re-
spectively. As can be seen from the SEM images 
in those figures, the surface structures of normal 
soil’s RHA and saline soil’s RHA had a higher 
void fraction (or porous structure) than those of 
drought soil’s RHA and acidic soil’s RHA. It 

Figure 1. The experimental setup for determining the properties of RHAs

Table 1. Operating conditions for the pyrolysis process
Types of rice husk Pyrolysis temperature (oC) Pyrolysis heating rate (oC/min) Pyrolysis duration (hour)

Acidic soil
Drought soil
Normal soil
Saline soil

700

10

1800

900

Acidic soil
Drought soil
Normal soil
Saline soil

700

2800

900
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Figure 2. Morphology of the inner surface of RHA cultivated in normal soil

Figure 3. Morphology of the inner surface of RHA cultivated in saline soil

Figure 4. Morphology of the inner surface of RHA cultivated in drought soil

Figure 5. Morphology of the inner surface of RHA cultivated in acidic soil
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means the rice husks cultivated in normal and sa-
line soil have lower pyrolysis temperatures than 
those planted in drought and acidic soil. 

XRD patterns of 4 RHAs at different py-
rolysis temperatures are shown in Figure 6. At 
700 °C and 1 – hour pyrolysis time, there was a 
similar XRD pattern for 4 RHAs. It is observed 
that broad diffused peaks with maximum inten-
sity at around 2θ = 22° occurred (Figure 6a). 
Bakar et al. also determined the same XRD 
patterns for acid-leached silica and un-leached 
silica when the broad diffused peaks occurred 
at 2θ = 22o when the combustion temperatures 

ranged from 500 °C to 900 °C [33]. It means 
the amorphous silica is formed at this range 
of pyrolysis temperature. However, some 
sharp peaks are observed at 2θ = 26.6° and 
2θ = 20.7° in the case of normal soil’s RHA 
and saline soil’s RHA (Figure 6a). Therefore, 
a crystalline transformation occurred in those 
RHA samples at 700 °C pyrolysis tempera-
ture in a 1-hour pyrolysis time. Furthermore, 
the XRD patterns from Figure 6b, c revealed 
that the crystalline transformation rose when 
the pyrolysis temperature was between 800 
°C and 900 °C, and those experimental results 

Figure 7. XRD patterns of 4 different 
RHAs at: (a) 700 °C; (b) 800 °C; (c) 
900 °C in 2-hour pyrolysis duration

Figure 6. XRD patterns of 4 different 
RHAs at: (a) 700 °C; (b) 800 °C; (c) 
900 °C in 1-hour pyrolysis duration
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were coincident with the previous studies 
[34, 35]. This indicates the recovery efficiency 
of amorphous silica decreased as the pyrolysis 
temperature rose from 700 °C to 900 °C [36]. 
Otherwise, Figure 6 also shows that the pyroly-
sis temperature for normal and saline soil’s rice 
husk needs to be lower than 700 °C to obtain 
a better ratio of amorphous silica. On the other 
hand, 700 °C was the appropriate pyrolysis tem-
perature for the amorphous silica formation in 
the case of drought and acidic soil rice husk.

Effect of pyrolysis time 

Figure 7 revealed the XRD patterns of 4 
different RHAs at a pyrolysis temperature of 
700–900 °C in a 2-hour duration. From Figures 
6 and 7, the recovery efficiency of amorphous 
silica dropped as the pyrolysis time was longer. 
According to Greenwood and Earnshaw [32], 
the longer pyrolysis time is mainly due to the 
phase transformation to quartz, tridymite, and 
cristobalite. This conclusion was also proven 
in the previous study [36]. At 700 °C pyrolysis 
temperature, the crystalline transformation oc-
curred more and more when the residence time 
of drought and acidic soil’s rice husks in the 
furnace was longer. 

The recovery efficiency of amorphous silica

The recovery efficiency of amorphous silica 
relates to the calculation of the percentage of 
crystallinity silica (PCS) that was mentioned in 
Equation 1 [37]. Therefore, the percentage of 
amorphous silica (PAS) can be determined in 
Equation 2.

	
 

PCS = ACP
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  ×  100% (1) 

 
 
 
 
 

 
 

PAS = 100% - PCS (2) 
 
 

	 (1)

where: ACP – area of all crystalline peaks, ACAP 
– area of all the crystalline and amor-
phous peaks.

	

 

PCS = ACP
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  ×  100% (1) 

 
 
 
 
 

 
 

PAS = 100% - PCS (2) 
 
 

	 (2)
Figures 8 and 9 show that the recovery effi-

ciency of amorphous silica dropped as the pyroly-
sis temperature rose from 700 °C to 900 °C. As 
can be seen from Figure 8, the amorphous silica 
recovery from the pyrolysis of acidic, drought, 
normal, and saline soil’s rice husk at 900 °C de-
creased by nearly 42%, 40%, 26%, and 44%, 
respectively, in comparison with at 700 °C. Fur-
thermore, the drop in amorphous silica recov-
ery was quite larger when the pyrolysis process 
was longer at the same pyrolysis temperature, as 
shown in Figures 8 and 9. However, the effect of 
pyrolysis time on the amorphous silica recovery 

Figure 8. The recovery efficiency of amorphous silica from different types of rice 
husk in 1-hour pyrolysis time duration at various pyrolysis temperature



264

Advances in Science and Technology Research Journal 2024, 18(5), 258–267

Figure 9. The recovery efficiency of amorphous silica from different types of rice 
husk in 2-hour pyrolysis time duration at various pyrolysis temperature

efficiency was less significant than the effect of 
pyrolysis temperature [38, 39]. 

Comparison to commercial products

The efficiency analysis results for the recovery 
of amorphous silica from RHA originating from dif-
ferent soil types indicate that optimal conditions are 
achieved at a pyrolysis temperature of 700 °C for 1 
hour. For further evaluation, with the goal of partially 

replacing OPC and due to its similarity to SF, the 
phase structure and surface morphology of the four 
types of RHA-derived amorphous silica were com-
pared with samples of commercial products, namely 
OPC and SF. The XRD patterns of the OPC and 
SF samples are shown in Figure 10. The XRD pat-
terns of RHA-derived amorphous silica are similar 
to those of the SF sample, while the OPC sample is 
characterized by the presence of not only silica but 
also various metal oxides in its composition.

Figure 10. XRD patterns of typical OPC and SF samples
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To evaluate the surface morphology and check 
particle size, these four types of RHA amorphous 
silica were reduced to micrometre sizes similar to 
OPC and SF by planetary ball milling at a speed of 
400 rpm for 12 hours. The SEM images of the RHA 
amorphous silica samples after milling are shown 
in Figure 11. The results indicate that the samples 
have an uneven particle size distribution ranging 
from 2 microns to below 100 nm. Figure 11 shows 
that the two types of amorphous silica correspond-
ing to normal soil RHA and saline soil RHA have 
similar surface structures and particle sizes, which 
are smaller and more uniform compared to the two 
samples corresponding to drought soil RHA and 
acidic soil RHA. The surface morphology of the four 
samples is quite similar to the OPC sample shown in 
Figure 12. In Figure 12, the SEM images of the SF 
sample reveal spherical particles with a characteristic 
uneven size distribution. Through analysis of phase 
structure, surface morphology, and particle size, the 
suitability of RHA-derived amorphous silica as sus-
tainable SCMs from agricultural by-products is dem-
onstrated. This study contributes to advancing efforts 
towards sustainable construction practices and the 
development of resilient infrastructure.

Figure 11. Morphology of RHA samples in microparticle size from: (a) normal soil 
RHA, (b) saline soil RHA, (c) drought soil RHA, and (d) acidic soil RHA

Figure 12. Morphology of: (a) a SF 
sample and (b) an OPC sample
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CONCLUSIONS

Through the analysis of phase structure and 
surface morphology, the highest efficiency for each 
type of rice husk under different cultivation condi-
tions was identified. Specifically, at a pyrolysis tem-
perature of 700 °C for 1 hour, the recovery efficien-
cies for normal soil RHA, saline soil RHA, drought 
soil RHA, and acidic soil RHA were 87.9%, 96.5%, 
94.8%, and 95.6%, respectively. Given the signifi-
cant fluctuations in soil conditions due to climate 
change in many rice-producing countries, these re-
sults are crucial for selecting appropriate pyrolysis 
regimes when applying industrial-scale production 
for amorphous silica from RHA. The study also 
compared the phase structure, surface morphology, 
and particle size of RHA-derived amorphous silica, 
ground to micrometre sizes, with commercial sam-
ples of OPC and SF, which are commonly used in 
the production of construction materials today. The 
results showed similarities with current commercial 
products and highlighted the potential of ball milling 
in controlling the particle size of these RHA-derived 
amorphous silica samples to the desired size for par-
tially replacing OPC or commercial SCMs like SF.
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