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INTRODUCTION 

Crisis events disrupt global supply chains 
and transport flows. A perfect example is the 
COVID-19 pandemic [1]. War threats have sim-
ilar effects. It is not without reason that Poland 
was chosen as the subject of the study, as it di-
rectly borders Ukraine, where there is currently 
an armed conflict. The war in Ukraine has a seri-
ous impact on the transport sector. Disruptions in 
the transport of goods cause huge delays in deliv-
eries [2]. Transport instability and rapid changes 
in business force us to make quick decisions in a 
complex and demanding environment and should 
be supported by reliable mathematical analyses 

[3, 4], not only identifying factors influencing 
changes in value streams, but also enabling short-
term forecasting [5, 6].  The examples of forecast-
ing of transport systems behaviour and managing 
crisis situations can provide excellent support for 
crisis teams, manufacturing and logistics enter-
prises [7]. They allow to determine the impact of 
selected factors on demand and supply, describe 
expected trends and provide information on pos-
sible disruptions. They also enable risk analysis, 
which becomes particularly important in a pan-
demic situation and is crucial for decision-making 
and strategy development [34, 39]. Its main task 
is to identify potential threats, assess their impact, 
and above all, the likelihood of occurrence. This 
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allows for reducing risk and minimizing negative 
consequences. In the event of armed conflicts, 
but also various types of disasters, they can pro-
vide support for companies, governmental and 
non-governmental agencies. Support in the form 
of mathematical modelling allows to make more 
informed decisions in crisis situations. In this arti-
cle, the authors’ research objective was to develop 
a method enabling the identification of time series 
disrupted by crisis events, and therefore difficult to 
describe and make reliable forecasts. The method 
proposed by the authors is an innovative answer 
to the problems of identifying time series in which 
the dynamics of the seasonality component is not 
constant (the dynamics of both trend and seasonal-
ity are influenced by external factors). The method 
presented can also be used in the analysis of other 
issues in which the time series were disrupted in a 
sudden and unexpected way. 

BACKGROUND

The COVID-19 coronavirus pandemic has 
had a profound impact on all industries, includ-
ing the rail transport sector. The literature in this 
area covers several main themes. First of all, it fo-
cuses on mitigating the consequences of the pan-
demic. In this context, authors strongly focus on 
limiting the transmission of the virus by proposing 
various models that describe this phenomenon [35, 
37]. The main goal of such research is to limit the 
risk of infection and ensure the health of citizens 
through effective preventive strategies and inter-
vention measures. These studies include the analy-
sis of the effectiveness of protective measures and 
the assessment of the impact of health and social 
measures on controlling the pandemic, as well as 
elements of social functioning [36]. Moreover, 
researchers aim to identify risk factors associated 
with infection and evaluate the effectiveness of dif-
ferent diagnostic methods, treatment, and vaccines 
[41, 42]. The authors also identify strategies related 
to transportation systems to limit the consequences 
of this threat [8] or propose scenarios regarding the 
functioning of the transport system as a result of 
the COVID-19 pandemic [9, 10]. The impact of 
the pandemic on decisions about using transport 
has also been widely studied [11]. Crisis situations 
directly affect business strategy change, indirectly 
affecting transport and logistics flows [44]. The 
diversification strategy is one effective way to re-
duce the disruption resulting from the COVID-19 

pandemic and the war in Ukraine. Changes in trav-
el patterns and activity during the pandemic were 
evaluated. For this purpose, the methods of com-
parison and statistical analysis were most often 
used [12], or calculating appropriate coefficients 
[13]. The use of more advanced methods was also 
proposed. For example, Lucchesi et al. [14] used 
hybrid choice models, emphasizing the difficulty 
in studying this issue due to the presence of hid-
den variables [15]. Transport was also analysed in 
terms of the spread of the epidemic. Such research 
was conducted, for example, in Portugal [16], Chi-
na [17] or Poland [18]. Research in this area was 
most popular due to the fact that the spread of the 
disease was one of the key problems in combating 
the threat [19]. The resistance of rail transport to 
threats was also assessed. For example, Wang et al. 
[20] studied the impact of COVID-19 on the Chi-
nese economy using a forecasting model based on 
rail transport statistics. H. Nguyen [21] analysed 
indicator methods in relation to Vietnam. Selected 
publications concern the use of classic time series 
models, such as the stationary AR model [22], 
nonstationary ARIMA [23] and seasonal SARIMA 
[24], however, as the obtained results show, these 
models do not fully cope with identifying series 
containing changes caused by crisis situations. 

Machine learning methods give better re-
sults using, for example, neural networks [25], 
support vectors (SVM) and random forests (RF) 
[26], however, require large data resources from 
a distant time horizon. Moreover, artificial intel-
ligence (AI) may have difficulty adapting quick-
ly in the event of rapid changes and algorithm 
complexity, which may lead to inaccurate pre-
dictions [27]. In [43], the authors present a spe-
cial solution for determining alarm conditions 
based on AI techniques, including an expert 
system and developed algorithms for analysing 
certain parameters in biogas plant. This shows 
the need to create new solutions dedicated to the 
analysis of complex time series that can cope 
with sets with unexpected changes. That issue 
is addressed in this article. However, the au-
thors keep in mind that identifying time series in 
which disturbances are caused by external fac-
tors is extremely difficult and requires reliable 
tools to ensure reliable results. As the literature 
shows, they are a huge hindrance to classical 
methods of identification and forecasting, and 
direct polynomial matching of the appropriate 
degree of the deterministic part for the entire 
time series or identification of the series using 
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ARIMA models is not always a rational action. Therefore, it is necessary to modify them and adapt 
known methods to take into account the complexity of the collected observations.  

Due to the above, this article proposes to describe the dynamics occurring in the time series us-
ing the LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot 
smoothing) methods, which rely on local matching the trend occurring around the moment t based on 
realisations of the nearest neighbors, i.e. determining the trend based on the realization of sequence 

. Trend identification involves the use of Weighted Least Squares (WLS). 
In a time series, in addition to the trend, there may also be seasonal trends. Local polynomial fitting allows 
only to estimate the trend but does not take into account seasonal fluctuations. Therefore, it was proposed 
to use LOESS both to determine the local trend and to estimate seasonal fluctuations, which is an in-
novative approach. Additionally, the matching of historical data was compared for the trend determined 
using LOESS, the trend and seasonal components using harmonic analysis, and the trend and seasonal 
components using the LOESS technique. For each of the above-mentioned methods, the model fit was 
evaluated for the training data set. Effective adaptation of the model to changing conditions was ensured 
by taking into account the effect of weights for empirical data, i.e. assigning greater weight to observations 
closer to the analysed moment, and less weight to observations further away from that moment. Then the 
forecast was determined and compared with the actual data. The following indicators were used to assess 
the matching and effectiveness of forecasts: root mean square error (RMSE), mean absolute error (MAE), 
mean absolute percentage error (MAPE), [28, 29]. Lower values of these indicators mean a better fit and a 
more accurate forecast. Accordingly, the contribution of this article to science is as follows:
 • an innovative method was proposed to identify the dynamics of a time series in which seasonality 

disturbances are caused by external factors;
 • an analysis of freight and passenger rail transport was made, presenting the impact of crisis situations 

on these flows;
 • a method of local trend and seasonality matching was presented;
 • the method of determining the local trend and adapting seasonal fluctuations using harmonic analysis 

and LOESS was presented;
 • time series predictions and accuracy evaluation were made using Locally Estimated Trend, Locally 

Estimated Trend with Seasonal Components, Locally Estimated Trend with Locally Estimated Sea-
sonal Components.

MATERIALS AND METHODS 
LOESS and LOWESS  
We consider the time series {𝑥𝑥𝑠𝑠}1 ≤ 𝑠𝑠 ≤ 𝑛𝑛 around the moment 𝑡𝑡, 1 ≤ 𝑡𝑡 ≤ 𝑛𝑛, so the elements of the sub-
sequence {𝑥𝑥𝑠𝑠}max(1,𝑡𝑡−𝑘𝑘) ≤ 𝑠𝑠 ≤ min(𝑡𝑡+𝑘𝑘,𝑛𝑛) are presented in the form [30]: 

𝑥𝑥𝑠𝑠 = 𝜃𝜃0(𝑡𝑡) + 𝜃𝜃1(𝑡𝑡)ℎ1(𝑡𝑡, 𝑠𝑠) + ⋯+ 𝜃𝜃𝑚𝑚(𝑡𝑡)ℎ𝑚𝑚(𝑡𝑡, 𝑠𝑠) + 𝜀𝜀𝑠𝑠   (1) 

for max(1, 𝑡𝑡 − 𝑘𝑘) ≤ 𝑠𝑠 ≤ min(𝑡𝑡 + 𝑘𝑘, 𝑛𝑛), where {𝜀𝜀𝑖𝑖}max(1,𝑡𝑡−𝑘𝑘) ≤ 𝑖𝑖 ≤ min(𝑡𝑡 + 𝑘𝑘,𝑛𝑛) is a sequence of 
independent random variables with normal distribution 𝑁𝑁(0, 𝜎𝜎2). The quantities ℎ𝑗𝑗(𝑡𝑡, 𝑠𝑠), 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 
represent transformations of the time variable around the moment 𝑡𝑡. If the deterministic part in (1) is 
approximated using a second degree polynomial (𝑚𝑚 = 2), we assume ℎ𝑗𝑗(𝑡𝑡, 𝑠𝑠) = (𝑡𝑡 − 𝑠𝑠)𝑗𝑗 for 1 ≤ 𝑗𝑗 ≤
2. The relationship (1) between the endogenous variable and the predictors (transformations ℎ𝑖𝑖, 1 ≤ 𝑖𝑖 ≤
𝑚𝑚) is linear. For each moment 𝑡𝑡 z the relationship (1) can be presented in the form: 

𝑋𝑋 = 𝑍𝑍𝑡𝑡𝜃𝜃(𝑡𝑡) + 𝜀𝜀      (2) 

where: 

𝑋𝑋 = [
𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑛𝑛

] , 𝑍𝑍𝑡𝑡 =
[
 
 
 1 ℎ1(𝑡𝑡, 1) ℎ2(𝑡𝑡, 1) … ℎ𝑚𝑚(𝑡𝑡, 1)
1 ℎ1(𝑡𝑡, 2) ℎ2(𝑡𝑡, 2) … ℎ𝑚𝑚(𝑡𝑡, 2)
⋮ ⋮ ⋮ ⋮
1 ℎ1(𝑡𝑡, 𝑛𝑛) ℎ2(𝑡𝑡, 𝑛𝑛) … ℎ𝑚𝑚(𝑡𝑡, 𝑛𝑛)]

 
 
 
, 𝜃𝜃(𝑡𝑡) = [

𝜃𝜃0(𝑡𝑡)
𝜃𝜃1(𝑡𝑡)

⋮
𝜃𝜃𝑚𝑚(𝑡𝑡)

] , 𝜀𝜀 = [
𝜀𝜀0
𝜀𝜀1
⋮
𝜀𝜀𝑛𝑛

]. 

The vector of structural parameters 𝜃𝜃(𝑡𝑡) is determined using the least squares method. To this purpose, 
for each moment 𝑡𝑡, 1 ≤ 𝑡𝑡 ≤ 𝑛𝑛 we solve the problem: 

min
𝜃𝜃(𝑡𝑡)

(𝑋𝑋 − 𝑍𝑍𝑡𝑡𝜃𝜃(𝑡𝑡))𝑇𝑇𝑊𝑊𝑡𝑡(𝑋𝑋 − 𝑍𝑍𝑡𝑡𝜃𝜃(𝑡𝑡)),      (3) 

while the weight matrix has the form: 

𝑊𝑊𝑡𝑡 = [
𝑤𝑤(𝑡𝑡, 1) 0 0 … 0

0 𝑤𝑤(𝑡𝑡, 2) 0 … 0
⋮ ⋮ ⋮ ⋮
0 0 0 … 𝑤𝑤(𝑡𝑡, 𝑛𝑛)

]    (4) 

In the analysed case, Gaussian weight was used:  

𝑤𝑤(𝑡𝑡, 𝑠𝑠) = exp (− ∥𝑡𝑡−𝑠𝑠∥2

2𝛼𝛼2 )     (5) 

Solving problem (3) for each 𝑡𝑡, 1 ≤ 𝑡𝑡 ≤ 𝑛𝑛 by applying Gauss's theorem [28], we obtain the values of 
unknown parameters in Equation 1 as: 

𝜃𝜃(𝑡𝑡) = (𝑍𝑍𝑡𝑡
𝑇𝑇𝑊𝑊𝑡𝑡𝑍𝑍𝑡𝑡)−1𝑍𝑍𝑡𝑡

𝑇𝑇𝑊𝑊𝑡𝑡𝑋𝑋     (6) 

Remark 1 For each moment 𝑡𝑡, 1 ≤ 𝑡𝑡 ≤ 𝑛𝑛 the sequence {�̂�𝜃0(𝑡𝑡)}1≤𝑡𝑡≤𝑛𝑛 defines the expected values of the 
series {𝑥𝑥𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛 of the form (2). For moments 𝜏𝜏 > 𝑛𝑛 we estimate the forecast using the Equation: 

𝑥𝑥𝜏𝜏 = 𝜃𝜃0(𝑛𝑛) + 𝜃𝜃1(𝑛𝑛)ℎ1(𝑛𝑛, 𝜏𝜏) + ⋯+ 𝜃𝜃𝑚𝑚(𝑛𝑛)ℎ𝑚𝑚(𝑛𝑛, 𝜏𝜏)   (7) 

Remark 2 The sequence of differences {𝜂𝜂𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛, where: 𝜂𝜂𝑡𝑡 = 𝑥𝑥𝑡𝑡 − 𝜃𝜃0(𝑡𝑡) for 1 ≤ 𝑡𝑡 ≤ 𝑛𝑛 may contain 
non-random components (seasonality, integration, ARIMA series). When using the LOESS technique 
for a sequence of differences, we do not obtain positive effects, but the use of other transformations for 
model (2) allows us to identify, for example, seasonality. 

Harmonic analysis 
The next component is the seasonal component [31], which can be identified using phase trends, the 
Holt-Winters method [32, 33], or harmonic analysis [31]. However, these techniques assume that the 
seasonality pattern is constant. In fact, in many cases, elements of the seasonal component evolve over 
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Holt-Winters method [32, 33], or harmonic analysis [31]. However, these techniques assume that the 
seasonality pattern is constant. In fact, in many cases, elements of the seasonal component evolve over 
time. The phase trends method allows for the identification of the dynamics of phases that are part of 
seasonality, while the Holt-Winters method allows for the identification of the seasonality component 
using exponential smoothing. In this way, we obtain a seasonality component that mimics the 
fluctuations of recent periods. Harmonic analysis assumes that the time series is a sum of trigonometric 
functions with different frequencies [31]. Using Fourier expansion, we identify harmonics, where it is 
assumed that the amplitudes of the harmonics do not change in time. Below, the method of identifying 
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the dynamics of changes in harmonics occurring in the series. We are considering a series from which 
various types of trend functions, polynomial functions, etc. have been eliminated, while periodic 
fluctuations still occur in it. In order to identify the time series {𝜂𝜂𝑡𝑡}𝑡𝑡∈ℕ we first create a Fourier series. 
The analysed time series is presented in the form: 

𝜂𝜂𝑡𝑡 = 𝛼𝛼0 + ∑ (𝛼𝛼𝑘𝑘cos (2𝜋𝜋
𝑛𝑛 𝑘𝑘𝑘𝑘) + 𝛽𝛽𝑘𝑘sin (2𝜋𝜋

𝑛𝑛 𝑘𝑘𝑘𝑘))𝑇𝑇
𝑘𝑘=1 + 𝜖𝜖𝑡𝑡   (8) 

where: {𝜖𝜖𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛 is a sequence of independent random variables with a normal distribution N(0, 𝜎𝜎2). 
Based on the realisation of sequence {𝜂𝜂𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛 we identify the series using the expansion of (8) and 
assume that the number of possible harmonics occurring in this series 𝑇𝑇 << [𝑛𝑛

2], where [⋅] denotes the 
integer part. The expansion (8) shows that seasonality can be represented as the sum of harmonic 
components. The estimators of the unknown parameters 𝛼𝛼0, 𝛼𝛼1, 𝛽𝛽1, . . . , 𝛼𝛼𝑇𝑇, 𝛽𝛽𝑇𝑇 in the Equation 8 are 
determined using the least squares method and have the form: 

�̂�𝛼0 = 1
𝑛𝑛 ∑ 𝜂𝜂𝑡𝑡

𝑛𝑛
𝑡𝑡=1        (9) 

   �̂�𝛼𝑘𝑘 = 2
𝑛𝑛 ∑ 𝜂𝜂𝑡𝑡

𝑛𝑛
𝑡𝑡=1 cos (2𝜋𝜋

𝑛𝑛 𝑘𝑘𝑘𝑘)     (10) 

   �̂�𝛽𝑘𝑘 = 2
𝑛𝑛 ∑ 𝜂𝜂𝑡𝑡

𝑛𝑛
𝑡𝑡=1 sin (2𝜋𝜋

𝑛𝑛 𝑘𝑘𝑘𝑘)     (11) 

for 𝑘𝑘 = 1,2, . . . , 𝑇𝑇. If a trend is separated from series (1), the sequence {𝜂𝜂𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛 oscillates around the 
zero level, therefore �̂�𝛼0 ≈ 0. We estimate the sequence of residuals {𝜖𝜖𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛 as:  

𝜖𝜖𝑡𝑡 = 𝜂𝜂𝑡𝑡 − �̂�𝛼0 − ∑ (�̂�𝛼𝑘𝑘cos (2𝜋𝜋
𝑛𝑛 𝑘𝑘𝑘𝑘) + �̂�𝛽𝑘𝑘sin (2𝜋𝜋

𝑛𝑛 𝑘𝑘𝑘𝑘))𝑇𝑇
𝑘𝑘=1    (12) 

The standard deviation of the sequence of residuals {𝜖𝜖𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛 is equal to  

   𝜎𝜎𝜖𝜖 = √1
𝑛𝑛 ∑ 𝜂𝜂𝑡𝑡

2𝑛𝑛
𝑡𝑡=1 − �̂�𝛼0

2 − 1
2 ∑ (�̂�𝛼𝑘𝑘

2 + �̂�𝛽𝑘𝑘
2)𝑇𝑇

𝑘𝑘=1      (13) 

For the 𝑘𝑘 −th harmonic, the quantity: 𝜔𝜔𝑘𝑘 = 2𝜋𝜋
𝑛𝑛 𝑘𝑘 means the angular velocity, while 𝐴𝐴𝑘𝑘 = √𝛼𝛼𝑘𝑘

2 + 𝛽𝛽𝑘𝑘
2 an 

amplitude. By analysing the sequence of amplitudes {𝐴𝐴𝑘𝑘}1≤𝑘𝑘≤𝑇𝑇 it is possible to determine harmonics 
that have significantly impact on seasonality. As the set of indices of the harmonics occurring in the 
time series we select: 

𝐻𝐻 = {𝑖𝑖: 𝐴𝐴𝑖𝑖 ≥ 𝑞𝑞𝛼𝛼,  1 ≤ 𝑖𝑖 ≤ 𝑇𝑇}     (14) 

while 𝑞𝑞𝛼𝛼 means quantile of the order 𝛼𝛼, 0 < 𝛼𝛼 < 1 for the sequence of amplitudes {𝐴𝐴𝑘𝑘}1≤𝑘𝑘≤𝑇𝑇.  
We determine the forecast values related to seasonality as: 

�̂�𝜂𝑡𝑡 = �̂�𝛼0 + ∑ (�̂�𝛼𝑘𝑘cos(𝜔𝜔𝑘𝑘𝑘𝑘) + �̂�𝛽𝑘𝑘sin(𝜔𝜔𝑘𝑘𝑘𝑘))𝑘𝑘∈𝐻𝐻      (15) 

Application of LOESS to identify seasonality 
The method of identifying the seasonal component using LOESS is called LESC (locally estimated 
seasonal components). In the case under consideration, we first identify the harmonic components 
occurring in the time series (i.e. we determine the set H given by Equation 14. Then, using the WLS 
method, we determine the coefficients of the harmonic components for each moment. We analyse the 
time series {𝜂𝜂𝑠𝑠}1≤𝑠𝑠≤𝑛𝑛 containing a seasonal component around the moment 𝑘𝑘, 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛. The structural 
parameters in model (8) depend on the moment 𝑘𝑘. Let us assume 𝑚𝑚 ∈ ℕ the number of harmonics 



242

Advances in Science and Technology Research Journal 2024, 18(4), 238–249

time. The phase trends method allows for the identification of the dynamics of phases that are part of 
seasonality, while the Holt-Winters method allows for the identification of the seasonality component 
using exponential smoothing. In this way, we obtain a seasonality component that mimics the 
fluctuations of recent periods. Harmonic analysis assumes that the time series is a sum of trigonometric 
functions with different frequencies [31]. Using Fourier expansion, we identify harmonics, where it is 
assumed that the amplitudes of the harmonics do not change in time. Below, the method of identifying 
seasonality proposed in the article will be presented, based on harmonic analysis, taking into account 
the dynamics of changes in harmonics occurring in the series. We are considering a series from which 
various types of trend functions, polynomial functions, etc. have been eliminated, while periodic 
fluctuations still occur in it. In order to identify the time series {𝜂𝜂𝑡𝑡}𝑡𝑡∈ℕ we first create a Fourier series. 
The analysed time series is presented in the form: 

𝜂𝜂𝑡𝑡 = 𝛼𝛼0 + ∑ (𝛼𝛼𝑘𝑘cos (2𝜋𝜋
𝑛𝑛 𝑘𝑘𝑘𝑘) + 𝛽𝛽𝑘𝑘sin (2𝜋𝜋

𝑛𝑛 𝑘𝑘𝑘𝑘))𝑇𝑇
𝑘𝑘=1 + 𝜖𝜖𝑡𝑡   (8) 

where: {𝜖𝜖𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛 is a sequence of independent random variables with a normal distribution N(0, 𝜎𝜎2). 
Based on the realisation of sequence {𝜂𝜂𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛 we identify the series using the expansion of (8) and 
assume that the number of possible harmonics occurring in this series 𝑇𝑇 << [𝑛𝑛

2], where [⋅] denotes the 
integer part. The expansion (8) shows that seasonality can be represented as the sum of harmonic 
components. The estimators of the unknown parameters 𝛼𝛼0, 𝛼𝛼1, 𝛽𝛽1, . . . , 𝛼𝛼𝑇𝑇, 𝛽𝛽𝑇𝑇 in the Equation 8 are 
determined using the least squares method and have the form: 

�̂�𝛼0 = 1
𝑛𝑛 ∑ 𝜂𝜂𝑡𝑡

𝑛𝑛
𝑡𝑡=1        (9) 

   �̂�𝛼𝑘𝑘 = 2
𝑛𝑛 ∑ 𝜂𝜂𝑡𝑡

𝑛𝑛
𝑡𝑡=1 cos (2𝜋𝜋

𝑛𝑛 𝑘𝑘𝑘𝑘)     (10) 

   �̂�𝛽𝑘𝑘 = 2
𝑛𝑛 ∑ 𝜂𝜂𝑡𝑡

𝑛𝑛
𝑡𝑡=1 sin (2𝜋𝜋

𝑛𝑛 𝑘𝑘𝑘𝑘)     (11) 

for 𝑘𝑘 = 1,2, . . . , 𝑇𝑇. If a trend is separated from series (1), the sequence {𝜂𝜂𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛 oscillates around the 
zero level, therefore �̂�𝛼0 ≈ 0. We estimate the sequence of residuals {𝜖𝜖𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛 as:  

𝜖𝜖𝑡𝑡 = 𝜂𝜂𝑡𝑡 − �̂�𝛼0 − ∑ (�̂�𝛼𝑘𝑘cos (2𝜋𝜋
𝑛𝑛 𝑘𝑘𝑘𝑘) + �̂�𝛽𝑘𝑘sin (2𝜋𝜋

𝑛𝑛 𝑘𝑘𝑘𝑘))𝑇𝑇
𝑘𝑘=1    (12) 

The standard deviation of the sequence of residuals {𝜖𝜖𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛 is equal to  

   𝜎𝜎𝜖𝜖 = √1
𝑛𝑛 ∑ 𝜂𝜂𝑡𝑡

2𝑛𝑛
𝑡𝑡=1 − �̂�𝛼0

2 − 1
2 ∑ (�̂�𝛼𝑘𝑘

2 + �̂�𝛽𝑘𝑘
2)𝑇𝑇

𝑘𝑘=1      (13) 

For the 𝑘𝑘 −th harmonic, the quantity: 𝜔𝜔𝑘𝑘 = 2𝜋𝜋
𝑛𝑛 𝑘𝑘 means the angular velocity, while 𝐴𝐴𝑘𝑘 = √𝛼𝛼𝑘𝑘

2 + 𝛽𝛽𝑘𝑘
2 an 

amplitude. By analysing the sequence of amplitudes {𝐴𝐴𝑘𝑘}1≤𝑘𝑘≤𝑇𝑇 it is possible to determine harmonics 
that have significantly impact on seasonality. As the set of indices of the harmonics occurring in the 
time series we select: 

𝐻𝐻 = {𝑖𝑖: 𝐴𝐴𝑖𝑖 ≥ 𝑞𝑞𝛼𝛼,  1 ≤ 𝑖𝑖 ≤ 𝑇𝑇}     (14) 

while 𝑞𝑞𝛼𝛼 means quantile of the order 𝛼𝛼, 0 < 𝛼𝛼 < 1 for the sequence of amplitudes {𝐴𝐴𝑘𝑘}1≤𝑘𝑘≤𝑇𝑇.  
We determine the forecast values related to seasonality as: 

�̂�𝜂𝑡𝑡 = �̂�𝛼0 + ∑ (�̂�𝛼𝑘𝑘cos(𝜔𝜔𝑘𝑘𝑘𝑘) + �̂�𝛽𝑘𝑘sin(𝜔𝜔𝑘𝑘𝑘𝑘))𝑘𝑘∈𝐻𝐻      (15) 

Application of LOESS to identify seasonality 
The method of identifying the seasonal component using LOESS is called LESC (locally estimated 
seasonal components). In the case under consideration, we first identify the harmonic components 
occurring in the time series (i.e. we determine the set H given by Equation 14. Then, using the WLS 
method, we determine the coefficients of the harmonic components for each moment. We analyse the 
time series {𝜂𝜂𝑠𝑠}1≤𝑠𝑠≤𝑛𝑛 containing a seasonal component around the moment 𝑘𝑘, 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛. The structural 
parameters in model (8) depend on the moment 𝑘𝑘. Let us assume 𝑚𝑚 ∈ ℕ the number of harmonics 
determining the seasonality, i.e. 𝐻𝐻 = {𝑘𝑘1, 𝑘𝑘2,… , 𝑘𝑘𝑚𝑚}, therefore the elements of this series are presented 
in the form: 

 𝜂𝜂𝑠𝑠 = 𝛼𝛼0(𝑡𝑡) + 𝛼𝛼1(𝑡𝑡)ℎ1
𝑐𝑐(𝑠𝑠) + ⋯+ 𝛼𝛼𝑚𝑚(𝑡𝑡)ℎ𝑚𝑚

𝑐𝑐 (𝑠𝑠) + 𝛽𝛽1(𝑡𝑡)ℎ1
𝑠𝑠(𝑠𝑠) + ⋯+ 𝛽𝛽𝑚𝑚(𝑡𝑡)ℎ𝑚𝑚

𝑠𝑠 (𝑠𝑠) + 𝜖𝜖𝑠𝑠 (16) 

where: 
ℎ𝑖𝑖

𝑐𝑐(𝑠𝑠) = cos (2𝜋𝜋
𝑛𝑛 𝑘𝑘𝑖𝑖𝑠𝑠) and ℎ𝑖𝑖

𝑠𝑠(𝑠𝑠) = sin (2𝜋𝜋
𝑛𝑛 𝑘𝑘𝑖𝑖𝑠𝑠) for max(1, 𝑡𝑡 − 𝑘𝑘) ≤ 𝑠𝑠 ≤ min(𝑡𝑡 + 𝑘𝑘, 𝑛𝑛) and 1 ≤ 𝑖𝑖 ≤

𝑚𝑚. We can represent relationship (16) using Equation 1, where: 

𝑋𝑋 = [
𝜂𝜂1
𝜂𝜂2
⋮

𝜂𝜂𝑛𝑛

] , 𝑍𝑍𝑡𝑡 =
[
 
 
 1 ℎ1

𝑐𝑐(1) … ℎ𝑚𝑚
𝑐𝑐 (1) ℎ1

𝑠𝑠(1) … ℎ𝑚𝑚
𝑠𝑠 (1)

1 ℎ1
𝑐𝑐(2) … ℎ𝑚𝑚

𝑐𝑐 (2) ℎ1
𝑠𝑠(2) … ℎ𝑚𝑚

𝑠𝑠 (2)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 ℎ1

𝑐𝑐(𝑛𝑛) … ℎ𝑚𝑚
𝑐𝑐 (𝑛𝑛) ℎ1

𝑠𝑠(𝑛𝑛) … ℎ𝑚𝑚
𝑠𝑠 (𝑛𝑛)]

 
 
 
, 𝜀𝜀 = [

𝜖𝜖0
𝜖𝜖1
⋮
𝜖𝜖𝑛𝑛

]. 

while the vector of structural parameters has the form: 

𝜃𝜃(𝑡𝑡) = [𝛼𝛼0(𝑡𝑡), 𝛼𝛼1(𝑡𝑡), … , 𝛼𝛼𝑚𝑚(𝑡𝑡), 𝛽𝛽1(𝑡𝑡),… , 𝛽𝛽𝑚𝑚(𝑡𝑡)]𝑇𝑇 

Then, solving problem (3) taking into account the weight matrix (4), we obtain estimates of the structural 
parameters 𝜃𝜃(𝑡𝑡) for 1 ≤ 𝑡𝑡 ≤ 𝑛𝑛 using Equation 6. 
Remark 3 For each moment 𝑡𝑡, 1 ≤ 𝑡𝑡 ≤ 𝑛𝑛 the sequence {�̂�𝜂𝑡𝑡

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿}1≤𝑡𝑡≤𝑛𝑛: 

�̂�𝜂𝑡𝑡
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = �̂�𝛼0(𝑡𝑡) + �̂�𝛼1(𝑡𝑡)ℎ1

𝑐𝑐(𝑡𝑡) + ⋯+ �̂�𝛼𝑚𝑚(𝑡𝑡)ℎ𝑚𝑚
𝑐𝑐 (𝑡𝑡) + �̂�𝛽1(𝑡𝑡)ℎ1

𝑠𝑠(𝑡𝑡) + ⋯+ �̂�𝛽𝑚𝑚(𝑡𝑡)ℎ𝑚𝑚
𝑠𝑠 (𝑡𝑡) (17) 

determines the expected values of the series (8). The sequence {𝜖𝜖𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛, where 𝜖𝜖𝑡𝑡 = 𝜂𝜂𝑡𝑡 − �̂�𝜂𝑡𝑡
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 for 

1 ≤ 𝑡𝑡 ≤ 𝑛𝑛, represents the differences between the empirical values of the series (8) and the expected 
values obtained using LOESS. For the moments 𝜏𝜏 > 𝑛𝑛 we estimate the forecast using the Equation: 

 �̂�𝜂𝜏𝜏
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = �̂�𝛼0(𝑛𝑛) + �̂�𝛼1(𝑛𝑛)ℎ1

𝑐𝑐(𝜏𝜏) + ⋯+ �̂�𝛼𝑚𝑚(𝑛𝑛)ℎ𝑚𝑚
𝑐𝑐 (𝜏𝜏) + �̂�𝛽1(𝑛𝑛)ℎ1

𝑠𝑠(𝜏𝜏) + ⋯+ �̂�𝛽𝑚𝑚(𝑛𝑛)ℎ𝑚𝑚
𝑠𝑠 (𝜏𝜏) (18) 

Accuracy analysis metrics 
The models presented above have been fitted to goods (freight mass) and passengers data and the 
forecasts have been estimated. The following metrics were used to compare the quality of model fit and 
the forecasting accuracy [28, 31]. Root Mean Square Error (RMSE) means the root of mean of squared 
differences between the actual and model predicted values and is given by the Equation: 

                                                           𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛 ∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛

𝑖𝑖=1     (19) 

where: 𝑥𝑥𝑖𝑖 is the actual value of i-th observation and 𝑥𝑥𝑖𝑖 is the predicted value, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛.  
The MAE (Mean Absolute Error) denotes the average absolute errors between actual values and 
predicted ones and is estimated as follows 

         𝑅𝑅𝑀𝑀𝑅𝑅 = 1
𝑛𝑛 ∑ |𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖|     (20) 

The MAPE (Mean Absolute Percentage Error) is a measure that calculates the average absolute 
percentage difference between actual and expected values. It is often used to quantify the prediction 
error as a percentage and is determined as follows 

𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 = 1
𝑛𝑛 ∑ ∥∥

∥𝑥𝑥𝑖𝑖−�̂�𝑥𝑖𝑖
𝑥𝑥𝑖𝑖 ∥∥

∥𝑛𝑛
𝑖𝑖=1      (21) 

Smaller values of presented above metrics mean superior model performance. 

RAIL TRANSPORT ANALYSIS 
The article analyses rail transport regarding both goods (freight mass) and passengers (number of 
travellers). The data comes from https://utk.gov.pl/ and concerns the years 2012–2023 [38]. 
Additionally, a short-term prediction was made for the period February–April 2023 and the obtained 
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determining the seasonality, i.e. 𝐻𝐻 = {𝑘𝑘1, 𝑘𝑘2,… , 𝑘𝑘𝑚𝑚}, therefore the elements of this series are presented 
in the form: 

 𝜂𝜂𝑠𝑠 = 𝛼𝛼0(𝑡𝑡) + 𝛼𝛼1(𝑡𝑡)ℎ1
𝑐𝑐(𝑠𝑠) + ⋯+ 𝛼𝛼𝑚𝑚(𝑡𝑡)ℎ𝑚𝑚

𝑐𝑐 (𝑠𝑠) + 𝛽𝛽1(𝑡𝑡)ℎ1
𝑠𝑠(𝑠𝑠) + ⋯+ 𝛽𝛽𝑚𝑚(𝑡𝑡)ℎ𝑚𝑚

𝑠𝑠 (𝑠𝑠) + 𝜖𝜖𝑠𝑠 (16) 

where: 
ℎ𝑖𝑖

𝑐𝑐(𝑠𝑠) = cos (2𝜋𝜋
𝑛𝑛 𝑘𝑘𝑖𝑖𝑠𝑠) and ℎ𝑖𝑖

𝑠𝑠(𝑠𝑠) = sin (2𝜋𝜋
𝑛𝑛 𝑘𝑘𝑖𝑖𝑠𝑠) for max(1, 𝑡𝑡 − 𝑘𝑘) ≤ 𝑠𝑠 ≤ min(𝑡𝑡 + 𝑘𝑘, 𝑛𝑛) and 1 ≤ 𝑖𝑖 ≤

𝑚𝑚. We can represent relationship (16) using Equation 1, where: 
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while the vector of structural parameters has the form: 
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Then, solving problem (3) taking into account the weight matrix (4), we obtain estimates of the structural 
parameters 𝜃𝜃(𝑡𝑡) for 1 ≤ 𝑡𝑡 ≤ 𝑛𝑛 using Equation 6. 
Remark 3 For each moment 𝑡𝑡, 1 ≤ 𝑡𝑡 ≤ 𝑛𝑛 the sequence {�̂�𝜂𝑡𝑡

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿}1≤𝑡𝑡≤𝑛𝑛: 

�̂�𝜂𝑡𝑡
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = �̂�𝛼0(𝑡𝑡) + �̂�𝛼1(𝑡𝑡)ℎ1

𝑐𝑐(𝑡𝑡) + ⋯+ �̂�𝛼𝑚𝑚(𝑡𝑡)ℎ𝑚𝑚
𝑐𝑐 (𝑡𝑡) + �̂�𝛽1(𝑡𝑡)ℎ1

𝑠𝑠(𝑡𝑡) + ⋯+ �̂�𝛽𝑚𝑚(𝑡𝑡)ℎ𝑚𝑚
𝑠𝑠 (𝑡𝑡) (17) 

determines the expected values of the series (8). The sequence {𝜖𝜖𝑡𝑡}1≤𝑡𝑡≤𝑛𝑛, where 𝜖𝜖𝑡𝑡 = 𝜂𝜂𝑡𝑡 − �̂�𝜂𝑡𝑡
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 for 

1 ≤ 𝑡𝑡 ≤ 𝑛𝑛, represents the differences between the empirical values of the series (8) and the expected 
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𝑐𝑐 (𝜏𝜏) + �̂�𝛽1(𝑛𝑛)ℎ1

𝑠𝑠(𝜏𝜏) + ⋯+ �̂�𝛽𝑚𝑚(𝑛𝑛)ℎ𝑚𝑚
𝑠𝑠 (𝜏𝜏) (18) 

Accuracy analysis metrics 
The models presented above have been fitted to goods (freight mass) and passengers data and the 
forecasts have been estimated. The following metrics were used to compare the quality of model fit and 
the forecasting accuracy [28, 31]. Root Mean Square Error (RMSE) means the root of mean of squared 
differences between the actual and model predicted values and is given by the Equation: 

                                                           𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛 ∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛

𝑖𝑖=1     (19) 

where: 𝑥𝑥𝑖𝑖 is the actual value of i-th observation and 𝑥𝑥𝑖𝑖 is the predicted value, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛.  
The MAE (Mean Absolute Error) denotes the average absolute errors between actual values and 
predicted ones and is estimated as follows 

         𝑅𝑅𝑀𝑀𝑅𝑅 = 1
𝑛𝑛 ∑ |𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖|     (20) 

The MAPE (Mean Absolute Percentage Error) is a measure that calculates the average absolute 
percentage difference between actual and expected values. It is often used to quantify the prediction 
error as a percentage and is determined as follows 

𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 = 1
𝑛𝑛 ∑ ∥∥

∥𝑥𝑥𝑖𝑖−�̂�𝑥𝑖𝑖
𝑥𝑥𝑖𝑖 ∥∥

∥𝑛𝑛
𝑖𝑖=1      (21) 

Smaller values of presented above metrics mean superior model performance. 

RAIL TRANSPORT ANALYSIS 
The article analyses rail transport regarding both goods (freight mass) and passengers (number of 
travellers). The data comes from https://utk.gov.pl/ and concerns the years 2012–2023 [38]. 
Additionally, a short-term prediction was made for the period February–April 2023 and the obtained 
results were compared with the actual values. Identification and prediction were performed for the LET, 
LETSC and LETLESC models. 

Transport of goods by rail 
Freight transport by rail mainly concerns coal, crude oil and its products, natural gas, steel and metal 
products, cement, grain, etc. These products are necessary for the proper functioning of the economy, 
so countries place particular emphasis on maintaining supplies with the least disruption possible. Such 
efforts are also made during crises, but it is not possible to completely eliminate disturbing factors, as 
shown in Fig. 1 – black line – showing the transported mass of goods in the period under study. The use 
of LOESS allowed us to estimate the trend occurring in the time series. On this basis, predictions were 
made for the period February–April 2023 (training set).  

 
Figure 1. Determining the trend using LOESS 

 
In Figure 1, the matching of the locally estimated trend {𝜃𝜃0(𝑡𝑡)}1≤𝑡𝑡≤𝑛𝑛 from the Equation 6 for the 

period from January 2012 to January 2023 is marked with a solid dark blue line, while the prediction 
{𝜃𝜃0(𝜏𝜏)}𝜏𝜏>𝑛𝑛 estimated from Equation 7 is marked with a dashed line for the period February-April 2023.  

The next figure (Fig. 2) shows the analysis of the seasonality of the residuals. Analysing the polar 
chart (left graph), a clear increase in transport is visible in March and October, while a decrease in 
January, February and December, which confirms the existence of seasonality in the time series. 
Additionally, the right graph shows that for the 4 harmonic the amplitude values are above the 0.95 
quantile (see Equation 14. Therefore, 4 harmonic components were selected for further analysis, which 
to the greatest extent explains the behaviour of seasonality in a series of residuals. Corresponding to 
greatest amplitude values the angular velocities for these harmonics (red points) are marked in Figure 2. 
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Next, the proposed models were assessed. Table 1 presents the values RMSE, MAE, MAPE for all three 
models. The LET method takes into account only the local trend in the series, while the LETSC and 
LETLESC methods additionally take into account the seasonality factor, therefore the error values for 
LETSC and LETLESC are much smaller. The method that additionally takes into account the 
seasonality locally estimated seasonal components (LETLESC) most accurately reflects the behaviour 
of the mass of transported goods. For LETLESC, the root mean square error is 0.5027 (million tons), 
the mean absolute error is 0.5421 (million tons), and the mean percentage error is 2.83%. Therefore, 
increasing the complexity of the model and taking into account additional factors, the quality of the 
matching improves. This is especially important in series that experience dynamic and rapid changes. 
Additionally, error values were calculated for the forecasts allow us to evaluate predictive abilities of 
presented methods. Comparing the RMSE, MAE, MAPE values presented in Table 2 for LET, LETSC 
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Therefore, methods that took into account the seasonality component gave better forecasts than the LET 
method. The values of the RMSE, MAE and MAPE indices in the case of forecasts are higher than in 
the case of matching, but it should be emphasized that the only factor analysed in this case is time. The 
proposed models do not take into account additional factors (e.g. geopolitical) that may affect the weight 
of the transported goods. 

Carriage of passengers by rail 
Rail passenger transport has been more severely disrupted due to the Covid-19 pandemic. Restrictions 
on movement, remote work, restrictions on the tourism industry and, above all, fear of possible infection 
have significantly influenced the decline in the number of people using this form of travel. This is clearly 
visible in Fig. 4, where the black line shows the number of passengers using rail transport. A 
characteristic feature is a decrease in the number of passengers during the lockdown period and an 
increase at the beginning of the war with Ukraine. The use of LOESS allowed to estimate the local trend 
occurring in the time series. In Figure 4, similarly to the case of freight transport, the locally estimated 
trend (solid line) and prediction (dashed line) are shown in dark blue.  
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and LETLESC methods we can conclude that a more accurate prediction for the period February–April 
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absolute error is 1.0918 (million tons), while the mean percentage error 5.89%.  
 
Table 1. Trend matching and seasonality analysis 
using LET, LETSC and LETLESC 

Method RMSE MAE MAPE 
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The models were again evaluated using 
RMSE, MAE, MAPE presented in the Table 3. 
Since the LET method only takes into account 
the local trend, the RMSE, MAE and MAPE val-
ues are much higher. The LETSC and LETLESC 
methods additionally take into account the sea-
sonality factor, so the indices values are lower. 

The above analysis clearly shows that the 
LETLESC method most accurately reflects the 
behaviour of rail passenger numbers. Even with 
such drastic disruptions (the introduction of a 
lockdown and the start of the war in Ukraine), the 
root mean square error is 2.5937 (million people), 
the mean absolute error is 1.0995 (million people), 
and the mean percentage error is 5.83%. Predic-
tion indices for models concerning rail passengers 
are presented in Table 4. Consistently the best re-
sults are obtained with the LETLESC model. The 
mean square error is 3.2529 (million people), the 
average absolute error is 1.5662 (million people), 
and the average percentage error is 5.49%. 

Taking into account the trend and seasonal 
changes allowed for more accurate passenger 
transport forecasts. Analysing Figure 8 and the 
RMSA, MAE, MAPE indices, it is visible that 
using the classic LET method, which does not 
take into account the seasonality component, the 
prediction of the number of passengers is much 
weaker than using the LETSC and LETLESC 
methods. Among the methods that take into ac-
count the seasonality component, better forecasts 
were obtained for LETLESC.

The authors’ intention was to obtain a predic-
tive model that would describe the changes oc-
curring over time as accurately as possible, taking 
into account not only the trend, but also seasonal-
ity. What is particularly important is not only the 
consideration of the seasonality component, but 
also the possibility of adapting this component, 
i.e. its local adjustment. This allowed for accurate 
capture of the changes taking place and allowed 
to obtain better results in both, matching to em-
pirical data and forecasts, as shown in Figure 4 
and Figure 8 and the results in Tables 1–4.

CONCLUSIONS

Time series characterized by significant dy-
namics and rapid changes occurring over time are 
difficult to identify and forecast. Therefore, the 
authors of this article proposed a method that is 
based on local fitting and adaptation of a given 
component of the series to the current observa-
tion. This approach was applied to both the trend 
and the seasonal component. To demonstrate the 
accuracy of the adopted assumptions, three mod-
elling techniques were used and compared, i.e. 
locally estimated trend (LET), locally estimated 
trend with seasonal componets (LETSC) and lo-
cally estimated trend with locally estimated sea-
sonal components (LETLESC). For each method, 
identification was made to the training data and 
the matching was evaluated, and then a prediction 
was determined and its compliance with the test 
set was assessed. Such research was carried out 
in relation to freight and passenger transport by 
rail. In each case, it turned out that better results 
of matching to the test set and a more accurate 
short-term forecast were obtained for the model 
that took into account both the locally estimated 
trend and the LETLESC.  Thus, the authors’ ob-
jective, which was to develop a method for iden-
tifying the components of a time series disrupted 
by crisis events, has been achieved. Local fitting 
methods have been shown to perform well on 
such empirical data and provide accurate predic-
tions. The predictive model obtained describes 
well the changes occurring over time, taking into 
account not only the trend, but also seasonality. 
Therefore, the proposed method of local trend 
and seasonality fitting gives better forecasting re-
sults. The main advantage of the method ensuring 
effective adaptation to changing conditions was 
taking into account the effect of weights for em-
pirical data, which – as already mentioned – re-
lied on assigning greater weight to observations 
closer to the analysed moment, and less weight 
to observations further away from that moment. 
This technique is the answer to the problem of 

Table 3. Trend matching and seasonality analysis 
using LET, LETSC and LETLESC

Method RMSE MAE MAPE

LET 7.5016 1.7858 0.0975

LETSC 4.7799 1.5270 0.0802

LETLESC 2.5937 1.0995 0.0583

Table 4. Forecast analysis using LET, LETSC and 
LETL

Method RMSE MAE MAPE

LET 17.9998 4.0363 0.1395

LETSC 7.9181 2.5746 0.0888

LETLESC 3.2529 1.5662 0.0549
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identifying time series in which external factors 
cause pattern changes.

The method was presented using the data re-
garding rail transport in Poland as an example, 
but it is universal and can be used for similar time 
series with high dynamics. It is also worth em-
phasizing that, in accordance with the authors’ in-
tention, the presented concept only concerns the 
influence of the time factor on changes in the time 
series. Although the model is adapted in parallel 
to the data, which allows for taking into account 
changes in model parameters over time in order 
to construct more accurate forecasts, other factors 
(e.g. geopolitical changes, economic situation, 
etc.) were not taken into account. Therefore, fu-
ture research will develop models to also take into 
account additional variables. 
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