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ABSTRACT

This study investigates the problems of eccentricity and backlash using an analytical spur gear model with 26
degrees of freedom (DOF). Previous studies have only investigated the case of eccentricity with a parallel shift of
the axis of rotation of the gear relative to its geometric axis of symmetry. This study presents a novel method for
determining the radius of eccentricity and its angular position at any distance from the bearing support, in which
the axis of rotation and the geometric axis of symmetry of the gear are non-parallel. The effect of gear motion in
the line of action (LOA) and off-line of action (OLOA) directions on backlash is precisely determined, despite the
fact that most studies usually ignore gear displacement along the OLOA direction. Numerical simulations are per-
formed to determine the effect of eccentricity on backlash, and their results confirm that the proposed method for
determining the radius of eccentricity for any eccentricity type is correct. A gear slice model is used for dynamic
analysis. Results show that the type of eccentricity has a significant effect on the gear dynamics and that eccentric-

ity analyses have to include other cases than merely eccentricity with parallel axes of gears.
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INTRODUCTION

Research on gears has been carried out for
many years, and today one can observe a growing
number of research publications on the subject.
There are two main reasons why the subject of
gears is generating so much interest among re-
searchers. First, gears are used in many industries
and are indispensable in applications requiring
high reliability, efficiency and durability. In addi-
tion, they have compact design and dimensions,
and their ranges of transmitted torque and gear
ratios meet the requirements of most applications.
Second, the interest in gears stems from new ana-
lytical capabilities resulting from the advances in
science and computer performance as well as the
development of computer programs.

The operation of gears is simulated through an-
alytical models, numerical models or hybrid mod-
els in which some part of the model is analytical
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and some numerical (e.g. finite element method).
The main advantage of analytical models is af-
fordable calculation time while that of numerical
models is the possibility of obtaining accurate re-
sults by including many phenomena in the model.
Since the problems raised in this paper are related
to an analytical model, further considerations will
focus on analytical modelling of gears.

Models of gears are usually created to solve
a specific problem. The main research directions
in this area include the determination of the effect
of machining parameters on tooth profile [1-3],
modelling of gear mesh stiffness [4-6], determi-
nation of the effect of manufacturing [7-9] and
operational factors [10,11] on the dynamics, ser-
vice life [12] and efficiency of gears [13].

The main problem raised in this paper is
gear eccentricity. In addition to that, the effect
of backlash is investigated. This effect is not al-
ways taken into account in gear models [9,14].
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The basic model of backlash is expressed through
a piece-wise linear function consisting of three in-
tervals [15,16]. The first and third linear functions
are used when the relative displacement of gears
is higher than the backlash. Their slope value is
usually equal to 1. The second function represents
the relative position of the gears when the surfaces
of the teeth are not in contact. Two approaches are
adopted in this case. Either is the function equal
to zero [17] or it is a linear function [18] with the
slope of a straight line usually below 0.3 [15]. The
zero value is more true to the real conditions of
teeth meshing, while the approximation by the lin-
ear function with a small slope value allows faster
and more accurate numerical calculations. The
presented backlash model is modified in order to
enable more accurate representation of the interac-
tion between the teeth in mesh. The transition be-
tween the linear functions has the form of a corner.
Li et al. [4] modified this shape and made it more
gentle by introducing a curve in order to consider
the effect of lubrication. The effect of backlash is
often considered only in terms of mesh stiffness
[4, 15, 16, 18, 19]. For a comprehensive analy-
sis of backlash effect, mesh damping must also be
considered. Yi et al. [20] investigated the effect
of backlash on mesh damping in the same way as
that for mesh stiffness by determining a deriva-
tive of time from position and total backlash. An
asymmetric differential model of backlash with
mesh stiffness and mesh damping was developed
by Zuo et al. [21]. The backlash model for mesh
stiffness used in this study was taken from that
publication, but the backlash model was modified.
The used models of backlash with mesh damping
and mesh stiffness have rounded corners between
the intervals, which ensures that numerical calcu-
lations will be accurate and that the presence of
lubrication will be considered. The backlash value
will be equal to zero when there is no contact be-
tween the teeth. There are few studies in which
backlash is calculated in a very precise way. The
backlash value is calculated precisely considering
gear displacement in the LOA and OLOA direc-
tions. The displacement along the OLOA direction
is usually either ignored or calculated in a simpli-
fied way. This affects the value of mesh stiffness.
In addition, a modified equation of backlash with
mesh damping is presented.

An important problem in dynamic analysis of
gears is eccentricity. Eccentricity primarily results
from the limited manufacturing accuracy of ma-
chinery components, while excessive eccentricity

results from manufacturing errors and operational
factors such as bearing wear. Previous studies in-
vestigated eccentricity with a parallel-shifted axis
of gear rotation relative to the geometric axis of
symmetry [9, 22-25]. In terms of the centre of
mass and the principal axis of inertia, this cor-
responds to a case of static unbalance. The effect
of eccentricity on the mechanism of a clutch-he-
lical two-stage gear was studied by Walha et al.
[22]. The model had 27 DOF and the backlash
was described by linear functions. The effect of
tooth profile modification in a single-stage gear,
considering eccentricity and relationship between
backlash and mesh damping, was investigated us-
ing a dynamic model with 10 DOF in [23]. An
analytical 16-DOF model of a single-stage gear
considering eccentricity was validated experi-
mentally by Zhao et al. [7]. There are currently
no studies investigating the problem of eccentric-
ity for a general case in which the axis of rotation
and the geometric axis of symmetry of a gear are
non-parallel. This case is very frequent in reality
and corresponds to dynamic unbalance. A novel
method was developed by the author for deter-
mining the radius of eccentricity at any distance
from the bearing and its angular position, which
makes it possible to analyse any type of eccentric-
ity. An analysis of this case requires taking into
account non-uniform contact of the teeth over the
face width. To that end, a gear slice model is used.
This model can be effectively used to investigate
local defects of teeth [10,11], tooth profile modi-
fication [3,26] and assembly errors [27]. Gears
were divided into 6 slices. An analytical model of
a spur gear with 26 DOF was created. Different
cases of eccentricity are analysed to demonstrate
its effect on backlash value, and a numerical sim-
ulation is performed to determine the effect of ec-
centricity on selected parameters describing gear
operation.

DETERMINATION OF SELECTED FACTORS
AFFECTING THE FORCES ACTING ON
MESHED TEETH AND GEAR SHAFTS

Normal backlash in gears

Backlash is required for the proper operation
of gears, as it prevents teeth jamming and ensures
proper lubrication and cooling. The presence of
backlash affects gear dynamics and, more specifi-
cally, forces acting on the gear teeth. Sometimes,
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there may be no contact between the teeth sur-
faces, which leads to a situation when the forces
acting on the meshed teeth are equal to zero. In
mathematical models, these forces are usually
calculated based on the product of stiffness and
relative displacement, as well as damping and rel-
ative velocity. To take the backlash into account,
the displacement and relative velocity of the
gears were modified through appropriate function
relationships (1).

Ey = kXp04p + CXL04B (1)

where: kx;pap is the function of the relative

displacement of the engaged teeth with
backlash,

X0ap 1S the function of the relative ve-

locity of the engaged teeth with backlash.

The function x, ,,, describing the relative dis-
placement of the engaged teeth with backlash is
based on studies [19,21]. It is expressed as:

pmy(xg—br)
XL04B = %ln % ()

where: p is the positive parameter softening the

corners of the function (the higher the

value, the sharper the corners),

m , m, is the slope, or the positive param-

eter describing the steepness of the line

beyond the scope of backlash for the » —

right and / — left side of the function,

x, 1s the relative position of the teeth in

mesh without backlash along the LOA

direction,

b, b, are the values of the half normal

backlash on the left and the right side.

X oag %)
AN owna

X ong %)
AN onwn »

Fig. 1. Backlash function describing relative
displacement of gears, for: (a) p =20, b = b,= 0.5
®yp=4,b=b=1
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Figure 1 shows examples of plots obtained
for the function x,,,, for different values of the
analysed parameters. In Figure 1a the total back-
lash value is 1, and in Figure 1b it equals 2.

If the presence of backlash is taken into ac-
count, a suitable function dependence must be
used in calculations of viscous damping forces.
The values of the viscous forces depend on the
relative velocity of the gears. In a situation when
the surfaces of the teeth are not in contact, the
value of the function should be equal to zero,
which will result in the value of the forces also
being zero. For the teeth in mesh, the value of the
relative velocity should not be changed, hence the
value of the function should be either one or mi-
nus one. These assumptions are satisfied by the
function developed based on [21]:

fo =

Examples of plots for the function are shown
in Figure 2 for different values of the analysed
parameters. In Figure 2a the total backlash value
is 1, and in Figure 2b it is equal to 2.

The equation of function (3) can be used to
determine the backlash value for the positive and
the negative side individually. The sides are usu-
ally assigned the same values, as a result of which
this function is odd, while the equation can be
simplified to the form:

fo =

The above relationship differs from the
widely used ones [7, 28] in terms of a gentle

kyeP™r(*Xk=br)
1+4ePMr(Xg—br)

_krepmz(-xk—bz)
1+epml(—xk—bl) (3)

eP(g=b)
T+ePCkD)

eP(=X)=b)
T+ePFkD)

“4)

fog ()
[}

fup %)

Fig. 2. Backlash function f,, for calculating relative
velocity of gears, for: (a) p =20, b,= b, = 0.5
byp=4,b=5b=1



Advances in Science and Technology Research Journal 2024, 18(2), 88—102

transition between the backlash zone and the
tooth contact zone. The transition radius can
freely be changed in a wide range in order to
adjust it to the real conditions. This will ensure
accuracy of numerical calculations. Backlash is
frequently ignored in the calculation of damp-
ing forces [4, 15, 16, 18, 19]. For this case, it
is necessary to use a different function than that
used for calculating stiffness forces. The func-
tion f, makes it possible to determine values of
half backlash, the slope transition between the
values 0 and 1, as well as rounding radii.

Eccentricity in gears

Eccentricity with parallel axes of gears
relative to the theoretical axis of rotation

This is the simplest case for eccentricity anal-
ysis. It usually results from the fact that the gear is
mounted eccentrically relative to the shaft, while
their axes are parallel. This problem has been in-
vestigated in previous studies, e.g. in [9, 22-25].
None of these studies has, however, managed to
precisely determine the effect of gear displace-
ment along the OLOA direction on the distance
between teeth surfaces along the LOA direc-
tion. This relationship was precisely described in
[29]. This will serve as a basis for determining
the displacement due to eccentricity, considering
the effect of the displacement along the OLOA
direction on the displacement of the meshed teeth
along the LOA direction.

The displacement caused by eccentricity has
impact on the relative position and velocity of the
gear teeth and the centre distance. The change in
the relative gear position along the LOA (x) and
OLOA (y) axes is:

cos(p, + ¢ ) is the LOA-axis direction,
=r sin(gop t9,) is the OLOA-axis direction,
=r cos(gpg + goge) is the LOA-axis direction,
sin(gog + gogg) is the OLOA-axis direction,

where: p is the subscript denoting the pinion,
g is the subscript denoting the gear,
x,, 1s the displacement caused by eccen-
tricity along the x axis [m],
Ve is the displacement caused by eccen-
tricity along the y axis [m],
T is the eccentricity radius [m].

The equations describing the relative dis-
placement and velocity of the teeth with eccen-
tricity are:

XLoa = Tp1Pp + Xp = Xpy + Xpe —
— Th2QPg + Xg — Xgy — Xge ®)]

Xp04 = Tp1Pp t Xp — Xpy + Xpe —
— T2 Pg + Xg — Xgy — Xge (6)
The overall distance between the axes of the

gears with eccentricity that is required for calcu-
lating X, and x,, is:

Ay =10110;,| = \/(aw +fp _fg)z +(ep — eg)z (7

where: a,,; = |0110,| is the centre distance of the
gears with shifted profiles,
O, is the point of intersection with the
axis of rotation of the gear,
]; = (yp + ype)cosocW is the displacement of
the axis of rotation of the pinion about the
faxis,
]2 =, +y,)cosa, is displacement of the
axis of rotation of the gear about the faxis,
e = (yp + ype)sinaw is the displacement of
the axis of rotation of the pinion about the
e axis,
e, =0, yge)sinaw is the displacement of the
axis of rotation of the gear about the e axis.

More information about the way of calculat-
ing the values of X, and x,, is given in [29].

Eccentricity with non-parallel axes of gears

This is a general case of gear eccentricity.
In practice, this can occur under the following
circumstances:
e eccentric mounting of the gear on the shaft,
with non-parallel axes of the shaft and gear,
e eccentric mounting of the gear on the shaft,
with parallel axes of the shaft and gear and
non-parallel holes for shaft bearings,

OLOA ()

LOA (x)

Fig. 3. Eccentricity of a pinion and
its characteristic dimensions
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Nomenclature
T Ta input motor torque and output device torque
Ly mass moment of inertia of the motor rotor and half of coupling
Iy mass moment of inertia of the pinion, shaft and half of coupling (pinion subassembly)
Iy mass moment of inertia of the gear, shaft and half of coupling (gear subassembly)
I mass moment of inertia of the device rotor and half of coupling
Ipx (Iyx = Iy) | mass moment of inertia of the pinion, shaft and half of coupling
lgx (Igx = lgy) | mass moment of inertia of the gear, shaft and half of coupling
@ angular acceleration: ¢, — motor rotor, ¢, — pinion, ¢, — gear, ¢4 — device rotor
Pp, Pg pinion and gear angular position
Pper Pge angular position of eccentricity of pinion and gear
Pps1) Pgs1 angular position of the first slice of pinion and gear

pr, égx' 91’}“ égy

angular acceleration of the pinion and gear

Xp, ¥g linear acceleration of the pinion and the gear
X distance between new contact point and pinion tooth flank along LOA (x) caused by the movement of
Py gears along OLOA (y)
Xy distance between new contact point and gear tooth flank along LOA (x) caused by the movement of

gears along OLOA (y)

Xper Yper Xger Vge

displacement caused by eccentricity of pinion and gear along the x axis and y axis

XL04,XL0A relative displacement and velocity of the teeth

Vo) Vg linear acceleration of the pinion and gear
Ly Ly, Loy distance between pinion’s bearings, distance from bearing 1 to center of the mass of the pinion, distance
ps tpps o (i

from bearing 1 to the center of the mass of i-th slice of pinion

lg' lyg' lg(i)

distance between gear’s bearings, distance from bearing 3 to center of the mass of the gear, distance
from bearing 3 to the center of the mass of i-th slice of gear

Tper Tge pinion and gear eccentricity radius
Tps: Tgs) Tm moment arm of force for the pinion slice, the gear slice, motor and device couplings
By, Fr normal force, tooth friction force

Fkblx: Fcblx

reaction force of bearing from stiffness and damping (subscript 1, 2, 3, 4 — bearing 2, bearing 3, bearing 4)

kp1,Cp1 stiffness and damping of bearing 1
Subscripts
p the pinion
g the gear
X the LOA-axis direction
y the OLOA-axis direction
e eccentricity
b bearing
k stiffness
c damping
=58 e eccentricity caused by the bearings due to in-
T s correct manufacturing, wear or operation (e.g.
/ F Vo F Voo journal bearings).

As a result of non-parallel shaft axes, the
meshing of the teeth occurs over a reduced face
width and the location of the forces between the
teeth varies. This affects the dynamic characteris-
tics of gear operation.

i Two cases of eccentricity with non-parallel

Fig. 4. Change in the centre distance of the pinion due
to eccentricity and gear displacement along OLOA
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axes of gears will be analysed. The first one is a
special case and the other is a general case; how-

S

£ / y (OLOA/
/"/’
==

- LELOR) ever, the eccentricity will be considered for only

one gear. It is assumed that the gear eccentricity
is located at the bearing-mounted shaft, and this
location is referred to as bearing eccentricity in a
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later part of the manuscript. This means that the
axis of the shaft and that of the gear overlap.

Determination of eccentricity radius and angle
of its location

Case 1

This special case is easy to analyse, so the
determination of eccentricity radius and angle
will pose no problems. The real and theoretical
axes of rotation of the shaft are non-parallel and
they are located in one plane (Fig. 5). This occurs
when the eccentricity values of the bearings differ
while their eccentricity angles are the same.

The eccentricity radius for a given distance
from bearing 1 is calculated using the equation

@) = tan™1 L (8)
c11 = —1l)tang, )
Tet =Te2 — C11 (10)

where: r is the eccentricity radius being calculated,
[, is the distance from bearing 1 to the
point where eccentricity is measured,
[ is the spacing between the bearings,
r,. 1, 1s the eccentricity of bearing 1 and
bearing 2, respectively.

Case 2

The eccentricity radius r,, is determined in a
plane that is perpendicular to the theoretical axis
of rotation. For the general case, the real and

Eccentricity of bearing 2

Real position of shaft axis

Theoretical position of shaft axis «

— 2,

Eccentricity of bearing 1

theoretical axes of the shaft are not in the same
plane, as shown in Figure 6.

An additional distance of r  is introduced,
which is the minimum distance between the real
and the theoretical axis. The value of r  equals
zero in Case 1 where the theoretical and real axes
lie in one plane and are non-parallel (they inter-
sect). The minimum distance has a special prop-
erty. This property is characterized by the fact that
the distance is always perpendicular to the theo-
retical and real axes. The sought eccentricity radi-
us and other characteristic dimensions are shown
in an orthogonal projection in Figure 7. The angle
values were measured along the vertical axis

Calculations for determining the eccentricity
radius 7, and its angle ¢, for a given distance /
started with determining the distance /_ :

/

lex = \/rezl + rezz - 27"elrezcos ((pel - ‘peZ) (11)

In this equation, the ¢, angle is subtracted
from the ¢, angle because it is assumed that the
angles ¢, and ¢, measured counter-clockwise
along the vertical axis have negative values.

An auxiliary angle is calculated:

Te1 Sin((Pe1—‘Pe2)) (12)

A7gpl, = sin™? (
lex

together with the minimal distance between the
axes:

Tmin = Te2SIN &Teplex (13)
reZ
o ll) B
1
<
e
el
~ 7‘7A—‘
?,
i
1
rel

Fig. 5. Gear eccentricity for a special case
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Theoretical position of shaft axis

Real position of shaft axis

; ) 1/ »
™ /mm e

|

Fig. 6. Gear eccentricity for a general case

Fig. 7. Orthogonal projection of
characteristic dimensions

and

W) (14)

ATminTe2 = cos™! (
lex

hence the angle calculated along the vertical axis
to the minimal distance is:

Pmin = BTminTe2 T Pe2 (15)

Other auxiliary quantities are calculated as:
€1 = Te1SIN (Pe1 — Pmin) (16)
€2 = 125N (Pe2 = Prmin) (17)

The angle between the theoretical and real
positions of the shaft axis (Fig. 8) is:

@, =tan™! (%) (18)
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)

Fig. 8. Angle between the theoretical
and real positions of a shaft axis

while the distance :

c11 = litan ¢, (19)
The position of the minimal distance to bear-
ing 1 is:

[
bmin = pn o (20)

Finally, we can give equations describing the
eccentricity radius r, and eccentricity angle ¢ , for

a given distance /, to bearing 1:

Ter = \/Tﬁlin + (1 — €11)? (21)

Qe = cos™1 (T"ﬂ) (22)

Tel

The above derivation of the equations as-
sumed that 7, <r . Equations describing relation-
ships between the eccentricity radius and the ec-
centricity angle for the other cases can be derived
in the same way, for all combinations of values of

rel’ reZ’ (pel and (pEZ'



Advances in Science and Technology Research Journal 2024, 18(2), 88—102

Forces occurring with shaft and gear
eccentricity

Centrifugal force

Eccentricity is the source of centrifugal force
and causes an increase in the load of shafts and
bearings. In general, the centrifugal force for a
pinion is:

— 2
Fep = MpeTpeWp (23)
and for a gear:
— 2
Feg = MgeTgewy (24)
where: is the mass of a pinion that is eccentric,
is the mass of a gear that is eccentric.

The centrifugal force in the LOA direction is:

Fopx = MpeTpe@pcos (Ppt + Pper)  (25)

Fogx = MgeTgegcos (@gt + Pger)  (26)
and in the OLOA direction:

Fopy = MpeTpewhsin (@pt + @pe) — (27)

Fogy = Mgelgewgsin (gt + @ger)  (28)

In real structures, eccentricity can occur be-
tween gear and shaft, shaft and housing or both.
In the first situation only the gear mass should be
included, and in the second we should consider
the mass of a gear, shaft and half of coupling.

ANALYSIS OF THE INFLUENCE OF
ECCENTRICITY ON NORMAL BACKLASH

Normal backlash and eccentricity
with parallel axes of gears

When backlash is included in the model, its
value depends on eccentricity. By definition, the
backlash is measured along the LOA direction.

.
o

To simplify the calculations, the displacement
caused by eccentricity with parallel axes of the
gears will be analysed for two characteristic direc-
tions: LOA and OLOA. The displacement along
the LOA direction directly causes a 1 to 1 change
in the normal backlash. Figure 9a shows the plot
illustrating the relationship j = X, A more com-
plicated situation occurs when the displacement
is along the OLOA direction. The value of the
normal backlash changes as shown by the plot
in Figure 9b. The backlash value is j = Xy The
last plot in Figure 9¢ shows the changes in normal
backlash due to eccentricity for the displacement
only along the LOA direction and that along the
LOA and OLOA directions.

When the effect of eccentricity along the
OLOA direction is taken into account, this always
results in increased backlash.

Normal backlash and eccentricity
with non-parallel axes of gears

In this section an analysis will be carried out
for a general case of eccentricity, in which the gear
axes are non-parallel. The cylindrical spur gear
analysed for this case is characterized by the fol-
lowing parameters: m =3 mm, a = 20°, z, = 30, z,
= 30. Other characteristic dimensions included a
bearing spacing of /=300 mm and a face width of
60 mm. The eccentricity was located at the bear-
ing mounting of the pinion and was denoted by 7,
(eccentricity of bearing 1) and 7, (eccentricity of
bearing 2). The angular position of bearing eccen-
tricity was denoted by ¢ and ¢ ,. In the analysis,
only the eccentric bearing mounting of the pinion
shaft was considered, the axis of rotation of the
second gear overlapped with the theoretical axis
of rotation. The normal backlash value was calcu-
lated for one rotation of the pinion.

(a)

N
=]
o

(b)

o
3

a

S
R
o

<] o o
=} S ©
> o

o
=]
S

Changes in normal backlash jn
o o o o o
w

o
=]

by movement in OLOA direction [pm]

Changes in normal backlash jn
by movement in OLOA direction [um]
o

——OLOA

a
=]

——LOA+OLOA
——LOA

o
S

o
=]

&
3

o
=]
N
=)

Changes in normal backlash jn
by movement in OLOA direction [:m]
o

o
=]

™ 90 92
Pinion gngle of rotation rhp[“]

n
=1
]
[=T

0 100 200 300 0 100
Pinion angle of rotation ¢, ]

Pinion angle of rotation ¢, [

n
[=]
o

200 300 0 100 200 300
Pinion angle of rotation b, ]

Fig. 9. Plots illustrating changes in normal backlash caused by pinion eccentricity T during one revolution: (a)
LOA — displacement only along LOA vs. normal backlash j, = X, (b) OLOA — displacement only along OLOA vs.
normal backlashj =x . (c) LOA+OLOA - displacement along LOA and OLOA vs. normal backlashj =x +x
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Fig. 11. Normal backlash j as a function of the pinon angle of rotation , and the eccentricity
angle ¢, in bearing 2, for: 7, = r,,= 200 um, ¢, = 0° and ¢_,= 0-360°, /,= 0.15m, /= 0.3 m

The results in Figure 10 show the pinion ec-
centricity for the same eccentricity radii in the
counter-phase ¢, = 180° and ¢ = 0°. The dis-
tance /, to bearing 1 is changed, which is tan-
tamount to testing the gear over the face width.
For these parameters, the theoretical and real
axes of rotation intersect in the middle of the
distance between the bearings for /, = 0.15 m,
which is reflected as the backlash value j = 0
pm. By increasing the distance from the point
of intersection of the axes, the variations in the
backlash value increase up to j = +40 um.

From the above analyses of the effect of ec-
centricity it follows that the normal backlash
value depends on many parameters (Fig. 11).
For the same value of bearing eccentricity r, =
r,= 200 um, the normal backlash value can
range from 0 um to 200 um. For eccentricities
with non-parallel axes, there are significant
differences in backlash values obtained for
the same gear depending on the location of
eccentricity over the face width /,(Fig. 10). The
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relationships between eccentricity and normal
backlash are nonlinear.

6-slice model of a spur gear unit

The standard analytical models of gears can
only take into account the effect of eccentric-
ity for parallel gear axes. For a more accurate
representation of eccentricity effects, indi-
vidual gear fragments must be considered in-
dependently. To that end, an analytical model
of a gear unit was created, in which the face
width was divided into slices. Each slice had
an independent degree of freedom connected
with rotation about the axis. Six slices were ex-
tracted for the pinion and gear. The connections
between the slices were represented by stiffness
and damping. The shafts were mounted in bear-
ings and each support was allowed to move in
two directions. Taking into account the cou-
plings, the analytical model of a single-stage
spur gear shown in Figure 12 had 26 DOF.
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m’ P,

Fig. 12. Analytical model of a spur gear unit as divided into 6 slices, from s, to s,

Equations of motion — rotation:

Lpn@m + My + Moy, = Ty, (29)
Lps1Pps1 + Mypr + Mepr + Mypst + Mepsy = My + Mey + Mgy (30)
Lys2@ps2 + Mypz + Mepo + Mypsy + Mepso = Mypst + Mepsr + Mgy (3D
Lps3Ppsz + Myps + Meps + Mypss + Mepss = Mypso + Mepsy + M3 (32)
Lpsa@Ppsa + Myps + Meps + Mypss + Mepss = Mypss + Mepss + My, (33)
Lyss@pss + Myps + Meps + Mypss + Mepss = Mypsa + Mepsa + Mprps (34
LysePpse + Mipe + Mcpe = Mipss + Mepss + Mrpe (35)
lgs1Pgs1 + Mygs1 + Megsr + Mpgr = Mygq + Mgy (36)
lys2@Pgsz + Mygsy + Megso + Mgy = Mygo + Mgy + Mygsr + Megsq 37)
lys3Pgs3 + Mygsz + Mcgss + Mpgz = Mgz + Mgz + Mygsr + Megso (38)
Lysa®Pgsa + Mygsa + Megss + Mpgs = Mg + Megs + Mygsz + Megss (39
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IgsS(pgsS + ngss + Mcgss + Mfgs = ngs + Mcgs + ngs4 + Mcgs4 (40)
Igs6¢gs6 + ngs6 + Mcgs6 + Mfg6 = ng6 + Mcg6 + ngss + Mcgss (41)
IgPag +Tq = Mg + Mcq (42)

Equations of motion — plane motion parallel to LOA:

Fepixlp + Fepixlp + Mp¥pcom(lp = lpp) = IpxOpx = Mpgyrx = —Mpcx1 + Mpyx 43)
Fipaxly + Fepaxly + MpXpcomlpp + Ipxépx + Mpgyrx = —Mpcxz + Mpnx2 (44)
Fibaxlg + Fevaxly + Mg¥gcom(lg — lgg) + IgxOgx — Mggyre = Mgexs + Mgnxs (45)
Fipaxly + Fepaxly + mgXgcomlyg — ngégx + Mygyry = Mgcxa + Mgnxa (46)

Equations of motion — plane motion parallel to OLOA:

Fipiylp + Fep1ylpy + mpprOM(lp - lpp) - Ipyépy + Mpeyry = —Mpcyr + Mppyn (47)
Fivaylp + Fepaylp + mMpVpcomlpp + Ipyépy ~ Mpeyry = —Mpcya + Myrya (48)
Fivylg + Fevaylg + mgTgcom(lg = log) + IgyBgxy + Mgcyry = —Mgcys + Mygys (49)
Fivayly + Fepayly + mg¥Vgcomlgg — Igyégy — Mycyry = —Mgcya + Mysya (50)

Mim = Km(@m — @ps1)7m is the moment due to coupling stiffness,
M = cm(m — @ps1)7m is the moment due to coupling damping,
K :
Myp, = ;rb1[7’b1§0ps1 + Xp1 — Xp1y + Xpe1 — Th2Pgs1 T Xg1 — Xg1y T xgel] is the moment due to the
stiffness of slice 1 of pinion and gear acting on the pinion,
n —number of gear slices,
Mcp, = ;Tb1[7”b1§0ps1 + Xp1 — Xp1y + Xper — Th2Pgs1 T Xg1 — Xg1y T xgel] is the moment due to the
damping of slice 1 of pinion and gear acting on the pinion,

Xp1 = Xp1 + lp1 w is the displacement of the centre of pinion slice 1 due to shaft displacements in

p

the bearings along the LOA direction,

Xp1y 18 the displacement of the centre of pinion slice 1 due to eccentricity and shaft displacements in the
bearings along the OLOA direction, calculated according to [29],
Xpe1 = Tep1€OS ((Pps1 + (Ppe1) is the displacement of the centre of pinion slice 1 due to eccentricity,
k :

ngl = Zrbz [rbl(ppsl + xpl - xply + xpel - sz(pgsl + xgl - xgly + xgel] 1S the moment due to the
stiffness of slice 1 of pinion and gear acting on the gear,

_c . . . . . . . . .
Mcgl - ;rbz [rb1<pp51 + xpl - xply + xpel - rbz(pgsl + xg1 - xgly + xgel] 1S the moment due tO the
damping of slice 1 of pinion and gear acting on the gear,

Xg1 =xb4+(lg —lgl)xbi—;xb“ is the displacement of the centre of gear slice 1 due to shaft

displacements in the bearings along the LOA direction,
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Xg1y 18 the displacement of the centre of gear slice 1 due to eccentricity and shaft displacements in the

bearings along the OLOA direction, calculated according to [29],

Xge1 = Teg1€0S ((pgsjL + <Pge1) is the displacement of the centre of gear slice 1 due to eccentricity,

k . . . .
Myps1 = f (Pps1 — Pps2)Tps is the moment due to stiffness between pinion slices,

Meps1 = % (Pps1 — Pps2)Tps is the moment due to damping between pinion slices,

k . . . .
My gs1 = % (Pgs1 — Pgs2)Tys 1s the moment due to stiffness between pinion slices,

Mcgs1 = % (9gs1 — Pgs2)1ys 1s the moment due to damping between pinion slices,

Myq = kq(@g6 — ©q)7m is the moment due to coupling stiffness,

Mcgq = cq(Pg6 — Pa)Tm 1s the moment due to coupling damping,

M
M

pex = Ip q')plépy is the gyrostatic moment acting on the pinion in plane parallel to LOA,

pCx1 = 2?=1 mps(i)rpe(i)q')f,s(i) COS((ppS(i) + (ppe(i)) (lp — lp(l)) is the Centrifugal moment of the

pinion slices in plane parallel to LOA relative to bearing 1,

M

to bearing 1,

pNx1 = Die1 Fn(i)(lp - lp(i)) is the axial force acting on the pinion in plane parallel to LOA relative

Mypyr = Xiq Fr iy (lp - lp(i)) is the moment of friction of the pinion slices in plane parallel to OLOA

relative to bearing 1.

NUMERICAL RESULTS

This section investigates the effect of ec-
centricity on selected dynamic parameters of
a gear unit. Specifically, the following are con-
sidered: backlash, friction, relationship between
gear displacement along the OLOA direction and
backlash, as well as dynamic transmission error
(DTE). The stiffness of the teeth was described
by the Cai model, which is discussed in detail in
[30]. Eccentricity-induced changes were only im-
plemented for the pinion. The applied parameters
of the gears are listed in Table 1.

The first analysis involved determining the ef-
fect of backlash with pinion shaft eccentricity on
DTE. The backlash was varied in the range from
50 pm to 300 um. To establish a point of reference
for DTE variation, calculations were made for a
case when the backlash was equal to 0. The ec-
centricity parameters were 7, = r,, = 200 um, ¢, =
0° and ¢,,= 180°, and the results are shown for the
first gear slices described by /,= 0.133.

In Figure 13 one can observe a clear change
in DTE relative to the case then backlash was
equal 0. The higher the signal value is, the lower

the value of DTE becomes. This means that a
higher backlash value has a positive effect on
decreasing the DTE value.

The aim of the second analysis was to ex-
amine the effect of eccentricity on all slices of
the pinion. The eccentricity parameters applied
in this analysis were the same as those used in
the previous one, i.e. r,= r,= 200 pm, ¢ =
0° and ¢, = 180°. These parameters show that
the intersection between the real and the theo-
retical axis of rotation is the halfway distance

Table 1. Main parameters of gears

Parameter Pinion Gear
Number of teeth z,=30 z,=30
Module [mm)] m=3
Pressure angle [°] a,=20
Face width [mm] B=40
Torque [Nm] T=31.8
Backlash [um] b =40
Coefficient of teeth height y 1
Top clearance coefficient ¢’ 0.25
Sliding friction factor | 0.015

99



Advances in Science and Technology Research Journal 2024, 18(2), 88—102

between the bearings. The gears are located in
the centre of the shafts. This means that the ec-
centricity radius is the lowest for the middle
slices and the highest for the outer slices. Ob-
tained results are plotted for three parameters:
DET, torsional vibration acceleration of pinion
slices and vibration acceleration of four bear-
ings in plane parallel to LOA. Figure 14 reveals
that the highest DTE value was obtained for
outer slices 1 and 6 and the lowest for slices 3
and 4. The eccentricity radius has a decisive
impact on DET. A different situation can be ob-
served for torsional vibration acceleration (Fig.
15). Slices 1 through 4 exhibit similar vibra-
tion amplitudes. The highest values can be ob-
served for the last pinion slices 5 and 6. This
may result from the fact that slice 6 is only con-
nected to slice 5, which decreases the torsional
stiffness of these slices. The final plot (Fig. 16)
in this analysis shows the vibration values ob-
tained for four bearings. The values are similar,
which indicates that the bearings were under
a uniform load. This results from a symmetric
change in the eccentricity radius of the slices
relative to the centre of the gears

0.04
0.03
0.02
z 0.01
=
u b =50 um
2 .0.01 ——b =100 ym |
b =150 um
-0.02 b =200 ym| |
"™ | ‘ b =250 ym| |
| i b =300 xm
-0.04 - -
0 0.05 0.1 015

Time [s]

Fig. 13. Backlash b versus DTE

1 2 3 4 5 6
Number of pinion segment

Fig. 15. Vibration of pinion slices
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CONCLUSIONS

This paper presented a novel method for ana-
lysing gear eccentricity for a general case in which
the axis of rotation of the shaft and the geometric
axis of symmetry of the gear were non-parallel.
The study was conducted on a single-stage gear
unit with cylindrical spur gears. A model consist-
ing of six gear slices was created, in which the
contact between the teeth would vary over the
face width. The developed analytical model had
a total of 26 DOF. In addition to that, the back-
lash with gear shafts moving in the LOA and
OLOA directions was precisely determined. The
backlash affected both mesh stiffness and mesh
damping. Functions used for backlash representa-
tion were plotted. The backlash function respon-
sible for damping was modified. Both functions
showed smooth transitions between the parts re-
sponsible for the teeth position in backlash and in
mesh. This provided a more accurate representa-
tion of the operation of lubricated gears.

The first analysis investigated the effect of
eccentricity on backlash. The eccentricity oc-
curred in the pinion bearings. It was changed

DTE [um]
- o

Segment =1
Segment = 2| |
Segment=3
Segment =4/ |
Segment=5
Segment =6

0 0.05 0.1 0.15
Time [s]

Fig. 14. DTE of gear slices

Time [s]

Bearing number

Fig. 16. Vibration of gear bearings
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by varying the eccentricity radius value in the
bearings and its position. The value of the back-
lash was determined for the centre of the shaft
(gear) as well as for several positions at the
same time. For the same ranges of eccentricity
parameters, the backlash had different values,
which showed that it was important not only
to take eccentricity into account in the model,
but also to implement the model with a suitable
eccentricity case.

In the other analysis, the effects of two
cases of eccentricity on DTE, torsional vibra-
tion of pinion slices and linear vibration of
bearings were investigated, and the impact of
backlash on DTE was determined. Summing
up the results, it can be claimed that the ec-
centricity and backlash significantly affected
the dynamics of gears. It was not enough to
consider eccentricity for the case in which the
axis of rotation of the shaft and the geomet-
ric axis of symmetry of the gear were parallel.
This was a special case that is quite rare in real
designs, and the change in eccentricity for the
same eccentricity radius value of the bearing
significantly affected the gear dynamics. The
proposed method for determining the radius of
eccentricity at any point of a gear only based
on the value and position of eccentricity will
contribute to more accurate dynamic analy-
ses of gears. Implementation and calculations
were made in Matlab and Simulink.
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