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INTRODUCTION

Artificial intelligence (AI), with its subsets 
machine learning (ML) [1] and deep learning 
artificial neural networks (ANNs) [2–4], has re-
cently garnered substantial attention in scientific 
literature [5, 6]. The evolution of ML models has 
been particularly noteworthy in various engineer-
ing disciplines, driven by an abundance of digital 
data, increasing computational capabilities, and 
advancements in algorithmic methodologies. No-
tably, ANNs have emerged as a preeminent model 
within the ML spectrum, also in the area of poly-
mer composites.

The fundamental design of ANNs is pro-
foundly influenced by the biological neural sys-
tems, enabling these networks to address complex 
and multifaceted challenges in both scientific and 
engineering domains. ANNs are adept at learning 

from empirical examples, which allows them to 
effectively navigate and interpret complex, non-
linear, and multidimensional functional relation-
ships. This capability is pivotal, especially since 
it operates without the reliance on predetermined 
theoretical assumptions. The networks are adept 
at self-organizing, formulating their structure di-
rectly from the data derived from experimental 
observations.

Although the literature pertaining to the uti-
lization of ANNs within the context of polymer 
composites is not extensive, the available studies 
have spanned a range of topics. These include a.o. 
the prediction of material fatigue, the simulation 
of wear patterns, the monitoring of manufactur-
ing processes, and the intricate analysis involved 
in the curing of composite materials. The ability 
of ANNs to adapt and learn from data makes them 
particularly suited for these applications, where 
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traditional models might struggle with the com-
plexity and variability inherent in these processes.

Moreover, the integration of ANNs in the 
field of polymer composites represents a sig-
nificant stride towards more nuanced and data-
driven approaches in material science. The po-
tential for ANNs to contribute to breakthroughs 
in this field is considerable, given their ability to 
uncover patterns and relationships within large 
datasets that might otherwise remain obscured. 
As research continues to expand in this area, it 
is anticipated that the application of ANNs will 
become more pervasive, unlocking new possibili-
ties and enhancing our understanding of polymer 
composites.

The effectiveness of ANNs models in esti-
mating the mechanical attributes and strengths 
of composite materials has been presented in 
some papers. In their pivotal work, Zhang and 
Friedrich [7] introduced ANNs models designed 
for the assessment of fatigue life and wear char-
acteristics of polymer composites. Additionally, 
ANNs have demonstrated remarkable accuracy 
in predicting further properties of materials, 
such as heat transfer coefficients and the veloc-
ity of crack propagation [8].

The Bayesian probabilistic neural network 
(BPNN) has been employed effectively to iden-
tify the damage type, location and extend in sand-
wich composite material [9]. The ANNs training 
algorithms success depends on the training data 
set and network structure [10]. 

In paper [11] authors used the ANN to predic-
tion of FRP confned compressive strength of con-
crete and the results shows very good agreement. 
Similarly, in a recent study [12], an ANNs was 
effectively utilized to predict the compressive 
strength of environmentally friendly concrete 
containing recycled concrete aggregate, show-
casing the versatility and effectiveness of ANNss 
models in various construction material applica-
tions. ANNs model has been also used by Malik 
et al. [13] to predict low velocity impact against 
composite plates. In paper [14] ANNs models 
were developed utilizing the obtained experimen-
tal and numerical data to predict the sandwich 
plate’s natural frequencies and modal loss factors 
for different cut-outs configurations.

This study addresses the original concept of 
a thin-walled plate element with a cut-out, which 
can work as spring or a load-bearing element. It 
can be obtained by asymmetrical configuration of 
composite and by suitably shaped the geometric 

parameters of a thin-walled plate element with 
cut-out, without a change in its overall dimen-
sions. More information about this conception 
presented in papers [15–17].

Thin-walled structural elements, can work 
after loss of stability if they stay within their 
elastic range [18–20], what poses a consider-
able challenge for traditional structural materials 
like metals, which post-critical behaviour largely 
hinges on their material yield strength. A key fea-
ture of these fibrous composite structures is their 
substantial structural load-bearing capacity, of-
ten withstanding loads up to two or three times 
their critical values [21–23]. Extensive research 
has been conducted on the performance of thin-
walled laminated structures both before and after 
reaching critical states [24–26]. The significant 
load-bearing margin in composite materials en-
hances structural safety, as these structures pre-
serve their rigidity till the failure load is reached, 
even post initial failure indicators [27–29]. The 
unique properties of fibrous composites, coupled 
with their material lightness, render them suitable 
for various sectors, including aviation, building 
[30], automotive, and aerospace industries [31], 
where designs frequently rely on plate and thin 
shell elements.

While manufacturing uniform thin plates is 
cost-effective, their limited bending stiffness re-
stricts their load-bearing capacity [32, 33]. The 
onset of stability loss in these plates, primarily 
through bending, can lead to rapid failure, char-
acterized by significant deflection with only a mi-
nor increase in compressive load, indicating low 
structural rigidity. However, when plates operate 
under a higher flexural-torsional buckling form, 
there’s a marked improvement in their stiffness, 
enabling them to withstand greater compressive 
loads in the post-critical state.

Previous research [34, 35] has demonstrated 
that plates designed to undergo higher buckling 
forms exhibit stable and progressive post-critical 
equilibrium paths, making them suitable as elastic 
components. The behavior of such components 
can be tailored extensively by altering geometric 
parameters like the dimensions of cut-outs [36, 
37] and the orientation of fibers [38, 39]. 

This paper introduces a straightforward ap-
proach to estimate buckling forms and buckling 
load in plates element under compression. These 
estimations were conducted using artificial neural 
network with using Abaqus software, a tool prev-
alent across diverse scientific domains [40–43]. 
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The obtained results compared with results from 
previous paper [44] where Authors used analyti-
cal method to predict the form of buckling.

This paper shows the possibility of use of 
mathematical tool potential like ANNs in poly-
mer composites research. The novelty is the use 
of the artificial neural network to predict the 
buckling form of compressed plate composite el-
ements which can work as elastic elements. The 
cited papers and presented results in current paper 
shows that by good trained neural networks, and 
the ANNs technique we can predict the properties 
of material or behaviour of structure which means 
significant time and cost savings in both research 
and production. This confirm the potential of us-
ing forecasting methods in the field of mechanical 
engineering.

RESEARCH SUBJECT 

The investigation focused on a rectangular 
carbon-epoxy composite plate measuring 160x80 
millimeters, featuring a central cut-out with adjust-
able geometric dimensions (axb) and a fillet radius 
(R) of 5 millimeters at the corners (Figure 1).

The composite material of the plate was char-
acterized by anisotropic mechanical properties: a 
longitudinal Young’s modulus (E1) of 130.71 GPa, 
a transverse Young’s modulus (E2) of 6.36 GPa, a 
Poisson’s ratio (ν12) of 0.32, a shear modulus (G12) 
of 4.18 GPa, and each layer was 0.131 millimeters 
thick. The plate’s laminate structure was arranged 
in a non-symmetrical sequence of layers with the 
following orientation: [03/θ/-θ/0/-θ/θ/-θ/θ/-θ/θ/90/
θ/-θ/903]T, where θ represents the fiber orienta-
tion angle. More information about the model and 
methodology of selection the composite layout 
can be read in the articles [34, 35, 45].

In order to determine the critical force and 
the corresponding buckling form, a linear analy-
sis was performed using FEM in the Abaqus pro-
gram. Calculations were performed for various 
geometric parameters of the cut-out and various 
angles fiber orientation. The height of the cut-out 
was in the range of 80-120 mm and was changed 
every 20 mm, the width of the cut-out was in 
the range of 20-40 mm and was changed every 
10 mm, and the angle of fiber arrangement was 
in the range of 15-90° and changed every 15 de-
grees. The data were selected deliberately as in 
the article [44] to be able to compare the results 
obtained using two different methods. Table 1 
presents some part of exemplary obtained results 
of critical load and corresponding buckling form.Fig. 1. Geometric parameters of tested plate element

Table 1. The results of the numerical analysis for the critical state [44]
a b [mm] Θ [o] Critical load [N] Buckling form

100 20 15 1909.4 Flexural-torsional
100 20 30 1660.5 Flexural-torsional
100 20 45 1378.1 Flexural
100 20 60 1129.3 Flexural
100 20 75 1021 Flexural
100 20 90 999.6 Flexural
100 30 15 1477.2 Flexural-torsional
100 30 30 1244.4 Flexural-torsional
… … … … …

100 40 15 1151.1 Flexural-torsional
… … … …
80 30 15 1524.4 Flexural-torsional
… … … …

120 30 90 523.86 Flexural-torsional
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METHODOLOGY

The Neural Net Fitting library from the MAT-
LAB software suite was used to conduct research 
on artificial ANNs modeling. Two different mod-
els were developed during the study. The first 
model was for predicting critical force values –
referred to as Model I, while the second was a 
classification model designed to identify the first 
buckling form - referred to as Model II. In the lat-
ter, the output is binary, yielding a value of 1 for 
flexural-torsional buckling forms and 0 for flex-
ural buckling forms. For both models, the input 
layer was configured with three neurons repre-
senting the height of the cut-out (a), the width of 
the cut-out (b), and the angle of fiber arrangement 
(θ). During the training process, a shallow neural 
network architecture was used for both scenarios. 
Model I incorporated a two-layer feedforward 
network with sigmoid activation functions in the 
hidden layer and linear activation in the output 
neurons, an architecture conducive to regression 
problems. The Levenberg-Marquardt algorithm 
was selected as the primary learning algorithm 
for the network. These networks contained a sin-
gle hidden layer. Through experimental methods, 
the optimal number of neurons within this hidden 
layer was determined to be in the range of 2 to 15. 
The architecture of the neural network for Model 
I is shown in Figure 2. 

In the process of models evaluation, an array 
of 20 distinct parameter sets was utilized. This ar-
ray was distributed between a principal training 
subset (constituting 80% of the data) and a vali-
dation subset (comprising the final 20%). The ab-
sence of a separate test dataset was a result of the 
limited amount of model data. In the training of 
ANNs, especially when confronted with a limited 
amount of data, it is often necessary to utilize the 
available data as efficiently as possible. Omitting 
a separate test dataset can be justified by the need 

to maximize the data used for training, allowing 
the ANNs to learn the intricacies of the data more 
fully. Given that an ANNs performance hinges on 
the volume and variety of data it is exposed to, 
this strategy can be crucial for developing a model 
that generalizes well to new data. To ensure the 
model’s robustness in such a scenario, a validation 
set is indispensable. It functions as a check against 
overfitting, enabling the fine-tuning of the model 
while using the full breadth of data for training. 

The evaluation of the regression model’s effi-
ciency involved a range of essential statistical mea-
sures commonly employed by researchers, as out-
lined in [46]. These measures are delineated below:
	• Coefficient of determination (R²):

R² quantifies the fraction of the variance in 
the dependent variable that is predictable from 
the independent variable(s), thereby indicating 
the model’s explanatory power:
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where: n – the number of dataset;	   
yi – the real value; 	  
y'i – the predicted value.

	• Correlation coefficient (R):
The correlation coefficient measures the in-

tensity and polarity of a linear relationship be-
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𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝

 

 

TPR =  
𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀

𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀 + 𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁
 

FPR =  
𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀

𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 + 𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁
 

(2)

where: σy – standard deviation of real data;	  
σy' – standard deviation of predicted data.

	• Mean squared error (MSE):
This indicator assesses the average squared 

variance between actual and forecasted figures, 
giving greater weight to more substantial discrep-
ancies. It is defined mathematically as:

Fig. 2. The neural network architecture for Model I
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𝑅𝑅𝑅𝑅2 = 1 −  
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

 

 

𝑅𝑅𝑅𝑅(𝑦𝑦𝑦𝑦′ ,𝑦𝑦𝑦𝑦∗) =  
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑦𝑦, 𝑦𝑦𝑦𝑦′)
𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦′ 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦

    𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 < 0,1 > 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛
�(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′)2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �
1
𝑛𝑛𝑛𝑛
��𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′ �

2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛𝑛𝑛
�(|𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′ |)
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛𝑛𝑛
��

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
�

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

𝑥𝑥𝑥𝑥100 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  
𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝

 

 

TPR =  
𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀

𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀 + 𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁
 

FPR =  
𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀

𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 + 𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁
 

(3)

	• Root mean square error (RMSE):
RMSE quantifies the standard deviation of 

the residuals, facilitating an understanding of the 
error dispersion. The formula is:

𝑅𝑅𝑅𝑅2 = 1 −  
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

 

 

𝑅𝑅𝑅𝑅(𝑦𝑦𝑦𝑦′ ,𝑦𝑦𝑦𝑦∗) =  
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑦𝑦, 𝑦𝑦𝑦𝑦′)
𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦′ 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦

    𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 < 0,1 > 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛
�(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′)2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �
1
𝑛𝑛𝑛𝑛
��𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′ �

2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛𝑛𝑛
�(|𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′ |)
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛𝑛𝑛
��

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
�

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

𝑥𝑥𝑥𝑥100 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  
𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝

 

 

TPR =  
𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀

𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀 + 𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁
 

FPR =  
𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀

𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 + 𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁
 

(4)

	• Mean absolute error (MAE):
MAE computes the mean of the absolute vari-

ances between actual and predicted data, treat-
ing all errors with uniform significance. It is ex-
pressed as:

𝑅𝑅𝑅𝑅2 = 1 −  
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

 

 

𝑅𝑅𝑅𝑅(𝑦𝑦𝑦𝑦′ ,𝑦𝑦𝑦𝑦∗) =  
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑦𝑦, 𝑦𝑦𝑦𝑦′)
𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦′ 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦

    𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 < 0,1 > 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛
�(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′)2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �
1
𝑛𝑛𝑛𝑛
��𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′ �

2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛𝑛𝑛
�(|𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′ |)
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛𝑛𝑛
��

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖′

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
�

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

𝑥𝑥𝑥𝑥100 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  
𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝

 

 

TPR =  
𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀

𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀 + 𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁
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	• Mean absolute percentage error (MAPE):
MAPE provides insight into the average error 

as a percentage, offering a comparative perspec-
tive of the prediction accuracy:
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(6)

In the case of the second artificial neural net-
work model two-layer feedforward network with 
sigmoid hidden neurons in the hidden layer and 
soft max output neurons, suitable for classifica-
tion tasks, was used. The scaled conjugate gra-
dient algorithm was used in the training process. 
Figure 3 shows the neural network architecture 
for Model II.

To evaluate the quality of classification mod-
els, three key performance indicators were em-
ployed: accuracy, confusion matrix, and ROC 

curve. These metrics were selected due to their 
broad acceptance and informative value in depict-
ing a classifier’s performance [47].

Accuracy is the simplest metric, representing 
the proportion of correctly classified instances out 
of the total instances. It is formulated as:
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(7)

While accuracy is straightforward and intui-
tive, it can be misleading in the presence of class 
imbalance, hence the necessity of complementary 
metrics [48, 49].

The confusion matrix is a tabular represen-
tation of a classifier’s performance, divided 
into four parts: true positives (TP), true nega-
tives (TN), false positives (FP), and false nega-
tives (FN). It provides a more detailed insight 
into the nature of both correct and incorrect 
classifications. The elements of the confusion 
matrix are:
	• TP: Correctly classified positive instances.
	• TN: Correctly classified negative instances.
	• FP: Incorrectly classified negative instances as 

positive.
	• FN: Incorrectly classified positive instances as 

negative.

The ROC curve offer a comprehensive evalu-
ation of the model’s performance across different 
classification thresholds [50]. The ROC curve 
plots the true positive rate (TPR) against the false 
positive rate (FPR), providing insight into the 
trade-off between sensitivity and specificity. The 
TPR and FPR are defined as:
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Fig. 3. The neural network architecture for Model II
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RESULTS AND DISCUSSION

Modelling critical force values 

Optimal modeling of the critical force param-
eter was achieved using a neural network archi-
tecture with eight neurons. The analysis reached 
its peak efficiency after running 11 epochs, as 

indicated in the data set. Detailed insights into 
the performance metrics of this neural configura-
tion are presented in Table 2. In addition, Table 
3 shows the MSE and R results for the training 
and validation sets, with the fifth epoch marking 
the point of highest validation accuracy, as shown 
graphically in Figure 4. The training procedure is 
documented in Figure 5, while Figure 6 shows the 
regression analyses correlating training, valida-
tion, and the data set as a whole.

Figure 7 displays a comparison of critical force 
values (in Newtons) for various samples (sample 

Table 2. Optimal neural network training results for 
Model I with associated quality metrics

Training algorithm Levenberg-Marquardt

Epoch 11

Performance 1.49

Best validation performance 621.452 at epoch 5

Gradient 43.9

Mu 1

R(all) 0.999

R2 0.998

MSE 253.048

RMSE 15.907

MAE 12.789

MAPE 1.388

Table 3. MSE and R results for the training and 
validation sets

Parameter Observations MSE R

Training 23 156.943 0.9996

Validation 6 621.452 0.9995

Fig. 4. Best validation performance for 
modelling critical force values

Fig. 5. Training process for modelling critical force values
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Fig. 6. ANN regression statistics for modelling critical force values

Fig. 7. Comparison of real and predicted data

Fig. 8. Numerical results for modelling critical force values depending on the height of the cut-out a and the angle 
of fiber arrangement θ (a), as well as depending on the height of the cut-out a and the width of the cut-out b (b)
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number on the horizontal axis). The points repre-
sent the actual measured values (labeled as “pat-
tern values”), while the short lines with horizontal 
“error bars” indicate the predicted values (labeled 
as “predicted values”). Overall, the predicted 
values are close to the actual measurements with 
some noticeable deviation, suggesting that the 
forecasting model is fairly accurate.

The 3D graphs in Figure 8 show the numeri-
cal results for modelling critical force values. 
Due to the fact that the input to the model is 
3 parameters, the model results are presented 
in two figures, a) on the height of the cut-out 
a and the angle of fiber arrangement θ and b) 
depending on the height of the cut-out a and the 
width of the cut-out b. Achieving a high level 
of accuracy, the model demonstrated excellent 
fit and predictive capability, as evidenced by the 
near-perfect correlation coefficients (R > 0.999) 
and low error metrics across both training and 
validation sets. Notably, the best validation per-
formance was observed at the fifth epoch, sug-
gesting an efficient training process that did not 
require extensive epochs to converge. These re-
sults indicate that the neural network is a robust 
tool for modeling critical force, with potential 
applications in areas where precise force predic-
tion is critical.

Classification model identify 
the first buckling form

An optimized model for the classification of 
the identification of the first buckling was devel-
oped using an artificial neural network framework 

with a hexa-neuron layout. Within the collected 
data, peak effectiveness was observed after com-
pletion of 37 iterative training epochs. Compre-
hensive performance metrics for the specified 
neural network configuration are presented in 
Table 4. In addition, Table 5 presents a compara-
tive analysis of the cross-entropy values and error 
metrics across the training and validation subsets. 
Figure 9 illustrates the decline of cross-entropy 
error over epochs for both the training and vali-
dation sets. It indicates that the model’s valida-
tion performance improved significantly and 
stabilized at the 37th epoch, aligning with the 
results in Table 4. In addition, the receiver operat-
ing characteristic (ROC) curves, which describe 
the performance of the classification model, are 
shown in Figure 10.

Table 4. Optimal neural network training results for 
Model II with associated quality metrics

Training algorithm Scaled conjugate gradient

Epoch 37

Performance 4.13*10-7

Best validation performance 2.681*10-8 at epoch 37

Gradient 8.03*10-7

Accuracy 100%

Table 5. Cross-entropy and error results for the training 
and validation sets

Parameter Observations Cross-
entropy Error

Training 23 4.133*10-7 0

Validation 6 2.681*10-8 0

Fig. 9. Best validation performance for classification model
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The ROC curves in Figure 8 display perfect 
classification ability with an area under the curve 
(AUC) of 1 for both training and validation sets, 
which is an indicator of an excellent model. Figure 
11 presents the confusion matrices for training, vali-
dation and all data combined. The training and vali-
dation confusion matrices show that the model has 

achieved 100% classification accuracy, with no mis-
classifications observed. The test confusion matrix 
is not applicable (NaN%) due to a lack of test data 
presented. The combined matrix consolidates the 
overall performance, confirming the model’s perfect 
classification accuracy on the given data. Table 6 
presents exemplary results of classifier’s operation.

Fig. 10. Receiver operating characteristic (ROC) curves for classification model

Fig. 11. Confusion matrix for classification model



240

Advances in Science and Technology Research Journal 2024, 18(1), 231–243

Given the reported 100% classification ac-
curacy of the model, it is imperative to contex-
tualize this result within its inherent limitations 
and the specific conditions under which it was 
achieved. The high accuracy is largely due to the 
specialized nature of the dataset. A shallow neural 
network architecture was chosen which, despite 
its simplicity, proved to be quite effective for the 
specific task of buckling form classification.

In conclusion, the neural network model ap-
pears to be exceptionally well-tuned for the avail-
able data, exhibiting high accuracy and reliability 
in classifying the first buckling.

Moreover, the obtained results were com-
pared with the analytical method predicting the 

Table 6. The exemplary results of classifier’s operation
a 

[mm]
b 

[mm] Θ [o] Buckling form Classifier’s 
result

80 20 15 Flexural-torsional 1

80 20 20 Flexural-torsional 1

80 20 25 Flexural-torsional 1

80 20 30 Flexural 0

80 20 90 Flexural 0

90 25 15 Flexural-torsional 1

90 25 20 Flexural-torsional 1

110 30 15 Flexural-torsional 1

80 30 15 Flexural-torsional 1

120 40 15 Flexural-torsional 1

120 40 90 Flexural-torsional 1

Fig. 12. Graph of buckling form depending on the area of the cut-out and parameter s (based on own study [44])

Fig. 13. Graph of buckling form depending on the area of the cut-out and parameter f (based on own study [44])
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form of buckling developed in earlier work [44]. 
Figure 12 and 13 presents results obtained with 
using artificial neural networks in relation to 
functions designated in [44]. The developed and 
presented in the figures 12 and 13 function allows 
for separating sets on the basis of which is pos-
sible to estimate the buckling form. Results above 
the straight line define the flexural-torsional form, 
while results below the straight line define the 
bending form. Analyzing Figures 12 and 13, it 
can be seen that the results obtained using the ar-
tificial neural network refer to the approximation 
method used in the work [44]. Slight discrepan-
cies can be noticed at the extreme points, but it 
should be emphasized that the previous method 
was an approximate method and it  should be re-
member that with values close to the limit value, 
the results may be questionable, which was also 
confirmed by the obtained results presented in 
current paper.

CONCLUSIONS 

The ANN models created showed remarkable 
precision in forecasting the critical force and de-
termining the first buckling form of thin-walled 
plates featuring various cut-out shapes and fiber 
orientations under compressive forces. Integrat-
ing numerical analyses with these ANN models 
offers a viable and effective approach for as-
sessing the stability characteristics of composite 
plates with cut-outs. This integration is potential-
ly valuable for optimizing designs and monitor-
ing structures in various engineering applications.
The objective of the research conducted was to 
develop two ANNs models. The first model was 
designed to predict the critical force values. The 
second model was a classification model that 
identified the first buckling form. The investiga-
tion focused on a rectangular carbon-epoxy com-
posite plate with a central cut-out with adjustable 
geometric dimensions. 

The foundational learning algorithm select-
ed for the model predicting critical force values 
was the Levenberg-Marquardt algorithm. For 
this model, optimal results were achieved with 
a network comprising eight neurons in the hid-
den layer. This is indicated by, among other fac-
tors, a correlation coefficient R value of 0.9996 
for the training data, 0.9995 for the validation 
data, and 0.999 for the entire data set. In the case 
of the classification model, the scaled conjugate 

gradient algorithm was used in the learning pro-
cess. This model achieved a 100% accuracy level, 
as evidenced by the ROC curve and an area under 
the curve value of 1.

The ANN models created showed remarkable 
precision in forecasting the critical force and de-
termining the first buckling form of thin-walled 
plates featuring various cut-out shapes and fiber 
orientations under compressive forces. Integrating 
numerical analyses with these ANN models offers 
a viable and effective approach for assessing the 
stability characteristics of composite plates with 
cut-outs and can be expand for different type of 
structure. This integration is potentially valuable 
for optimizing designs and monitoring structures 
in various engineering applications. 
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