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INTRODUCTION

Compressed air systems are widely used in 
industrial plants to produce the compressed air 
necessary for the daily operation of the facility. 
Recent research has drawn attention to the im-
portance of energy efficiency in industrial sys-
tems powered by compressed air. Much of the 
research focuses on identifying factors that af-
fect efficiency, such as temperature, air humidity, 
pressure, as well as the wear rate of the compres-
sor and system components. The introduction 
of new technologies and solutions, such as heat 
recovery systems, compressed air regeneration 
and control of the air compression process, can 
significantly improve the energy efficiency of in-
stallations. The studies also emphasize the role of 
plant maintenance and upkeep activities, such as 
regular cleaning and replacement of air filters and 
prevention of air leaks. The conclusion of this re-
search is that measures must be taken to improve 

the energy efficiency of industrial compressed air 
facilities, which will help reduce costs and green-
house gas emissions.

Since air compressors consume more electri-
cal energy than any other type of facility equip-
ment [1], an optimized and efficient compressed 
air system is essential to achieve energy sav-
ings. There are usually multiple approaches to 
improve the performance of a compressed air 
system. They are summarized in [2], they are 
as follows: minimize energy losses during dis-
tribution, reduce air losses in the system (such 
as air leaks and overpressure), optimize the air 
demand by minimizing the required optimal 
flow and pressure and choose the best energy-ef-
ficient compressor. For example in [3] a new ap-
proach is proposed for evaluation of the energy 
efficiency of compressed air systems based on 
a six-step local methodology for energy bench-
marking. On the other hand [4] proposes a new 
simulation and optimization model to increase 
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energy efficiency in the facility by determining 
the optimal location of the air compressor. In 
turn, in [5] the authors review various methods 
of energy consumption optimization, particular-
ly noting system analysis and harmonization of 
production and consumption, loss minimization 
(leakage prevention strategy, leakage identifica-
tion and quantification), filter pressure drop re-
duction opportunities, and a group of methods 
for optimizing pneumatic control optimization 
of pneumatic control: by-pass control, PWM 
control, and use of exhaust air. It should be 
noted here that according to [6], in addition to 
energy savings, increasing the energy efficiency 
of compressed air systems can bring other sig-
nificant benefits to the company. Energy-saving 
measures mean a high level of their monitoring 
and proper maintenance. This leads to fewer pro-
duction equipment failures, avoidance of wasted 
raw materials or other inputs, a longer life cycle 
for pneumatic equipment, and greater reliability 
of the entire system. Reducing energy consump-
tion will also result in fewer emissions of haz-
ardous substances and pollutants, reducing the 
impact on the environment. Often these benefits 
are more valuable than the energy savings.

CONTRIBUTION

In this work we focus on one of the stages 
of developing an intelligent master control of 
compressors, from different manufacturers, op-
erating in different industrial plants in differ-
ent configurations with different characteristics 
of air demand. We assume that the developed 
algorithm for predicting the moments of acti-
vation of compressors will be able to learn the 
characteristics of operation of a given plant, 
which will allow to minimize the activation of 
compressors, the tangible benefit of which will 
be significant savings in electricity as well as 
in material consumption, while ensuring a con-
stant pressure that allows the customer to work. 
The problems of high current energy prices and 
increasingly difficult availability of consum-
ables cause a strong demand for the introduc-
tion of intelligent control systems based on 
more advanced solutions than the algorithms 
found in compressed air stations. What would 
be required now would be a control system that 
takes into account what has happened in the past 
and what we can expect in similar conditions. 

The algorithm will have to work with already 
existing control system solutions enabling inte-
gration in the Industry 4.0 concept.

The article presents results of deep learn-
ing and machine learning methods enabling 
prediction of  the demand for compressed air 
depending on the type of production, using real 
time data acquisitioned at company Marani sp. 
z o.o. and Matlab Deep Learning Toolbox. The 
idea of applying neural network techniques to 
prediction of air demand is not new in the lit-
erature, e.g. in the [7, 8] authors are predicting 
air demands understood as a prediction of an 
amount of air. In this work the compressed air 
demand is understood as a prediction of com-
pressor on/offs.

CLASSIFICATION OF MEASUREMENT 
DATA

Data  for the study was collected in the same 
time intervals from 3 production plants carry-
ing out 3 types of activity with different work-
ing characteristics within 48 hours from the start 
of the production in a given week.  The samples  
were collected at equal intervals of 20 seconds.  
Plants will be marked as:
	• A – a plant with 11 screw compressors with a 

total capacity of about 2.6 MW,
	• B – a plant with 7 screw compressors with a 

total capacity of 1.8 MW,
	• C – a plant with 3 screw compressors with a 

total capacity of 0.23 MW.

Each plant is equipped with a supervisory 
master controller which carries out cascade con-
trol. The task of each controller is to select the 
right number of machines depending on exceed-
ing of the lower or upper limit of the working  
pressure so that the pressure is maintained within 
the required range. There is no feedback on the 
number of pneumatic devices concurrently oper-
ating within the air network therefore the control-
lers make their decisions based on the pressure 
measurement in the installation at a point that re-
flects the actual demand. Decision limits of the 
working pressure of supervisory controllers are 
presented in Table 1.

Each plant has also a different demand for 
compressed air. The Figure 1 shows the pressure 
course in the period under study of which 90% 
will be the basis for neural networks training.
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Production plants work specifics

Production plants A and C are characterized 
by high variability due to frequent exceeding of 
the lower and upper operating pressure limits 
when the supervisory controllers have to decide 
whether to start or stop supplying compressed air.  
Analyzed plants have at least one machine with 
a frequency converter whose task is to reduce 
pressure fluctuations and minimize the number of 
compressors in operation.  The Figure 2 shows 

one hour of operation for plant B. Green color in-
dicates that the machine was running in loaded 
state providing compressed air. Yellow color in-
dicates idle run (unloaded) during which the ma-
chine was ready for compression.

Neural network selection

Observing the course of the pressure we can 
notice that the value of pressure at a given mo-
ment of time will be influenced by the previous 
sample as well as the course of the current char-
acteristic up to the sample point. It was decid-
ed to use a network based on LSTM long-term 
memory cells [9, 10]. The optimization problem 
is formulated as a minimization of the objective 
function [11] that corresponds to error of pressure 
prediction. These networks are successfully used 
in many areas of deep learning including image 
identification and speech recognition. For the 

Table 1. Decision limits of the working pressure of 
supervisory controllers

No. Plant
Lower working
pressure limit 

[bar]

Upper working
pressure limit

[bar]

Range
[bar]

1 A 6.35 6.75 0.40

2 B 5.05 5.35 0.30

3 C 6.40 6.80 0.40

Figure 1. Pressure characteristics of the of production plants, successively from the top marked as A, B, C

Figure 2. Example of hourly run for plant B with compressor states
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analysis training was done on a set of 90% of the 
gathered samples for a given plant and prediction 
was done on the last 10% which corresponds to 
the time horizon of approx. 5 hours.  The ADAM 
stochastic optimization algorithm was used to 
train the network and the learning was performed 
over a period of 250 epochs.

We will evaluate the results in two cases:
	• I – when as the input data for the recursive 

neural network we will use following samples 
from prediction and use them to predict the fu-
ture in the time horizon of the test set,

	• II – when as the input data for the recursive neu-
ral network we will use real time samples, this 
situation would correspond to the actual use of 
the neural network in industry when new data 
would arrive and would be used for prediction.

Evaluation reference point for all studies 
will be the element of the root mean square error 
which was calculated for the neural network for 
a given case. We will also pay attention to other 
features in the database of collected samples that 
may have influenced the result and present more 
interesting cases from the considered ones.

DEMAND PREDICTION

Plant A

Plant A is the only plant that was stopped 
twice in the test data set which should affect the 
neural network response.  The test data set for 
which the prediction was made was stopped at the 
time of the study.

In Figure 3 it is observed that the neural net-
work predicts the occurrence of underpressure in 
the system but we could consider this as a situa-
tion in which machines would most certainly not 
work. Neural networks trained on a working sys-
tem have an understandable difficulty in predict-
ing a stop which in their cases does not occur.

In Table 2 it is noticed that best result was 
achieved for dedicated neural network used for 
training however RMSE for Type I is still high 
(result of 1.4 is not sutiable for production pre-
diction). In case of Type II using real time data 
provided higher accuracy with low RMSE which 
is promising in case of decision support.

Table 2. RMSE for neural networks of different types 
for plant A

No. Neural
network

RMSE
Type I Prediction

RMSE
Type II Prediction

1 A 1.4081 0.071762

2 B 7.5381 0.10211

3 C 4.6636 4.7826

Plant B

The figure 4 shows the predicted characteris-
tics for plant B where we have the case in which 
the pressure most of the time remains below the 
lower setpoint limit of the pressure and its chang-
es are caused by minor changes in compressed air 
demand. Unlike other cases the upper pressure 
limit border is not exceeded and therefore there is 
no typical “saw” like trend of the pressure supply.

In case of Figure 4 neural network was not 
able to provide accurate prediction of observed 
pressure however in case of Figure 5 different 

Figure 3. Type I prediction for plant A

Figure 4. Type I prediction for plant B
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methodology resulted with amlost perfect fit 
for the task.

What could be expected is confirmed in Table 
3 and lowest RMSE was achieved for dedicated 
network however other competitors are not far 
behind. Neural network A was second best but 
RMSE for Type II could provide accurate predic-
tion and step into the future which may be useful 
for production needs. Type I prediction in all cas-
es was much less accurate and dedicated neural 
network seems to be the best solution.

Table 3. RMSE for neural networks of different types 
for plant B

No. Neural
network

RMSE
Type I Prediction

RMSE
Type II Prediction

1 A 0.12919 0.066176

2 B 0.08242 0.005581

3 C 0.27448 0.175130

Plant C

The plant is characterized by very high pres-
sure variability.  In this case there are quite large 
deviations while e.g. in the case of prediction type 
I we can assume that the predicted pressure will 

remain within the set borders while burdened with 
a fairly large error. In the case of type II we will 
get a significant improvement, but high volatility 
will still cause some unpredictability of the trend.

Figure above demonstrates that neural net-
work learned pressure sequence characteristics 
however being more careful on top and bottom 
pressure borders which resulted with conclusion 
that pressure should be somewhere between 6.40 
bar and 6.70 bar which is not far from supervisory 
controller setup. Since a lot of peak points where 
missed RMSE varies a lot and is quite high yet 
still accomplishing not bad average.

Figure 7 shows results with very accurate 
pressure characteristics. Maximum and minimum 
points of real time data seem to be followed by 
predticiton trend. If we assume that pressure may 
be unpredictible this date may oppose this thesis 
however still there is some shifting in data which 
results with lower then Figure 6 RMSE and three 
times lower average RMSE.

Table 4 also confirms that best results where 
achieved for neural network dedicated however 
other results are not much off the grid. In case of 
Type II results where almost three times worse, in 
case of type I deviation was much lower. Type I in 

Figure 5. Type II prediction for plant B

Figure 6. Type I prediction for plant C

Figure 7. Type II prediction for plant C
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case of Plant A may be a good option. Maybe it is 
possible to provide some trained network which 
could provide not the best results but still usable.

CONCLUSIONS

The LSTM network  is well suited for the iden-
tification of considered pressure characteristics pro-
viding long-term modelling while offering a rela-
tively small error. If the deviation of the expected 
pressure would not exceed 0.15 bar the decision 
made would have a positive impact on the energy 
efficiency of the system allowing to limit the num-
ber of machines in operation.  It would be enough 
to consider prediction in the range in example of 10 
minutes by updating samples of input data.

In the case of type I long-term prediction it 
turns out that we can get acceptable results with 
small deviations for each of the learned neural net-
works except the case of stopped system. For type 
II predictions when we were constantly updating 
input data with the measurement data the networks 
defined for a given plant type worked best.

In the examples considered a dedicated net-
work always offered the best results. The use of 
the recursive LSTM network together with the 
network update based on real time measurement 
data would give a sufficient margin of error to 
support the supervisory controllers in making de-
cisions regarding the control of air compressors 
between the working pressure limits. The next 
step in the analysis would be to check the opera-
tion of the neural network in real time.
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Table 4. RMSE for neural networks of different types 
for plant C

No. Neural
network

RMSE
Type I Prediction

RMSE
Type II Prediction

1 A 0.17323 0.167870

2 B 0.23768 0.144180

3 C 0.15152 0.050472


