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INTRODUCTION

The condition of the cutting tool during ma-
chining is one of the most important parameters. 
This parameter significantly affects the suitabil-
ity of the tool during the machining process. 
Tool wear is important due to its tool life and the 
quality of the machined hole. Therefore, online 
monitoring of the drill condition and its earlier 
prediction is extremely important and improves 
the efficiency and reliability of the operation. 
When machining cast iron, wear occurs in various 
forms, i.a. abrasion, chipping, diffusion and adhe-
sion [1–3]. There are many articles the concerns 
monitoring the condition of cutting tools.

In the article [4] the authors used artificial 
neural networks with back propagation error and 
one hidden layer to predict tool wear when drill-
ing with a HSS drill. As input data they used: 
spindle speed, feed rate, drill diameter, trust force, 
torque and chip thickness. They noticed that chip 
thickness was an important input. The use of this 

parameter allowed to reduce the prediction error 
and the number of iterations compared to the net-
work without the use of chip thickness. In the case 
of the best network, they obtained a prediction er-
ror of 0.00016–7.465%. The authors of the article 
[5] describe the prediction of drill bit wear when 
machining a copper and cast iron components. 
They compare three machine learning methods 
with each other: optimizing the extreme gradient 
boosting algorithms hyperparameters by a spi-
ral dynamic optimization algorithm (XGBoost-
SDA), support vector machines (SVM), mul-
tilayer perceptron artificial neural networks 
(MLP-ANN). As input, they reuse the parameters 
as in article [4], except for chip thickness. For each 
of the compared methods, they obtained satisfac-
tory results, there wasn’t the case where RMSE 
error exceeded 10%, and the correlation coeffi-
cient R2 was higher than 0,9. The best results were 
achieved with the XGBoost-SDA method. In the 
article [6] the authors monitor the condition of the 
tool while drilling three varieties of graphite cast 
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irons. The electric current, machining power and 
AE signals were monitored and evaluated in both 
time and frequency domains. The objective was 
to evaluate which of these output parameters has 
the highest sensitivity to tool condition changes 
and the potential to predict the tool wear. Observ-
ing the tested signals, they came to the conclusion 
that the best signal to monitor the condition of the 
edge is electric current and machining power.

The authors of many articles show the rela-
tionship between vibration and tool wear. A direct 
relationship between vibration and tool wear is 
shown [7, 8] when machining steel. In the article 
[9], the authors proposed a method of monitoring 
the edge condition while turning a gray cast iron 
element by using a vibration signal in three di-
rections. This algorithm is based on mean power 
evolution scanning using a sliding window. The 
algorithm was used to binary determination of the 
tool transition from stable operation to acceler-
ated wear. Xu et al. [10] proposed a model for 
predicting the wear of coated carbide tools dur-
ing milling of gray cast iron. At work, they com-
pared several machine learning models, the best 
results they obtained for adaptive neuro-fuzzy 
inference system (ANFIS) for teaching which 
they used vibration and communication particle 
swarm optimization (VCPSO). For the proposed 
solution, they obtained the percentage estima-
tion error (MAPE- mean absolute percentage 
error) equal to 6,5% with the correlation of the 
results R2 = 0,954. The VCPSO algorithm was 
adopted for multi-objective optimization of mill-
ing parameters. In [11], the researchers proposed 
a mathematical model (RA) and a model based 
on neural networks (ANN) with two hidden lay-
ers based on the Levenberg-Marquardt algorithm. 
The models were used to predict the value of tool 
wear (VB) when turning AISI 52100 hardened 
steel with carbide inserts. As input parameters, 
they used cutting parameters (cutting speed, feed 
per revolution and depth of cut) and vibration ac-
celerations in three directions (feed Vx, radial Vy 
and tangential Vz). For the RA model, they ob-
tained the correlation coefficient R2 = 0,89 with 
a maximum prediction error of 11% for the ANN 
model 0,98 with a maximum prediction error of 
9,7%. Panda et al. [12] analyzed the possibility of 
using vibration acceleration signals during online 
monitoring of the tool condition (flank wear at 
nose radius corner VBC) and the quality of the ma-
chined surface (arithmetic surface roughness av-
erage Ra). They use multiple quadratic and linear 

regression (MLR, MLR) when turning hardened 
steel with multi-coated cemented carbide inserts. 
In their research, they found that vibrations in the 
radial direction are the most suitable for predict-
ing tool wear and surface quality. They noticed 
that only the MQR model is suitable for monitor-
ing both studied variables. For tool wear, the av-
erage percentage error was 4,17%, for roughness 
4,37%. In [13], also quadratic regressions were 
used to monitor tool wear. In [14], the authors de-
veloped a tool condition monitoring model during 
titanium alloy machining. Using decision trees, 
they selected the most important vibration statis-
tics (statistical error, kurtosis and median), which 
then served as input parameters for the classifica-
tion neural network. A high classification ability 
of about 95% was obtained. The researchers in 
[15] used neural networks to qualify the condi-
tion of the tool. With the proposed solution, they 
achieved a qualification precision of 94%. Stav-
ropoulos et al. [16] developed a tool wear pre-
diction model during gray cast iron milling (CGI 
450) based on a third level regression model and 
pattern recognition systems. In this solution, 
based on the mean square acceleration vibration 
and electrical current, they assessed the tool wear 
according to three levels: high, medium, low. In 
[17], a transition of the tool into a state of accel-
erated wear was also detected. In their work, the 
authors used the Spectral Center of Gravity of vi-
brations in two axial and radial directions to ob-
serve the acceleration of wear. Babouri, M.K., et 
al. [18] used a combination of wavelet multi-res-
olution analysis (WMRA) and Empirical Mode 
Decomposition (EMD) to analyze vibration dur-
ing AISI D3 turning with carbide inserts. The au-
thors [19] proposed to monitor the tool condition 
in two models based on neuro-fuzzy hybridiza-
tion, i.e. the synergy of neural networks and fuzzy 
logic. Four values measured during turning (time, 
cutting forces, vibrations and acoustic emissions 
signals) were used as input. The best results were 
achieved with the transductive-weighted neuro-
fuzzy inference system, the percentage error of 
the model 2–6.5%. TWNFIS has also been used 
by Gajate et al. [20] used the same input param-
eters to predict tool wear during turning of cast 
iron. The percentage error of prediction was 
3.98–7.19%. In [21], in the cast iron milling pro-
cess, the authors identified the degree of tool wear 
by creating a deep learning network (DLN). The 
networks were based on input data from the spec-
trum of vibration accelerations measured during 
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machining. The data are then pre-processed using 
the fast Fourier transform (FFT) method to reveal 
the relevant outstanding features in the frequency 
domain. In [22], the authors analyze the images 
created on the basis of short-term spectra from 
the vibration band and obtain information about 
Probability Density Function (PDF) in the form 
of lower order moments, thus obtaining robust 
tool wear state descriptors. The authors [23] cre-
ated a model to monitor the tool condition in real 
time. The model is based on the vibration accel-
erations recorded during machining. The convo-
lutional neural network (CNN) is used for data se-
lection for bidirectional long short-term memory 
(BiLSTM) network with an attention mechanism 
(CABLSTM). The model proposed by the authors 
shows the classifi cation effi  ciency at the level of 
97%. In [24], the authors monitored tool wear 
and wall defl ection during the machining of thin-
walled elements. They used a support vector ma-
chine (SVM) for monitoring the tool wear, based 
on cutting forces and vibration accelerations. A 
condition recognition accuracy of about 90 % has 
been achieved during the experiments. In [25], 
the researchers used the measurement of vibra-
tion acceleration, acoustic emission and cutting 
forces to estimate tool wear when machining In-
conel 718. The obtained signals were subjected to 
wavelet packet transform (WPT) signal analysis, 
then they served as input data for neural networks. 
With the best network architecture they achieved 
a MAPE estimation error of 5,17%. Zhang et al. 
[26] used long short-term memory (LSTM) net-
work and particle fi lter (PF) algorithm to predict 
the stochastic tool wear values.

The authors of this article aimed to create a 
simple and autonomous cutting tool condition 
classifi cation system in real time. One of the main 
assumptions was to limit the input data only to the 
signal of vibration acceleration coming from the 
sensor. It was important to eliminate cutting pa-
rameters from the input data set, which in indus-
trial conditions would have to be entered by the 
machine operator, which cause errors. Contrary to 
the above-mentioned articles, the authors started 
to build decision trees using data from, inter alia, 
from the active bands (the bands where the am-
plitude changes during the process), not from the 
entire spectrum. This allowed for smaller clas-
sifi cation errors and elimination of cutting speed 
from the input data set. At the beginning, the au-
thors did not limit the set of input variables of 
measures, they created an algorithm that selects 

the most important variables, so that none of the 
measures important due to the classifi cation was 
omitted.

MATERIALS AND METHOD

Drilling tests were carried out on a three-
axis CNC milling machine DMC 70V hi-dyn by 
DMG. Used the gray cast iron plate EN-GJL-250 
as workpiece (Fig. 1). In the study a Walter 
DC150–03–08.000D0-WJ30RE carbide twist 
drills with a diameter of DC = 8,5 mm were used. 
Total drill hole depth L = 30 mm. Holes were 
made in two passes – 20 mm in the fi rst pass, and 
10 mm in the second. A three-direction vibration 
acceleration sensor by Brül & Kjear was used to 
measure the vibrations. It was attached to the ma-
chine table by means of a threaded connection. 
Figure 2 shows the measurement path. The signal 
fragments were cut so as to refer to the main drill-
ing phase (without the tool entering the material). 
It was done automatically on the basis of informa-
tion about the vibration noise level occurring in 
the phase before drilling and taking into account 
the experimentally determined time delay period 
after a signifi cant increase in the vibration level. 
Longer signal fragments were divided into small-
er ones in order to obtain more training examples. 
Finally, 1692 recordings of the vibration signal 
were obtained.

Tool life tests of drilling were carried out for 
the following parameters:
• vc = 100 m/min, n = 3969 obr/min, f = 0,15 mm, 

L = 30 mm;
• vc = 150 m/min, n = 5978 obr/min, f = 0,15 mm, 

L = 30 mm;

Fig. 1. Cast iron plate with machined holes
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• vc = 200 m/min, n = 7958 obr/min, f = 0,15 mm, 
L = 30 mm.

Only the variable cutting speed is analyzed in 
the article, as it has the greatest impact on tool 
wear and vibration acceleration [11, 12]. After ev-
ery 50 holes done, the tool wear was measured as 
determined by the VBC coeffi  cient – fl ank wear at 
nose radius corner, as shown in fi gure 3. The val-
ue of the wear coeffi  cient was calculated by sub-
tracting the distance V (Fig. 3b) from the length 
of the new corner LN (Fig. 3a). The V value was 
measured from the baseline to the end of the wear 
area. The wear was measured using the Zeiss Ste-
reo Discovery V.20 microscope.

RESULTS AND DISCUSSION

Tool wear analysis

Based on the obtained data, a plot of fl ank 
wear as a function of cutting time was prepared 
for the speed vc = 100–200 m/min (Fig. 4). For 
vc = 100 m/min (blue), there was very slight in-
crease in wear of the tool during the fi rst 35 min-
utes of operation, after which there was a upsurge 
of wear. In the range of tc = 50–100 min, the wear 
was proportional, and then the VBC coeffi  cient 
value surged again.

Figure 5 shows selected images of the 
tool wear on the fl ank face for various states 

Fig. 2. The measurement path

Fig. 3. Determining the value of the VBC coeffi  cient at the corner of the drill, 
(a) new tool when LN – length of the new corner, (b) worn tool vc = 200 m/min VBC = 0,19 mm, 

when V – value measured from the reference line to the end of the wear area 
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determined by the coeffi  cient. In the fi nal stage 
of work (2000 holes done), the wear indicator 
reached the value of VBC = 1,06 mm and the drill 
was withdrawn from further work.

In the same way, the results for the cutting speed 
vc = 150 m/min were processed (Fig. 4 orange). 
The progression of the tool wear as a function of 
the cutting time tc for the speed vc = 150 m/min 

Fig. 4. Tool wear over time (tc) for cutting speed vc = 100 m/min (blue), 
vc = 150 m/min (orange), vc = 200 m/min (gray)

Fig. 5. Tool fl ank wear for cutting speed vc = 100 m/min: (a) new drill bit, (b) 1150 holes 
VBC = 0.46 mm, (c) 1600 holes VBC = 0,56 mm, (d) 2000 holes VBC = 1.06 mm
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has a slightly diff erent progress than for the speed 
vc = 100 m/min. In the fi nal phase of the process, 
an intensive increase in the VBC coeffi  cient is vis-
ible, and there were no sudden increase in the 
value of this coeffi  cient. Figure 6 shows the tool 
wear images on the fl ank face, similarly to the 
previous case. Figure 7 shows the tool wear im-
ages for cutting speed vc = 200 m/min.

In order to determine of the tool life, a geo-
metric dullness criterion determined by the VBC
coeffi  cient was assumed:

Dullness criterion – VBC < 0.5 mm

The value of the dullness criterion was se-
lected on the basis of previous studies, and this 
value is the most optimal for this type of opera-
tion. The adopted value means that when the tool 
exceeds the value of VBC = 0.5 mm, it should be 

considered blunted and replaced. Otherwise, the 
tool can still be used. For the assumed criterion, 
the tool life was determined and the collective 
graph is shown in Figure 8 in a double logarith-
mic system.

For the tested cutting speeds, the signals of 
vibration acceleration were recorded. Each re-
corded signal corresponded to a specifi c edge 
wear value. In this way, the dependences of the 
amplitudes of vibration accelerations as a func-
tion of the tool wear were obtained (Fig. 9). rms
(root mean square) values were calculated from 
the entire analyzed frequency range. The correla-
tion coeffi  cients R2 for the experimental data do 
not show cause-eff ect relationships between the 
determined vibration measures and the tool wear 
determined by the VBC coeffi  cient. Measurements 
determined in the frequency domain show a much 
higher utility (Fig. 10).

Fig. 6. Tool fl ank wear for cutting speed vc = 150 m/min: (a) 300 holes VBC = 0.04 mm, (b) 600 
holes VBC = 0,17 mm, (c) 900 holes VBC = 0,60 mm, (d) 1100 holes VBC =1,40 mm
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As can be seen in the Figure 9, the measures 
from the entire time domain band cannot be de-
scribed by any mathematical function, due to the too 
large dispersion and randomness of the rms values.

Preliminary analysis of Figure 10 confi rmed 
the usefulness of the frequency domain measures, 
hence the further concept of using machine learn-
ing based on frequency domain measures. Based 

Fig. 7. Tool fl ank wear for cutting speed vc = 200 m/min: a) 250 holes VBC = 0.33 mm, b) 300 
holes VBC = 0.54 mm, c) 400 holes VBC = 0.84 mm, d) 500 holes VBC = 1.38 mm

Fig. 8. Taylor model for drilling
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on measurements in the frequency domain, sets 
were prepared and applied in the machine learn-
ing stage to supervise the edge wear process based 
on vibration acceleration signals.

Machining learning

Two classes of the tool condition were adopt-
ed: usable / unserviceable, with the tool wear lim-
it VBC = 0.5 mm as the limit tool wear. As a result 
of this division, 72% of the available examples 
were in a fi t condition, and the remaining 28% in 
a unsuccessful condition. In the fi rst stage, the re-
corded signals were parameterized. A number of 
signal measures were determined throughout the 
recorded band, and in bands that were found to be 
useful. For this purpose, a comparison was made 
of the amplitude spectra representing cases re-
lated to low tool wear (below the adopted thresh-
old) and to high tool wear (signifi cantly above 

the adopted threshold). Through the compari-
sons made, it was possible to identify a number 
of frequency bands that diff ered signifi cantly in 
the eff ective values and the nature of the spectrum 
for the two compared states of the tool. Some of 
the fi nally selected bands overlap, which is due 
to the fact that, as a result of many comparisons, 
the diff erences occurred in diff erent bands, which 
depended, for example, on the cutting speed vc. 
Widening the band and replacing the plurality 
of discrete bands with one could result in the re-
duction of sensitivity of some signal measures to 
changes in cutting edge state. The list of the sepa-
rated frequency bands, which diff ered for the fi t 
and unfi t condition of the tool for the three mea-
surement directions, is presented in Table 1.

For each of the above-mentioned bands and 
each direction, numerous signal measures were 
determined, both on the basis of the time course 
of the vibrations and the amplitude spectrum. 

Fig. 10. The dependence of the measure in the frequency domain as a function of the tool wear

Fig. 9. Dependencies of vibration acceleration amplitudes as a function of a tool wear for vc = 150 m/min
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Among other things, commonly used measures in 
technical diagnostics were determined: rms value, 
mean value from the rectified signal, peak value, 
square root amplitude, slack factor, crest factor, 
shape factor, impulse factor, kurtosis, the square 
of the signal, or the number of samples above the 
thresholds set against effective value. Addition-
ally, some measures of the amplitude spectrum in 
previously identified bands were used. And this is 
how the spectral slenderness coefficient in a given 
band was determined:

2
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  (1)

where: 𝑤𝑤′𝑟𝑟𝑟𝑟𝑟𝑟
 2    – effective value in a narrow win-

dow around the spectral maximum in a 
given band,

 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟
 2   – effective value in this band.

Effective values are calculated directly from 
the power spectrum (square of the amplitude 
spectrum). Values much higher than 1 indicate the 
presence of a significant spectrum component in 
relation to the overall rms level in the band. Val-
ues less than 1 for lack of such component.

Another measure was the symmetry coeffi-
cient of the spectrum in a given band:
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where: 𝑤𝑤′𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
 2    – effective value in the narrow 

window on the left side of the spectrum 
maximum in a given band,

 𝑤𝑤′𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
 2    – effective value in the narrow 

window on the right side of the spectrum 
maximum.

Effective values were calculated directly from 
the power spectrum. Another important measure 
was the frequency coordinate of the spectrum’s 
center of gravity in a narrow band (CMF).

In total, 693 signal measures were obtained, 
but to increase the reliability of inference in in-
dustrial conditions, where the tool state detection 
method would be used, information about the 
tool life or cutting speed was not taken into ac-
count. Such parameters, in practice, would have 
to be obtained from the operator of a technologi-
cal machine, which, if incorrect information was 
entered, could result in an unsupported condition 
diagnosis.

Most of the measures are of course redundant 
and linearly dependent. A feature space that is too 
large is a problem in data analysis because it is 
hardly ever filled with examples. To reduce the 
feature space, it was decided to use the machine 
learning algorithm in the form of a binary tree 
CART (Classification and Regression Tree). The 
use of a tree in this case has its significant advan-
tages. Firstly, during its construction, the tree it-
self selects features, using only those that are sig-
nificant in the division of examples representing 
state classes. Using a given measure of partition 
quality, the tree-building algorithm selects those 
features that receive the highest scores and which 
lead to the most effective class partitioning. In 
this way, features that are not needed to identify 
the state class can be discarded. Secondly, on the 
basis of the generated tree, a set of simple clas-
sification rules can be obtained, which constitute 
induced knowledge very accessible to a human, 
easy to modify or supplement by an expert and 
very easy to implement in real-time surveillance 
systems. Since the set of signal measures “se-
lected” by the tree may be very numerous any-
way, which may be a computational problem for 

Table 1. The list of the separated frequency bands, which differed for the fit and unfit condition of the tool for 
the three measurement directions

Measuring direction x [kHz] Measuring direction y [kHz] Measuring direction z [kHz]
All available bandwidth

0.0 – 5.0
5.0 – 9.9

11.0 – 15.3
12.9 – 16.6
19.0 – 24.0
20.0 – 25.6
23.0 – 25.6

All available bandwidth
0.0 – 5.0
5.0 – 9.9

11.0 – 15.3
12.9 – 16.6
13.6 – 17.6
19.0 – 24.0
20.0 – 25.6
23.0 – 25.6

All available bandwidth
0.0 – 5.0
5.0 – 9.9

11.0 – 15.3
12.9 – 16.6
13.0 – 16.0
19.0 – 24.0
20.0 – 25.6
20.0 – 23.0
23.0 – 25.6
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an industrial system, it was decided to reduce it 
by observing changes in the classifi cation error 
along with removing some of the attributes that 
are used least frequently. In this way, the supervi-
sion system can be signifi cantly simplifi ed to the 
necessary minimum by accepting a certain ac-
cepted rate of classifi cation error. The algorithm 
for such a procedure is presented in Figure 11.

Due to the relatively small number of avail-
able examples, it was decided to use the hold-on 
test repeated 1000 times with a division of 60% of 
training data and 40% of the test data. Then, the 
analysis was made of what attributes (signal mea-
sures) among all the occurring (693 attributes) are 
used by trees and with what frequency, creating 
an output set of attributes used by the tree build-
ing algorithm. The tree-building algorithm uses 
two data partitioning methods at the tree-building 
stage – Gini index and Cross-entropy. The output 
set in the case of the Gini index measure included 
88 attributes, and in the case of Cross-entropy as 
many as 130 attributes. The other measures did 
not occur even once in any of the 1000 trees. On 
the basis of the performed test, the average test er-
ror was determined. In the next steps, the number 
of available attributes was limited by removing 
the least common ones, performing the aforemen-
tioned test each time and observing the average 
classifi cation error. It turns out that the originally 
defi ned set of attributes available for the set of 
trees is redundant. By limiting their number, re-
moving the least frequently used ones from the 
set of attributes, it is possible to build a set of trees 
that was characterized by a comparable, or even 
smaller than the initial, average classifi cation er-
ror. In this way, the most important measures of 
signals that should be measured in the supervision 

system and which ensure the smallest error in the 
classifi cation of the tool condition were selected. 
Figure 12 shows the values of the average test er-
ror for a set of trees depending on the number of 
the highest-rated attributes (most often occurring 
in the output set of measures – selected using the 
fi rst test), for division using the Gini index, and in 
Figure 13 using Cross-entropy. The fi gures show 
with a horizontal line the value of the average er-
ror obtained when all the attributes were avail-
able in the tree-building process. Additionally, the 
ranges of one standard deviation of the classifi ca-
tion error for 1000 trees are marked.

As shown in Figure 12, it is not necessary 
to calculate all measures of the signal, and even 
measures initially selected by a tree set of 88 
measures. Equally good results can be obtained 
by using the number of measures in the range 
from 10 to 20, greatly simplifying the diagnos-
tic system monitoring the condition of the tool. 
Similar conclusions can be drawn in the case of 
Figure 13 concerning the cross-entropy tree used 
in the construction of the tree.

Ultimately, it was decided to limit the quanti-
ties measured by the system to 10 measures. The 
number of attributes could be further reduced 
without a signifi cant increase in error, but it seems 
that a slight excess of the number of attributes, 
due to the mechanism of automatic selection dur-
ing tree building, is desirable and may increase 
the fl exibility of the system, e.g. in the event of 
training necessary.

Table 2 shows the fi rst 10 signal measures 
most often found in the learned trees with the tree 
node’s split algorithm parameter as the Gini in-
dex and the relative frequency of their occurrence 
in the originally induced trees. Note that some 

Fig. 11. The algorithm for selecting a set of diagnostic measures
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measures may repeat multiple times in a given 
tree. Table 3 shows a similar statement for the di-
vision of a given tree node using cross-entropy.

The analysis of both tables shows that neither 
of the measurement directions can be omitted 
in the supervisory system being built. It is also 
important that the system should implement the 
procedure of calculating the amplitude spectrum 
from which many measures are calculated. The 
identifi cation of a representative frequency (cal-
culated as a weighted average) in a given band 

turns out to be a very eff ective margin for iden-
tifying the condition class. It is also necessary to 
apply digital fi ltering of the signal due to the mea-
sures determined on the time signal. In the case of 
the fi rst algorithm, such fi ltration should be per-
formed in the following bands: 0–5000, 12 900–
16 600, 11000–15 300 and 20 000–25600 Hz, 
while in the case of the second one in the bands 
0–5000, 5000–9900, 12 900–16 600 and 20,000–
25,600 Hz. It can be seen that the information dis-
tinguishing the state classes is contained in both 

Fig. 13. Average classifi cation error depending on the number of attributes most 
often found in the output fi le – the cross-entropy method of division

Fig. 12. Average classifi cation error depending on the number of attributes most 
often presented in the output set – the Gini index division method
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the low, medium and high frequency bands. In 
general, both algorithms are based on a different 
set of measures, but five of them repeat in both 
cases (they are marked in both tables).

In the last stage, the best classifiers were se-
lected from the set generated for both methods, 
learned on the basis of the available 10 signal 
measures presented in Tables 2 and 3 and tested 
on the basis of the selected test set. These classi-
fiers allowed for the omission of small errors, but 
it seems that due to the relatively small number of 
examples, such an evaluation of the classification 
error is underestimated. They were also tested on 
the basis of the entire available data set. The error 
assessment obtained in this case is also underes-
timated (the tree was built on the basis of some 
of the examples on which it was tested), how-
ever, it gives a certain prospect of the classifier’s 
capabilities.

Comparing the results for the best trees built 
with different measures of partition quality in 
nodes for all available data indicated a better 

performance of the Gini index. Table 4 shows the 
result of the assessment of the best classifier that 
will be implemented in the supervision system. 
Of course, in industrial practice, rather greater er-
rors in classification are to be expected. Table 5 
shows the quality of the classification for the best 
classifier.

It should be noted that the best classifier does 
not use all 10 signal measures (6 of them), which 
means that the measurement system can still be 
simplified. Figure 14 shows the best tree selected 
as a classifier for the designed system.

Table 2. Ten the most often signal measures found in the learned trees with Gini index algorithm

Nr Part of the total number of 
tree nodes [%] Bandwith [Hz] Measuring direction Signal measure

1 23.7 all x rms
2 21.1 12900–16600 z CMF
3 20.1 0–5000 y CMF

4 17.0 11000–15300 z Part of samples above 
1.25 effective value

5 11.3 0–5000 x rms
6 9.6 20000–25600 y peak-peak
7 8.2 all x peak-peak
8 7.5 0–5000 x rms

9 6.6 0–5000 y Part of samples above 
1.75 effective value

10 5.6 11000–15300 z 3rd order central moment

Table 3. Ten the most often signal measures found in the learned trees with cross-entropy

Nr Part of the total number of 
tree nodes [%] Bandwith [Hz] Measuring direction Signal measure

1 20.0 12900–16600 z CMF

2 18.1 All x Peak value from the 
modulus of the signal

3 15.8 5000–9900 x CMF
4 15.4 0–5000 y CMF
5 8.0 All x rms

6 5.8 0–5000 y Part of samples above 
1.75 effective value

7 5.4 0–5000 y Part of samples above 1.5 
effective value

8 5.0 20000–25600 y peak-peak
9 4.7 All x kurtosis

10 4.7 All x Crest factor

Table 4. The results obtained for the best classifier 
obtained on the basis of 10 measures: general 
measures and the error matrix

Meausre Value [%]
Total error 0.06
Sensitivity 99.79
Specificity 100.00
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Below is the set of classifi cation rules for 
Figure 14:

R1: if x2<15.1819 then R2 else R3
R2: if x6<7.18504 then R4 else R5
R3: if x4<0.1745 then R6 else R7
R4: if x10<-0.00158191 then class 1 else R8
R5: if x3<2.66368 then class 1 else R9
R6: if x1<2.76739 then class 0 else class 1
R7: if x3<2.4989 then class 1 else class 0
R8: if x4<0.227753 then class 0 else class 1
R9: if x6<13.7335 then node R10 else R11
R10: if x1<3.52743 then class 0 else class 1
R11: if x2<15.0986 then class 0 else class 1

CONCLUSIONS

The use of cutting speeds of 150 and 200 m / 
min changes the nature of the wear of the corner 
and the cutting edge of the tool i.e. fatigue wear. 
At these speeds, chipping of the blade occurs, 
and at a cutting speed of 150 m/min, also chip-
ping of the cutting edge. In the case of a speed of 
100 m/min, there is mainly friction wear.

The presented methodology made it possible 
to distinguish from a large number of measures, 
the most important quantities and bands that al-
low the identifi cation of the edge condition. As 
a last resort, it is enough to implement several 
signal measures in the proposed system to obtain 

(estimated on the basis of available data) slight 
errors in the state assessment. Based on the ob-
tained data, it can be said that the classifi cation 
system does not require information about the 
cutting speed – very good results were obtained 
without such a hint. The proposed supervision 
system can be reduced to a few classifi cation 
rules derived from a tree, which are a very ac-
cessible representation of knowledge.
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