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INTRODUCTION

In engineering, anchors are primarily em-
ployed in fastening systems for fixing steel struc-
tures in concrete [1–4]. Their load-carrying capac-
ity assessment typically involves an approxima-
tion model, assuming that the concrete breakout 
product formed during the anchor pullout is ide-
alized as a prismatic cone. The breakout strength 
calculations are based on an idealized breakout 
prism [5], which is a convenient approximation. 
The prism angle is approximately 35° and its pa-
rameters are relative to the effective embedment 
depth of an anchor hef (Fig. 1).

Currently, however, according to updated 
standards, it is assumed that the failure surface 
is represented by a quadrilateral pyramid with its 

apex situated in the anchor head, and the base on 
the concrete surface is equal to 3hef.

By employing the computational prowess of 
numerical modeling methods [6–9] (e.g., Finite 
Element Method (FEM) [10–14] or Boundary El-
ement Method (BEM) [15–17] or machine learn-
ing [18–20]) in conjunction with experimental 
research [21–24] we have developed a detailed 
understanding of the actual behavior of engineer-
ing structures and their optimization. What has 
emerged from the extensive laboratory research 
[25,26], theoretical analyzes [27–29] and FEM 
simulations [30–32] conducted to date on the 
subject is that the pullout anchor strength, also re-
ferred to as its load-carrying capacity, is affected 
by a number of other factors, such as mechanical 
parameters of concrete (e.g., [33–36]), effective 
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embedment depth [37], the breakout anchor de-
sign [38,39], the anchor head geometry [40–44], 
or concrete reinforcement [45–50]. Numerous 
tests have been conducted in field and laboratory 
conditions that aimed to verify experimentally the 
results emerging from theoretical considerations 
[51,52]. These included analyzes devoted to the 
study of the group effect in anchorage systems on 
the value of the breakout force [53,54]. Concrete 
cracking mechanics has provided the basis for 
the development of mechanical models facilitat-
ing the interpretation of the anchorage effect on 
the material in which they are fastened [55,56]. 
Also, analytical models have significantly con-
tributed to the understanding of the rock/concrete 
destruction mechanism induced by the pullout of 
mechanically [57,58] or chemically fastened an-
chors. These efforts have led to establishing new 
standards and recommendations for the estima-
tion of the load capacity of anchors under specific 
application and load conditions [1].

In his work, Furche [59] has taken on to de-
scribe the volume of concrete surrounding the 
anchor separating from the member under tensile 
loading as a function of pressure generated on the 
working/bearing area of the anchor head. In par-
ticular, if the surface is sufficiently large, the local 
crushing of concrete does not occur in this area. 
Conversely, at the initial stage, a smaller head 
size leads to a reduction in the effective embed-
ment depth as a result of assumed concrete crush-
ing under the head, only at a later stage to result in 
the prism detachment from the concrete member. 
The tests were carried out at a changing width of 
the working area of the anchor head a (Fig. 2a, a 
= (D-d)/2)) from 0.5 mm to 4 mm. Based on these 
data, for hef = 80 mm, the failure cone angle can 
be estimated at 26°. The change in pullout force 

as a function of its displacement is shown in Fig-
ure 2b [59].

A range of experimental and numerical stud-
ies describe the influence of the embedment depth 
or the anchor head size on anchor performance 
(e.g., [39,54]. In general terms, the mean cone 
angle to the concrete surface α has been deter-
mined to range between 25° and 30° [43]. Ac-
cording to [28], the angle of the concrete breakout 
prism α is in the range of 25° to 40° to the con-
crete surface. Although on average, it amounts to 
approximately 35°, it has been shown, by e.g., 
[28,56], to increase when the embedment depth is 
deeper. What is more, it exhibits a slightly rising 
tendency at higher anchor head angles [43–45]. 
Nonetheless, it has been numerically and experi-
mentally proven [60] that the average concrete 
breakout prism angle decreases with the increase 
in the anchor head size, whereas the diameter of 
the cone base (on the concrete surface) increases 
with the size of the head.

Conclusions similar to Furche [59] have been 
reported in a different study [61], which provided 
the evidence that, at pullout, smaller-headed an-
chors are prone to higher displacements at maxi-
mum loading than their larger head size coun-
terparts. This trend is even stronger in greater 
embedment depth scenarios. As the size of the 
anchor head increases, the pullout load is ob-
served to rise significantly while the displacement 
values show exactly the opposite tendency. The 
comparative analysis of the post-failure anchor 
performance displayed that at pullout with large-
head-size anchors concrete becomes very brittle 
– it succumbs to sudden failure without prior no-
ticeable displacement of the anchor. In the case of 
smaller heads, the concrete exhibits plastic prop-
erties, thus undergoing extensive deformations at 
the concrete-anchor interface.

Elsewhere [38], it has been shown that the ap-
plication of bigger diameter anchor heads (from 
35 mm to 52 mm) is reflected in the decrease in the 
mean compressive stress under the anchor head, 
which in turn resulted in a minor displacement 
of the anchor head. Hence, the smaller the head 
diameter, the greater the displacement at anchor 
pullout. It was also found that the breakout of the 
base material is mainly triggered by the failure of 
the concrete in tension (circumferential cracking) 
and not in compression. The onset of circumfer-
ential cracking progression is observed at roughly 
30% of the failure load and shows high stability 
until reaching the failure load. At the post-failure 

Fig. 1. Approximated concrete breakout 
cone for tension: hef – effective embedment 
depth, α – breakout prism angle, d – anchor 
shaft diameter, D – anchor head diameter
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stage, cracking becomes unstable, progresses rap-
idly, and forms a final breakout cone. The failure 
load is mainly dependent on the concrete fracture 
energy GF, which is approximately the function 
of the square root of GF. On the other hand, it ap-
pears (36) that the peak crack length is shorter for 
smaller anchor heads and the prism is of a more 
acute angle than in bigger-size anchor heads. 
Stress gradients in the vicinity of the anchor head 
are considered to be the main factors responsible 
for these differences. In addition, notable differ-
ences are observed in the main fracture, whose 
propagation closely resembles mode I (large 
heads) rather than the mixed mode (small heads). 
Non-reinforced concrete failure cone angles were 
shown [62] to range between 20° and 25° for em-
bedment depths of 40-80 mm.

It is important to note that there is a clear de-
pendence of the failure cone angle on the effec-
tive embedment depth. The anchor load-carrying 
capacity estimation model based on the variable 
cone angle α assumption [63] introduces the fol-
lowing equation defining the failure cone angle as 
a function of the embedment depth:

	 𝛼𝛼 = 28 + 0,134ℎ!"  for ℎ!" ≤ 127𝑚𝑚𝑚𝑚 
	 𝛼𝛼 = 45!	 for ℎ!" > 127𝑚𝑚𝑚𝑚 

Alternatively [56], the equation can take the 
following form:
	 𝑡𝑡𝑡𝑡𝑡𝑡	𝛼𝛼 = 0.2ℎ!"

#,%& 

We propose the design of the undercut/break-
out anchor for other-than-assembly applications, 
i.e., for the breakout of (solid) rock [64] where the 
anchor is initially fixed. In the tested breakout an-
chor, the bearing area of the undercut head is not 
perpendicular to the pullout load of the anchor, 
but is inclined at an angle β (see Figure 3).

Since the primary focus of the studies report-
ed in the preceding paragraphs was on the effect 
of different diameters of the cylinder of headed 
studs (such as in [40] or Fig. 1), they do not ful-
ly explain the impact of the undercutting head 
diameter of the breakout anchor (Fig. 4) failure 
surface of the base material (including the fail-
ure cone angle α) where the anchorage is fixed. 
This factor may greatly alter the assumed break-
out prism volume and, consequently, distort the 

a)

b)

Fig. 2. The effect of anchor head width on the failure cone formation – a) and the 
change in the pullout force as a function of its displacement – b), based on Furche [59], 

s – the head displacement in the hole at failure load, r – radius of the failure cone base on 
the free surface of the rock, a – the width of the bearing area of the anchor head
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calculations presenting the efficiency of the pro-
posed method of detachment [37,64]. Hence, in 
order to address the knowledge gap, FEM nu-
merical computations were involved. The results 
from these are presented in the following chap-
ters of this study.

MATERIALS AND METHODS

In an effort to explain how the application 
of undercut anchors of varying diameter affects 
the assumed surface of detachment (described by 
the failure cone angle α), it was initially estab-
lished that only the following diameters would 
change: d (the diameter of the anchor hole) and 
D (the maximum undercut head diameter of the 
installed anchor), at a constant D/d ratio. It fol-
lows from the assumptions that the angle of the 
undercut head β is a constant value in all analyzed 
cases (β = const.). The adopted dimensions d and 
D were characteristic for the considered under-
cut anchors (e.g., HDA-P Hilti anchor [4]) in the 
nominal range of dimensions M12, M16, and 
M20. Hence, the dimension d was equal to d = 
22, 30, and 37 mm respectively. For the angle β = 
const. = 20°, the dimension D is then D = 36.91, 
44.91 and 51.91 respectively. Given the above as-
sumptions, the mechanical model of the rock with 
the anchor hole adopted for simulations is shown 
in Figure 5. It is a flat axially-symmetric model, 
with the axis of symmetry along the anchor axis. 
The effective embedment depth was equal to hef 
= 50 mm. The computations were performed us-
ing the FEM ABAQUS v.2022 software and its 
XFEM algorithm. Based on previous tests, the as-
sumed surface of detachment on the free surface 
of the rock was approximately 3hef. The dimen-
sions of the base material model are the follow-
ing: R = 500 mm and H = 300 mm.

The anchor head-rock contact area (the 
conical part of the undercut head (Fig. 6) was 

Fig. 4. Assumed influence of the undercut head diameter on the rock breakout 
anchor performance: D1, D2 – maximum head diameter, d1, d2 – diameter of the 

anchor hole, α1 α2 – assumed failure cone angle, β – undercut head angle.

Fig. 3. The undercut/breakout anchor head: 
R, – anchor behavior in contact with the rock, 
β – angle of the cutting head, D – max. anchor 

diameter in the undercut, d – the diameter 
of the pre-drilled hole for the anchor,
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defined as the “Penalty contact,” derived from 
the ABAQUS library. The assumed coefficient of 
friction of steel against the rock (in the contact 
area) amounted to μ = 0.2. The kinematic excita-
tion of the anchor was applied along its Y axis. 
The anchor axis restraints, resulting from the 
model’s symmetric boundary conditions, were as 
follows: nodes on the right edge U1 = 0 (deprived 
of all degrees of freedom in the OX axis), nodes 
in the model base U2 = 0 (deprived of all degrees 
of freedom in the OY axis).

Material properties of the rock model: 
Young’s modulus – 14,275 MPa, Poisson’s num-
ber – 0.247, Failure mode – Max Principal Stress 
equal to ft = 7.74 MPa (ft – tensile strength of the 
rock), Fracture Energy – 0.355. Stabilization fac-
tor 1E-06. Anchor model: Steel – material: Elastic, 
Isotropic, Elastic Modulus – E = 210,000 MPa, 
Poisson’s Ratio – ν = 0.3.

The finite element mesh of the model al-
lowed for local densities. The global linear di-
mension of elements was 25 mm, in the contact 
area with the anchor – 2 mm, at the upper edges 
of the solid – the dimensions of the elements 

vary from 3 to 10 mm, the line of the assumed 
fracture – 5 mm. The mesh was generated with 
the use of elements available in ABAQUS, such 
as Axisymmetric Stress, linear, Reduced inte-
gration, four-node mesh, and the element type 
CAX4R. The FE mesh for the rock base material 
itself is illustrated in Figure 7.

RESULTS

Selected results from the numerical com-
putations are shown in Figures 8÷9. Figure 8 
demonstrates that the stress concentration σmax 
is located in four areas of the model, i.e., the 
anchor head-rock contact area (compression), 
the area below the anchor in the model axis 
(tension), and the tensile stress in the area 
above the undercut and around the anchor hole 
can lead to propagation of radial cracks in the 
rock. What can be observed in the crack tip 
region is the typically strong concentration of 
tensile stresses that lead to fracture propaga-
tion at the crack tip.

Fig. 6. Model boundary conditions, the location of the anchor head-rock contact area, 
and the kinematic excitation of the anchor head along the model’s OY axis

Fig. 5. Rock: a geometric model; H, R – model dimensions, hef – effective embedment 
depth, β –undercut head angle, d, D – considered characteristic head diameters
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Fig. 7. The finite element mesh of the rock model with an undercut 
for the anchor head (the head model mesh turned off)

a)

b)

c)

Fig. 8. Distribution of σmax stress in the anchor head contact area. Anchor head diameter D equal 
to: a) 36.91, b) 44.91 c) 51.91mm (i.e., for M12, M16, and M20 anchors, respectively)



267

Advances in Science and Technology Research Journal 2022, 16(5), 261–270

In the considered cases, the crack propaga-
tion angle α at the initial phase amounted to ap-
proximately 22° relative to the free surface (or 
the plane perpendicular to the axis of the anchor), 
which is illustrated in Figure 9.

The failure mechanism that was recorded for 
the tested anchors in the numerical modeling tests 
above is confirmed by the one generated from the 
model of the anchor head impact on the rock base 
material presented below in Figure 10.

Due to the constants embedded in the model 
used in the simulation tests (i.e., the effective em-
bedment depth hef, the undercut head angle β, the 
D/d ratio, the length of the undercut head cone 
element l) and also given the fact that any altera-
tions in the value of D and d were balanced by 
the adjustment of the anchor head size, the ge-
ometry of the undercut in the rock remained un-
changed (and thus reflected the notch of constant 
geometric parameters). That is why, in the con-
sidered cases, neither the value of the angle θ nor 
the anchor head bearing pressure on the rock P 
were affected. As a result, the crack propagated at 
an angle corresponding to the failure cone angle 

α. The described breakout mechanism is similar 
to the mechanism accompanying the cutting of 
rocks with mining tools [65].

CONCLUSIONS

This paper reports on the results from the nu-
merical calculations that set out to determine the 
influence of different undercut anchor diameters 
on the failure surface of rock in pullout tests. The 
following constants were established: the under-
cut head angle β, the effective embedment depth 
hef, the cone element length, the rock friction co-
efficient μ, and the hole d, and the head diameter 
D ratio. Only the particular values ​​of parameters 
d and D were changed by simulating the opera-
tion of the undercut anchors (e.g., HDA-P Hilti) 
in the nominal dimensions M12, M16, and M20.

The investigations revealed that the change in 
the undercut anchor diameter (in practice, corre-
sponding to applying a larger size anchor from a 
given range of anchors) does not produce a signifi-
cant change regarding the failure cone angle α at the 
initial stage of crack propagation. Therefore, the as-
sumed volume of detached rock is not likely to vary 
between the considered anchor diameter variants.

Given the sheer number of factors that could 
potentially contribute to the final breakout effect 
(including the combination of mechanical param-
eters of the rock or the rock breakout technological 
process parameters). These findings must be then 
interpreted with caution because further analyzes 
and experimental verification tests are required.

Fig. 10. A simplified model of the anchor head 
impact: P – anchor head bearing pressure on the 

rock (including friction), Pn, Pt – normal and 
tangential components to the rock undercut surface, 

l – contact zone length (l = const.), β = const. – 
undercut head angle, θ – load direction in relation 

to the free surface of the rock base material, 
hef = const. – effective embedment depth

a)

b)

c)

Fig. 9. The crack propagation trajectory under the 
pullout of an anchor head of a diameter D:  
a) 36.91 mm, b) 44.91 mm, c) 51.91 mm 

(i.e., for M12, M16, and M20 anchors respectively)
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