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INTRODUCTION

Peristaltic pumps have a number of impor-
tant advantages: simple design, tight seal, self-
suction, ease of delivery rate control of the mix-
ture, and the ability of liquids transmission with 
a large number of solids. The devices are widely 
used in the mining and concentrating industry, 

construction, chemical, and food production, 
woodworking, and pulp, and paper industries, etc.

The creation of peristaltic pumps and meth-
ods of the rational choice of their parameters is a 
vital task. One of the up-to-date efficient ways of 
its solution is the adequate modeling of dynamic 
processes in these mechanisms. Currently, the ef-
forts of researchers are concentrated on solving 
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ABSTRACT
At present peristaltic pumps are widely used in many branches of industry and national economy. Simplicity of 
construction, processability and possibility of pumping liquids with big quantity of solid particles are the main 
advantages while using peristaltic pumps. Therefore development of methods of rational choice of parameters at 
designing of peristaltic pumps is the actual problem. To develop universal mathematical models of dynamic pro-
cesses in peristaltic pumps for definition of rational technical parameters. In dynamic processes we propose to use 
differential equations of motion in the Lagrange form, where the angle of rotation of the pump rotor is taken as a 
universal coordinate. Mathematical model of dynamic processes in peristaltic pump with hydraulic drive has been 
created on the base of differential equation. The function of resistance forces caused by gravity forces of mixture 
particles in the hose reel has been determined. On the basis of the non-linear model of the resistance forces to the 
flow of the fluid Bingham method of constructing the dependence of the pressure drop on the angular velocity of 
the rotor to determine the resistance forces to the flow of the fluid has been proposed. The result of dynamic pro-
cesses simulation is the determination of interrelationship of technological parameters of the device functioning: 
the velocity of the medium and pump performance is increasing at reducing the length of the diverting hose and 
reducing the height of its rise; a significant influence on the average speed has plastic viscosity of the environment; 
a significant change in the yield strength has an insignificant impact on the speed.
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individual tasks associated with the creation of 
new models of devices. These include, in particu-
lar, the tasks of a hydraulic control system mod-
eling and a high-torque hydraulic motor; assess-
ment of power consumption for the process of the 
mixture transportation and the discharge pressure 
that the pump must create; assessment of the mix-
ture uneven supply and the mixture motion speed 
at the outlet of the pipeline, etc.

Currently, there is a fairly large number of 
literature sources providing details of peristaltic 
pumps, which consider the design of pumps, their 
characteristics, and fields of application [1, 2]. At 
the same time, there are a limited number of stud-
ies devoted to the calculating theory of this type 
of pumps, dynamic processes modeling in them.

In work [3], the technological capabilities 
of the pump are being considered, in work [4], 
its hydraulic characteristics and the robot of the 
pressing rollers are being analyzed. Studies of the 
issue of the flow pulsations reducing of the mix-
ture which is pumped were considered in [1].

In work [3], the technological capabilities 
of the pump are being considered, in work [4], 
its hydraulic characteristics and the robot of the 
pressing rollers are being analyzed. Studies of 
the issue of the flow pulsations reducing of the 
mixture which is pumped have been considered 
in work [1]. One of the ways to reduce the pul-
sations can be the use of classical management 
methodology with a feedback mechanism [5]. In 
this case, however, a level decrease of pulsations 
leads to an increase in the injection pressure of 
the solution.

Otherwise, the level of pulsations can be re-
duced by increasing the number of pressure roll-
ers of the pump, however, this reduces the ser-
vice life of the working part of the hose in the 
pump housing [6].

The matter of fluid flow pulsation and opti-
mization of its parameters are studied in work 
[7]. The properties of the test medium, howev-
er, differ significantly from the properties of the 
mixture flow, which is being pumped by a hose 
concrete pump.

At the present, there are no models of dynam-
ic processes that would reflect the causes of the 
emergence of pulsations and make it possible to 
assess the irregularity degree of the mixture sup-
ply by a peristaltic pump to pipelines.

In the article [8], an axial piston motor is con-
sidered as a drive. A detailed mathematical model 
of the hydraulic system is presented, in which the 

pump is put into action by an axial piston pump, 
but the model does not take into account the effect 
of the mixture moving in the pipeline.

A mathematical model of a modern portable 
concrete pump is presented in work [9], but in the 
capacity of an executing mechanism in the given 
device a hydraulic cylinder is used.

A number of literature sources contain de-
tails about piston less peristaltic pumps [10, 11], 
where pump designs, their characteristics and 
fields of application are being considered. At the 
same time, questions dedicated to their origin, as 
well as calculating theory of pumps of this type, 
are presented very limitedly.

A mathematical model of dynamic processes 
in a peristaltic pump with a hydraulic drive is cre-
ated in work [12], in which the moving mixture 
is considered as Newtonian fluid. In many cases, 
however, mixtures are non-Newtonian fluids, in 
particular, Bingham plastic fluids [13–15]. In 
them, the shear velocity at each point represents 
some stress function at that point. The concept of 
an idealized Bingham fluid is convenient for prac-
tice, as a lot of real liquid mixtures are very close 
to this type: construction mixes, concrete mix-
tures, bitumen (in a certain temperature range), 
drilling fluids, oil paints, etc. Works [16–17] are 
dedicated to the flow researches of rheologically 
complex mediums. 

The basic apparatus of mathematical model-
ling of dynamic processes in the actuator based on 
axial piston hydraulic motors are precise methods 
of non-linear mechanics, which are based on fit-
ting solutions [18], describing adjacent intervals 
of actuator motion. These methods have made it 
possible to study in detail the complex dynamic 
process of a number of peristaltic pumping ma-
chines motions and to reveal their fundamental 
properties. However, the use of these methods 
to build mathematical models of a wide range of 
pumping systems based on a hydraulic drive is 
labor-intensive and limited in their area of appli-
cation, especially when the dimensionality of the 
systems increases, as well as the need to account 
for additional non-linear factors and the complex-
ity of the nature of perturbations from the action 
of non-periodic and random forces.

A generally recognized approach to model-
ing of fluid pulsations in pumping systems is the 
method of asymptotic representation of solutions 
in powers of small parameter [19] in the analysis 
of basic harmonic components of oscillations. It 
is based on the derivation of more usual relations 
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from their general mathematical description pass-
ing to spectral representations [17] and ideas of 
the equivalent linearization [20], but it does not 
allow finding an acceptable mathematical model 
for the vibration systems. This leads to necessity 
of development of new methods and approaches 
for development of the reference mathematical 
models of fluid motion dynamics for a wide range 
of peristaltic pumping systems.

The physical parameters of the energy car-
rier (working fluid) and design parameters of 
hydraulic drive [15], providing control of pump 
operation, have a great influence on increasing of 
speed, power capacity and compactness of peri-
staltic pumping machines. It leads to development 
of mathematical models in the form of systems of 
differential equations of motion of the hydraulic 
drive structural elements [21] on the basis of the 
synthetic dynamic model with the reduced coef-
ficients for the oscillating system. Practical real-
ization of the given approach is possible only for 
mathematical models mainly of low dimensional-
ity, and describes properties of objects in a nar-
row range of such working parameters change.

Experience shows that in order to overcome 
the above difficulties, it is necessary to set a new 
problem of mathematical modelling of irregular 
mixture feeding process and mixture velocity at 
the pipeline exit in spatially unsteady form, re-
quiring development of new more complete and 
adequate mathematical models based on the 
system of Lagrange differential equations of the 
second kind and non-linear model of resistance 
forces to mixture movement, being Bingham en-
vironment, obtained through Buckingham equa-
tion [10]. The question about the possibility of 
replacing the physical experiment with a numeri-
cal one using computer simulation methods re-
mains relevant.

 The article covers the presentation of the re-
search results on the creation of more advanced 
models of dynamic processes in peristaltic pumps, 
taking into account the fact that mixtures in many 
cases represent a Bingham medium [22] .

The purpose of the work is the creation of uni-
versal mathematical models of dynamic processes 
in peristaltic pumps with a hydraulic drive to de-
termine the technological qualities of devices, the 
choice of rational parameters. The models should 
contain the main parameters of pumps, drives, 
hoses, transferrable mixtures, which is due to the 
needs to modernize existing models and develop 
new models of peristaltic pumps [23, 24].

The models should contain the main param-
eters of pumps, drives, hoses, transferable mix-
tures, which is due to the needs to modernize 
existing models and develop new models of peri-
staltic pumps.

In the furtherance of this goal, the follow-
ing tasks must be solved: there was developed a 
method for forming the resisting moment on the 
pump rotor from the rollers that deform the hose; 
models were produced of friction forces that pre-
vent the movement of the mixture through the 
hose; an equation was obtained for the resistance 
forces conditioned by the gravitational forces of 
the mixture particles during its rise; a model of the 
hydraulic motor torque as an angular rate function 
of its rotor was built with the use of the catalog 
data; calculation studies of the consistent patterns 
of dynamic processes in the pump were conducted 
with the help of the developed versatile models.

As a research method for dynamic processes, 
it was suggested to use differential equations of 
motion written in the Lagrange form, at the con-
struction of which the rotation angle of the pump 
rotor is taken as a generalized coordinate. For 
calculation studies, the mathematical package 
MathCAD was applied.

MATHEMATICAL MODEL

The calculation model of the peristaltic pump 
is shown in Figure 1. Used symbols: d – a diam-
eter of a hose (internal); h – a hose wall thick-
ness; D – a hose diameter (outer); R – a radius 
of the pump housing along the inner wall; R1 – a 
radius equal to the distance between the centers 
of the rotor and the central roller; R2 – a radius is 
equal to the distance between the centers of the 
rotor and the side roller; RC – a radius of the axis 
of the hose bent part; d0 – a diameter of central 
and side rollers; α – an angle between central and 
side rollers; φ – the direction of the angle reading 
that determines the position of the rotor (which is 
counted from the vertical counterclockwise).

Building a dynamic model of the pump rotor 
requires the establishment of the dependencies of 
the force moments; applied to the rotor on its an-
gle of rotation. To form the moment of resistance 
forces from rolling the rollers along the hose, it is 
necessary to position angles that form segments 
connecting the mass centers of the roller and the 
rotor at the moment of the roller contact with the 
hose (Figure 2).
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With the help of the indicated scheme 
and obvious geometric relationships, we have 
for the angles:

iR
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 )2,1( i  
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In these formulas, the index i = 1 corresponds 
to the central roller, i = 2 – to the side one. Please 
note that the same by the module will be the an-
gles corresponding to the contact loss torque be-
tween the rollers and the hose.

The above considerations allow us to assert 
that the process of changing the resistance mo-
ment, which prevents the roller from rolling, when 
the rotor turns, includes three stages: an escalation 
in the hose deformation from the roller rolling; dis-
placement of the solution at the maximum hose de-
formation; reduction of the hose deformation when 
the roller “exits” contact with the hose.

For the preservation of the traditional form of 
representation of the maximum moment of resis-
tance forces:

kNfM тр  (2)

it appeared to be viable to attribute these three 
stages during the model development to the na-
ture of the change of the rolling friction coeffi  -
cient f k, and the normal component of the hose 
reaction (normal pressure force) N was accepted 
as constant. The dependence diagram of the fric-
tion coeffi  cient for the central roller is shown in 
Figure 3, when its maximum value is δ1 = 2 cm.

Similar diagrams for the left and right side 
rollers are shown in Figures 4, 5 when the maxi-
mum friction coeffi  cient is δ2 = 1 cm.

If we do not take into account the displace-
ment relative to the horizontal axis, the qualita-
tive character of the change in the friction co-
effi  cient in all three diagrams is the same. The 

Fig. 1. The calculation model of the peristaltic 
pump: 1 – pump shaft; 2 – frame; 3 – central 

(pressure) roller; 4 – side (pinch) roller; 
5 – appliance for changing the surface contact 

radius of rollers with a hose 6; 7 – fl uid medium; 
arc arrow indicates the direction of rotor rotation.

Fig. 2. A scheme to determine the angles 
of the roller contact with the hose

Fig. 3. Dependency of the rolling friction coeffi  cient 
of central roller from a roller turning angle

Fig. 4. Dependency of the rolling friction coeffi  cient 
of left roller from a roller turning angle
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displacements due to the fact that the left side 
roller “gets behind” the central one by an angle 
α, and the right one, respectively, “gets ahead” by 
an angle α. These piecewise linear functions are 
described analytically by the expression:
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The laws of change in the coeffi  cient of roll-
ing friction on the intervals of implementation 
and exit of the roller from contact with the de-
formed hose are assumed to be linear. This does 
not reduce the similarity of the proposed model: 
fi rstly, these intervals make up an insignifi cant 
fraction of the rotor complete rotation, so the ef-
fect of taking into account the nonlinear nature 
of this dependence will be insignifi cant; secondly, 
taking into account such a dependence, for exam-
ple, obtained by calculation or experimentally, at 
software implementation of algorithms does not 
present any diffi  culties. In Figure 6 is an auxiliary 
diagram explaining the conversion of the rolling 
resistance moment of the central roller Mтр1 to the 
rotor rotation resistance moment M.

In Figure 6: T1 – the driving force applied to 
the axis of the roller; T1′ – the force applied to the 
rotor (the modules of these forces are the same 
T1′ = T1); G1 – roller pressing force; N1, Fтр1 – re-
spectively, the normal reaction of the hose and 
the friction force acting from the side of the hose 
on the roller.

For the force applied to the rotor, taking into 
account (3), we have:
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Now the total moment of resistance on the 
rotor from the three rollers of the lower cage is 
based on formulas (3) – (5) (see Figure 1):

2
0

2
2

0

2
1

0

1
1

2

)(

2

)(

2

)(
)( 221 Rd

fG
Rd

fG
Rd

fG
M kkk 











  

2
0

2
2

0

2
1

0

1
1

2

)(

2

)(

2

)(
)( 221 Rd

fG
Rd

fG
Rd

fG
M kkk 











  

(6)

The two latter terms in formula (6) corre-
spond to the resistance moment from the left and 
right side rollers. The expression of the resistance 
moment from the rollers of the upper “leading” 
frame will diff er from (6) increased on π by the 
value of an argument:

)()( 12   MM  (7)

Then the total resistance moment on the rotor 
from the rollers rolling will be:

)()()( 21  MMMk   (8)

In Figure 7 are displayed diagrams of the to-
tal resistance moment and its components, when 
G1 = 100 N, G2 = 50 N. The technological char-
acteristics of the pump are signifi cantly aff ected 
by the forces of resistance to the mixture move-
ment in the hose. In the case of a Newtonian fl uid, 

Fig. 5. Dependency of the rolling friction coeffi  cient 
of side roller from a roller turning angle

Fig. 6. The resistance moment on rotor at rolling roller
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these forces were obtained in [12] with the use 
of the head (pressure) loss formula at a laminar 
fl uid fl ow in a round pipe of length l. The creation 
of more perfect models of dynamic processes in 
these devices requires taking into account the fact 
that in many cases mixtures are non-Newtonian 
fl uids, in particular, Bingham plastic fl uids. For 
them, the resistance forces obtain a non-linear 
character. This can be reached in the following 
way as shown in Figure 8.

It is known that for a laminar fl ow of a New-
tonian fl uid [13]:

dr
du   (9)

where: τ – the tangential shear stress displace-
ment at the radius r;
μ – dynamic coeffi  cient of viscosity;

dr
du

  – the derivative of the velocity in the 
direction of the radius (the shear rate of 
neighboring layers of the liquid – with in-
crease r speed decreases).

Points 1, 2 lie on a straight line perpen-
dicular to the velocity. Over time Δt, the points 
will shift by Δx1 and Δx2, respectively. The shift 

will be: 
r
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at a distance Δr are equal to 
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passing to the limit, we have:

dr
du

dt
d




 (10)

The minus sign in formula (10) is due to the 
fact that with increasing r the speed decreases 

0
dr
du

 . If we consider the direction counter 
clockwise to be the positive reference direction of 
the angle γ (see Figure 8), then we indeed arrive 
at formula (10). Taking into account (10), formula 
(9) takes the form:


   (11)

If the fl uid properties do not depend on time, 
then the rheological equation which connects the 
shear stress and shear rate, in the general case, 

Fig. 8. Building shear velocity dependence on friction stress

Fig. 7. The total resistance moment on the rotor Mk(φ), M1(φ), M2(φ) – 
resistance moments from the bottom and upper frame
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is written as [13]: )(τγ f= . For the flow in the 
pipe, taking into account (10), we have:

)(f
dr
du

  (12)

The equilibrium condition of forces which 
acts on a cylindrical fluid element of radius r and 
dyne L (see Figure 8) determines the expression:

,2 2 prrL   (13)

where:	 12 ppp −=∆  – differential pressure. 

From the last expression, it follows:
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For the friction stress on the wall, we obtain:
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and formula (12) is written as:
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Integration gives:
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By assuming the validity of the adhesion con-
ditions of the liquid on the wall (nonslip) 0)( =Ru , 
then from the last expression, it follows:
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drrurQ
R

)(2
0
   (20)

or


R

rdruQ
0

2 )()(  (21)

Since 0)( =Ru , and based on (19),  









R
rfrdu w)(   then integration by parts gives: 

 







R

w dr
R
rfrQ

0

2   (22)

Substituting from (16) 
w
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In the case of a Newtonian fluid for laminar 
flow, on the ground of (11):


 )(f  (24)

Substituting from (23), we get:
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and after integrating:
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Substitution τw from (16) leads to the well-
known Poiseuille equation for the laminar flow of 
a Newtonian fluid:

L
pRQ



8

4
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The flow curve for Bingham fluids is a 
straight line that intersects the shear stress axis at 
a distance τy from its origin as shown in Figure 9.

The yield stress τy is the limit, the excess of 
which leads to the appearance of a viscous flow. 
The rheological equation for Bingham plastics 
can be written as:
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where:	 μp– plastic viscosity or stiffness coeffi-
cient in shear;

	 f(τ) – discontinuous function:
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When flowing in a pipe, the friction stresses 
drop to zero on the axis, and in the near-axial re-
gion, where the shear stresses are below the yield 
strength τy, the material does not undergo shear, 
moving along the axis like a solid rod. The Bing-
ham fluid flow diagram is shown in Figure 10.

Substituting the expression f(τ) from (29) into 
formula (23) gives:
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By performing the integration, we find:
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Substituting into (31) the expression for τw 
from (16), we result in the relation known as the 
Buckingham equation:
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When the yield strength τy is zero, expression 
(32) coincides with the Poiseuille formula (27).

Formula (32) can be applied if 

L
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wy 2
∆

=<ττ . Then the movement of the medium 
will be possible at 

R
L

p yτ2
>∆ .

Therefore, the ultimate minimum value of the 
differential pressure:

R
L

p y2
min   (33)

there is no movement of the medium, 
consumption ( ) 0min =∆ pQ .

Now for the medium average velocity, we 
have, taking into account (32):

2ср

)(
R

pQv



  (34)

On the other hand, for the considered con-
struction of the peristaltic pump, as the average 
speed, it is feasible to take the expression:

,
2

0
1ср 






 

dRv  (35)

where:	ϕ  – pump rotor angular velocity.

Comparison of the right parts of formulas 
(34) and (35) allows us to write an expression for 
the angular velocity of the pump rotor:







 




2

)(
0

1
2 dRR

pQ


  

(36)

For the motion resistance force of the medium 
in the hose, there is an obvious formula:

2)()( RpF     (37)

Fig. 9. Flow curve for Bingham fluid Fig. 10. Bingham fluid flow diagram
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Expression (36) cannot be solved analyti-
cally with relatively, that is, get a dependency 

)(ϕpp ∆=∆ . However, modern mathematical 
packages, in particular MathCAD, make it quite 
easy to get around these difficulties by using the 
interpolation of tabulated functions. Cubic spline 
interpolation was used in calculation studies. An 
important circumstance, in this case, is that the 
functions obtained in this way in the MathCAD 
environment can be used as traditional ones, in 
particular, they can be analytically differentiated.

This version of the algorithm implementation 
is convenient. On an equally uniformly spaced 
grid of pressure drop values ( ph – step by pressure 
drops) pi hipp )1(min −+∆=∆ ),1( Ni =  by for-
mula (36), we calculate the corresponding values 
of the angular velocity iϕ . Now, considering iϕ  
as elements of the argument data vector (which 
should be put in order of ascending), and ip∆  as 
elements of the function value vector, by means 
of the built-in interpolation function, we build the 
required function )(ϕp∆ . In the MathCAD pack-
age, the function interp(s,x,y,t) is used for cubic 
spline interpolation.

It is worth noting that the suggested approach 
can be easily transmissible to any real liquids 
with a nonlinear flow curve.

The nature of the dynamic processes in the 
pump significantly depends on the height that the 
mixture raises. The construction of a dynamic 
model in the form of the Lagrange equation with 
respect to the rotor rotation angle assumes find-
ing a summarized force. It appeared to be con-
venient to take into account the effect of gravity 
forces of mixture particles as a component of the 
complete summarized force. The work of gravity 
forces of the mixture depends only on the differ-
ence in the heights of the hose ends. The shape 
of the hose between the extreme points does not 
matter, but the mass of the transferred mixture de-
pends on the length of the hose (proportionally 
to its length). Therefore, when deriving the indi-
cated expression, the hose can be assumed to be 
straight as shown in Figure 11. 

Then the elementary vertical displacement of 
the mixture is determined from the proportion:

0

0

l
H

R
z

C





 (38)

where:	
2
DRRC −= ,

	 CRHH 20 +=  – total height of the mixture;

	 H – lift height of the outlet section end 
of the hose;

	 2RC – lift height of the mixture in the 
pump housing;

	 CRll π+= 20  – the length of the hose in 
which the mixture is being lifted;

	 l2 – the length of the outlet section 
of the hose;

	 δφ – summarized virtual movement of 
the rotor (φ – rotor rotation angle).

Now for the virtual work and the summarized 
force, we can write the formulas:


00

0

0
00 MCM QR

l
HgMzgMA   

CM R
l
HgMQ

0

0
00

  
(39)

where:	 γπ
⋅⋅= 0

2

0 4
ldM  – the mass of the mix-

ture that rises;
	 γ – the density of the mixture;
	 g – acceleration of gravity.

To represent the moment of the hydraulic mo-
tor, the catalog data [25] was used. Characteristic 
dependences of the moment on the rotor speed for 
different hydraulic fluid consumption are present-
ed in Figure 12. Consumption rates in liters per 
minute (L/min) are indicated next to each curve. 
The heavy line marks the curve used in the calcu-
lation studies of the experimental device model.

In Figure 13 it is shown the result of its re-
structuring dependency on the moment from the 
rotor angular velocity.

Dynamic model of the pump

It is convenient to represent the model in the 
form of the Lagrange equation of the second kind 
[27, 28], using the angle of rotor rotation as a gen-
eralized coordinate ϕ :


QTT

dt
d










 (40)

where:	 ),( ϕϕ TT =  – kinetic energy of the system;
	 ),( ϕϕϕϕ QQ =  – summarized force.

To obtain a summarized force, we compose 
an expression for the virtual work of forces acting 
on a mechanical system:
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 







 CCkm R

l
HgMRFMMA

0

0
0)()()(   (41)

where:	 )(ϕmM  – moment of the hydraulic motor 
applied to the rotor;

	 )(ϕkM  – the total resistance moment on 
the rotor from the rolling of the rollers;

	 CRF ⋅− )(ϕ  – equivalent moment of resis-
tance, due to the resistance forces to the 
movement of the mixture in the hose (see 
formula (37)); 

	 CR
l
HgM

0

0
0−  – the equivalent moment of 

resistance due to the gravity forces of the 
particles of the mixture that rises (see 
formula (39)).

The expression in brackets of formula (41) is 
the summarized force:

CCkm R
l
HgMRFMMQ 

0

0
0)()()(),(    (42)

The kinetic energy of the rotor with rollers 
and the transported mixture:

3210 42 TTTTT   (43)

where:	 2
0 2

1 ϕIT =  – kinetic energy of the rotor
	 I – the total inertia moment of the pump 

rotors (together with clips) and the motor); 

	
2

11
2

1 2
1

2
1

1
ImvT C    – kinetic energy of 

the central roller ( 11
RvC ϕ=  – speed of 

the center of the central roller mass), 
	 m  – roller mass,
	 I1 – axial moment of the roller inertia, 

0
1

1
2
d
vC=ω – angular velocity of the cen-

tral roller);
	 2

21
2

2 2
1

2
1

2
ImvT C    – kinetic energy of the

	 side roller ( 22
RvC ϕ= – speed of the cen-

ter of mass of the side roller,
	

0
2

2
2
d
vC=ω – angular speed of the side roller);

	 22
3 2

1 CMRT    – kinetic energy of the mix-

ture ( γπ ldM
4

2

= – mass of the mixture).

From this perspective, formula (43) for the 
total kinetic energy of the system gives:

Fig. 11. Scheme for determining the generalized 
force for gravity forces when the mixture is lifted

Fig. 12. Dependence of the hydraulic motor on the rotational speed for various consumption of the operating fluid
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where:	 eI  – equivalent moment of inertia:
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1 242 Ce MRRR
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If the roller can be taken as a homoge-
neous cylinder, then 2

01 8
1 mdI    formula (45) 

is simplified:

  22
2

2
1 23 Ce MRRRmII   (46)

After performing the operations of the kinetic 
energy differentiation (44), the Lagrange equa-
tion (44), taking into account (46), takes the form:

),(    QIe   (47)

This is the differential equation of rotor mo-
tion, which is necessary to integrate with the ini-
tial conditions: at t = 0, 00 ==ϕϕ , 00 ==ϕϕ  .

The created multi-purpose arithmetic model 
of dynamic processes in a peristaltic pump under-
lying the algorithm implemented by means of the 
MathCAD mathematical package. Studies were 
conducted by means of the established program 
for the following values of the pump parameters: 
d = 5 cm; h = 1.5 cm; D = 8 cm; R = 32 cm; 
R1 = 23.7 cm; R2 = 21.8 cm; d0 = 10 cm; α = 30°; 
δ1 = 3.5 cm; δ2 = 2.5 cm; G1 = 500 N; G2 = 250 N; 

l1 = 1 m; l2 = 10 m; μ = 4 Pa ∙ s; g = 9.81 m/s2; 
m = 7.2 kg; I = 2.56 kg∙ m2; γ = 2300 kg/m3.

In Figure 14 are shown the time dependences 
of the motion speed of the building mixture for 
three values of the height end of the outlet section 
of the hose: H = 0; H = 2.5; H = 5m. The follow-
ing values of plastic viscosity and yield strength 
were used: µp = 10 Pa ∙ s, τy = 50 Pa, .

A height increase in the lifting leads to a de-
crease in the average motion speed of the mixture, 
and the ripple frequency (the rotor speed decreases). 
In this case, the fluctuation amplitudes change in-
significantly. There is a substantial impact of plastic 
viscosity and yield strength values on the mixture 
motion speed. With the same pump parameters for 
a Newtonian fluid with a dynamic-viscosity coef-
ficient μ = 4 Pa ∙ s, the average motion speed occurs 
to be approximately twice as high [12].

When constructing diagrams in Figure 15 
values of the yield strength were varied: τy = 0; 
τy  = 50 Pa; τy  = 100 Pa.

Some initial model parameters have been 
changed: μ = 4 Pa ; H = 0; l2 = 10m. Analysis of 
the graphs provides an opportunity to conclude 
that a significant change in the yield strength has 
little effect on the average velocity of the me-
dium. The plastic viscosity of the medium has a 
much greater influence on the average velocity.

Convincing confirmation of the last statement 
is the diagrams in Figure 16. Curves 2 and 3, in 
contrast to the corresponding curves in Figure 16 
were obtained for increased values of plastic vis-
cosity μ = 6 Pa, μ = 8 Pa ∙ s , which caused a 
significant decrease in the average motion speed 
of the medium.

Fig. 13. Dependence of the moment of the hydraulic motor on the 
angular velocity of the rotor (consumption 10 L/min)
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There was studied the effect of increasing the 
hydraulic motor power on the movement speed 
of the building mixture. The curve, which cor-
responds to the flow rate of the working fluid 
20 L/min, was previously rebuilt into the depen-
dence of the hydraulic motor moment on the ro-
tor angular velocity as shown in Figure 17, since 
this was done at a flow rate 10 L/min as shown in 
Figure 13.

Diagrams of the dependences of the mixture 
motion speed versus time for this case are shown 
in Figure 18.

When constructing diagrams, the values 
of plastic viscosity µ =  2 Pa ∙ s; μ = 4 Pa ∙ s; 
μ = 6 Pa ∙ s), yield strength (τy = 0 , τy = 25Pa, τy = 
50 Pa) were varied. For the mixture lifting height, 
the value was taken H = 5m ; other parameters 

were taken as in the calculations when construct-
ing the diagrams are shown in Figures 15, 16. 
The resulting diagrams show: that an increase in 
the power of the hydraulic motor leads to an in-
crease in the average motion speed of the mixture 
(≈1 m/s; curve 1); an increase in plastic viscosity 
significantly reduces the average velocity of the 
mixture (curves 2, 3).

CONCLUSIONS

A mathematical model of dynamic processes 
in a peristaltic pump with a hydraulic drive has 
been created in the form of a differential equa-
tion with respect to the rotor rotation angle. The 
model contains the major geometrical, mass 

Fig. 14. Mixture speed versus time (1 – H = 0; 2 – H = 2.5 m; 3 – H = 5m)

Fig. 15. Mixture speed versus time (1 – τy = 0 ; 2 – τy  = 50 Pa ; 3 – τy  = 100 Pa )

Fig. 16. Mixture speed versus time (1 – μ = 4 Pa ∙ s; τy  = 4 Pa ∙ s ; τy = 0; 
2 – µ = 6 Pa ∙ s; τy = 50 Pa; 3 – µ = 8 Pa ∙ s; τy  = 100 Pa)
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characteristics of the rotor, the dynamic charac-
teristics of the hydraulic motor, the hose param-
eters, Bingham media.

A method has been developed for forming the 
resistance moment to the rotation of the pump ro-
tor from the rollers that deform the hose; it was 
found that it is substantially different from the 
constant value on the interval of the turnover. 
This method is suggested for constructing the 
dependence of the pressure drop from the rotor 
angular velocity, which is necessary to determine 
the resistance force to the mixture movement by 
means of the Buckingham equation.

A nonlinear model of the force of resistance 
to the movement of the Bingham medium is pro-
posed. The resistance force is the result of the ac-
tion of the gravity forces of the mixture particles 
in the outlet part of the hose. Studies of dynamic 
processes have been performed by means of the 
created model. Important technological confor-
mities of device functioning were established: the 
motion speed of the medium can have a signifi-
cant variable component; the motion speed of the 
medium and the pump capacity increase with a 

decrease in the length of the outlet hose and a de-
crease in the height of its rise; the plastic viscos-
ity of the medium has a significant effect on the 
average velocity; a significant change in the yield 
strength has an effect on the speed insignificantly.
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