
INTRODUCTION

Epilepsy is a pathological condition that 
appears because of abnormal electrical activ-
ity in the brain [1]. It is one of the significant 
issues affecting approximately 65 million 
people worldwide, comprising 1% of the world 
population [2]. The incidence of epilepsy is 
estimated at 174 per 100,000 individuals in 
Arab countries. The prevalence of epilepsy in 
the Kingdom of Saudi Arabia is 6.54 per 1,000 
individuals [3]. However, medical care services 
are not available to one-third of epileptic pa-
tients. They must find ways to live and man-
age their everyday lives. The quality of medical 
treatment is not up to the mark even if the 
medical care services are available to epilep-
tic patients [4]. Diagnosis and treatment of 
epileptic patients depend on the type of sei-
zures [4]. Electroencephalography (EEG) re-
cording is one of the techniques neurologists 
use to analyze the abnormalities of brainwave 
functions. It has been widely used for many 
years to diagnose the brain conditions such as 

sleep disorders, dementia, epilepsy, etc., [5]. 
A standard EEG examination lasts approxi-
mately 20 to 30 minutes. This period is not al-
ways sufficient to record seizures for patients. 
Fifty percent of the patients need to conduct 
several EEG sessions in their initial diagnosis. 
It may take many hours to several days, mak-
ing the EEG test incredibly costly [6]. The EEG 
recording is analyzed manually by a qualified 
physician to finalize the diagnosis.

Additionally, the perception of the EEG pri-
marily depends on the reader’s subjective evalu-
ation, which may miss events or leads to misdi-
agnosis [6]. In this context, many existing stud-
ies in the literature applied the Machine Learn-
ing techniques to classify the abnormality in the 
EEG data [7, 8, 9]. A clinical decision support 
system based on Machine Learning algorithms 
to perform the EEG interpretation task can as-
sist the neurologists in accelerating the diagnosis 
process. Epilepsy is a symptom of many neuro-
logical disorders. Several studies define epilepsy 
as a brain disorder with frequent seizures, which 
appears in various forms and symptoms. It could 
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be in the form of repeated or constant motor ac-
tivity in a specific area or all parts of the body [10, 
1, 4, 2]. Epilepsy is generally diagnosed after at 
least two seizures not caused by an existing phys-
ical issue, such as low blood sugar or medicine 
[11]. Seizures are a sudden disturbance of elec-
trical activity in the brain that causes abnormal 
and unbalanced movements without the pa-
tient’s consciousness [5]. These movements may 
occur as muscle spasms, muscle contractions, 
muscle relaxations, or frequent limb vibrations.

In epilepsy, a seizure may also appear in the 
changes in the sensations or enhance autonomy 
nervous system function. If seizures occur from 
a particular region of the brain, they may be visi-
ble in the motor function controlled by that brain 
region [3]. For example, in the brain area that 
controls the movement of the thumb from the 
right side of the brain, a seizure can start when 
the left thumb or hand jerks. There are medical 
conditions having the symptoms similar to epi-
lepsy that make the diagnosis difficult. Patients 
may be required to do some tests, including 
Magnetic Resonance Imaging (MRI), Comput-
erized Tomography (CT), or Electroencephalo-
gram (EEG) test to ensure a correct diagnosis. 
EEG provides the potential cause of epilepsy 
and the seizure type of a patient [6]. The main 
focus of this study was to analyze the EEG data 
and predict the seizure types.

Seizures are classified into two broad cat-
egories based on the patient’s behavior during 
the seizure and the brain activity [11]. General-
ized seizures affect the entire brain and are also 
known as Grand-Mal convulsions. The patient 
usually loses his/her conscience and collapses 
during this kind of seizure. It starts with a gen-
eral body stiffening known as the Tonic phase, 
which generally lasts for 30 or 60 seconds. Then, 
the patient goes through violent jerking, known 
as the Clonic phase, which also lasts for 30 to 
60 seconds. Afterwards, the patient goes to deep 
sleep, which is a post-seizure phase. Injuries 
such as tongue biting and urinary incontinence 
can occur during Grand-Mal seizure.

Generalized seizures have six types: General-
ized Tonic-Clonic, Absence, Myoclonic, Clonic, 
Tonic, and Atonic. Each one of these types has 
different symptoms [12]. Focal or Partial seizures 
affect only one part of the brain, but sometimes 
spread into other brain lobes. Partial seizures have 
two types: Simple and Complex type. In a simple 
partial seizure, patients preserve their conscious-
ness, while during a complex partial seizure, pa-
tients lose their consciousness [13, 11]. This di-
versity of symptoms occurs due to the differences 
in the source of electrical activities in the brain.

Moreover, this diversity leads to the declas-
sification of the epilepsy type and misdiagnosis. 
An electroencephalogram (EEG) test identifies 

Fig. 1. Standard 10–20 system for electrode placement [14]
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abnormal brain activities and tracks patterns of 
the brain waves. Electrodes are placed on the head 
of the patient, and electrical signals are sensed 
through these electrodes. A physician decides 
whether the brain’s electrical activity is normal 
or abnormal by looking at the electrical activity.

Typically, the placement of electrodes follows 
the International 10/20 system, which is 21 elec-
trodes on the scalp are evenly distributed as seen 
in Figure 1, with the distance between electrodes 
is either 10% or 20% of the total distance from 
nasion (front) to inion (back) [14]. Each electrode 
begins with a letter corresponding to the region 
where the electrode is placed.

The frequency analysis of EEG signal shows 
five frequency bands: delta, theta, alpha, beta, and 
gamma [15, 16]. 

These frequency rhythms reflect the state of 
brain activity. Normal EEG of adults is consis-
tent and low amplification activity in the alpha or 
beta ranges. EEG also shows artifacts associate 

with eye blinks/movements and muscle artifacts 
[17]. Several distinct features should be present 
in EEG to characterize a seizure event: evolution, 
spike, or polyspic morphology of the slow-wave, 
rhythm, synchrony, continuity, and frequency. A 
seizure should have a duration of at least 10 sec-
onds and no longer than three seconds [17]. If 
there is a gap of more than 3 seconds, events are 
taken as two separate seizures. The most well-
known type of epilepsy is a generalized seizure, 
which covers a greater number of channels and 
areas of the patient’s skull, as shown in Figure 2. 
Figures 2(a) and 3(a) show normal EEG activity 
in all montages. Figure 2(b) shows the montages 
obtained from the EEG channels of a person suf-
fering from generalized seizure (GNSZ). It can 
be observed that abnormal EEG patterns are vis-
ible in most of the channels. In the case of non-
specific focal seizures, it covers a broad range of 
seizure etiologies. As such, it has a significant 
variation in appearance, length, and focal. The 

Fig. 2. Montages from EEG channels for a Normal person and person suffering from generalized seizure (GNSZ)

Fig. 3. Montages from EEG channels for a Normal person and person suffering from localized seizure (FNSZ)
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primary indicator of a non-specific seizure event 
is morphology (as shown in Figure 3). Figure 
3(b) shows the montages of a person suffering 
from FNSZ. In the case of localized seizures, 
having a focal point reflects as abnormal EEG 
patterns in few montages. 

Related Work

This section summarizes the use of the Ma-
chine Learning algorithms in the analysis of the 
EEG signals in epilepsy disorders. The main fo-
cus are the epilepsy feature selection methods, 
epilepsy seizure detection, and epilepsy predic-
tion strategies. Niknazar et al. [18] proposed the 
feature extraction strategies for automatic epilep-
tic EEG wave recognition, and various machine 
learning models were used to differentiate epilep-
tic seizure and non-seizure events. Decision Tree 
(DT), Support Vector Machine (SVM), Artificial 
Neural Network (ANN), and Nearest Neighbour 
(NN) classifiers are used in the study. One-dimen-
sional Local Gradient Pattern (1D-LGP) and Lo-
cal Neighbour Descriptive Pattern (LNDP) feature 
extraction strategies with ANN Classification al-
gorithm achieved an average classification accu-
racy of 99.80%. In another paper, Niknazar et al. 
[19] proposed early detection of seizure using the 
EEG data. Features are extracted from intracranial 
EEG waves obtained through intrusive pre-surgi-
cal epilepsy screening of the patients with drug-re-
sistant focal seizures. Time and space domain fea-
tures are obtained, and correlation analysis quanti-
fies the characteristics of the EEG indicators. Ictal 
states are distinguished from pre-ictal conditions 
successfully(p ¡ 0.01) [19]. Acharya et. [20] used a 
convolutional neural network comprising 13 lay-
ers and attained an accuracy of 90% on five sub-
jects. Yang et al. [21] proposed a novel feature ex-
traction technique called MinMaxHist to measure 
the topological patterns of EEG. They have used 
MinMaxHist features and other time-domain fea-
tures to classify the epileptic event. The classifica-
tion accuracy of 86% is achieved from 30 features 
while testing on patient-independent studies. The 
diversity of epileptic seizures makes it challenging 
to distinguish the sequence of epilepsy episodes 
from normal EEG. Wulandari et al. [22] consid-
ered the EEG signal spectrum characteristics to 
differentiate seizure and non-seizure disorders of 
epilepsy. A technology that could predict the onset 
of the seizure event can alert both the patient and 
physician, and the quality of life of the patient can 

be improved significantly. Deriche et al. [23] sug-
gested the features using Singular Value Decom-
position (SVD) of the EEG signal Time-Frequen-
cy matrix. These features can distinguish between 
regular and abnormal EEG traces (both ictal and 
interictal). They claimed the classification accu-
racy of more than 99% in binary classification on 
ten subjects only. Dash et al. [24] proposed an it-
erative filtering-based decomposition of EEG sig-
nals to improve the accuracy of seizure detection. 
Hidden Markov Model is used as a probabilistic 
classifier to detect the seizure event. The feature 
set includes power spectral density, time-domain 
features, dynamic mode decomposition power, 
variance, and Katz fractal dimension. The classi-
fication accuracy was about 99% on two datasets 
containing 40 subjects in total. Sharma et al. [25] 
used localized wavelet filter banks to detect the 
abnormal EEG signals. They have found a clas-
sification accuracy of 78% using an SVM classi-
fier. Ihsan Ullah et al. [26] trained an ensemble of 
one-dimensional convolutional neural networks to 
classify the normal and abnormal EEG patterns by 
majority voting. Classification accuracy based on 
10-folds cross-validation for two classes was 96% 
and 99% for three classes. Nkengfack et al. [27] 
proposed EEG rhythms decomposition-based Ja-
cobi polynomial transforms (JPTs) to extract vari-
ous time and frequency domain features. Relevant 
features were computed using linear discriminant 
analysis. Support vector machine classifier pro-
duced classification accuracy in the range of 97% 
to 100% for various experiments. Alickovic et al. 
[28] tried different combinations of pre-processing 
techniques, feature extraction, and classifiers on 
two EEG datasets. They have found that the Ran-
dom Forest classifier performed best on the sta-
tistical feature set extracted by applying wavelet 
packet decomposition. Classification accuracy for 
three-class problems was more than 99% for both 
datasets. Few works demonstrated the methodolo-
gies to predict the epileptic seizure onset ahead of 
time. Wei et al. [29] proposed a long-term recur-
rent convolutional network to predict the seizures. 
Convolution layers extract the deep features from 
the data, and long short- term memory (LSTM) 
layers learn the time sequences in the data. The 
model predicted the seizures with 93% accuracy. 
Usman et al. [30] pre-processed the EEG signal 
by empirical mode decomposition to remove the 
noise. Generative Adversarial Networks (GAN) 
generated more samples to deal with the class 
imbalance problem. Features are extracted from 
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CNN, and classification is done through LSTM 
units. The proposed method achieved an accuracy 
of 93% with an average onset time of 32 minutes. 
Khan et al. [31] pre-processed the EEG signal us-
ing wavelet transform. After the pre-processing 
step, convolutional filters are used to learn the 
interictal, preictal, and ictal events. The preictal 
phase occurs about ten minutes before the start 
of the seizure. The CNN classifier identified the 
preictal stage with 87% accuracy. A similar work 
by Truong et al. [32] used a deep learning model 
(CNN) on intracranial and scalp electroencepha-
logram (EEG) datasets. They have achieved a 
sensitivity of 81% in predicting the preictal and 
interictal segments on these datasets.

MATERIALS AND METHODS

The EEG dataset of The Temple University 
Hospital (TUH) [34, 35] was used in this paper. 
The corpus is an open-source database [33] and 
contains scalp EEG signal recordings. The sam-
pling rate varies in the EEG recordings. A varia-
tion of 40 different channel configurations with 
sample frequency ranges from 250 Hz to 1024 Hz. 

The database contains two folders: Dev and Train. 
The data present in the Train folder were used. It 
covers eight types of seizures, as given in Table 1. 
The dataset includes a total of 2377 seizures from 
more than 200 patients. The folder (01_tcp_ar) 
from the train dataset folder was picked, which 
is the average reference configuration and anno-
tations use the TCP channel configuration. The 
details about the corpus can be found in [34, 35].

Pre-processing of EEG data

The sampling frequency is different for differ-
ent sessions. More than 90% of sessions are re-
corded with a sampling frequency of 250 Hz. All 
signals sampled on a sampling frequency different 
from 250 Hz are resampled to 250 Hz. Resam-
pling of the signal is done through a Least-squares 
linear-phase FIR filter design [36, 37]. Although a 
different set of channels are used in the sessions, 
all sessions include the International 10/20 system. 
After resampling all the sessions to one sampling 
frequency, the EEG signals are converted into a 
set of montages or differentials as described in 
Table 2. A total of 22 montages are extracted from 
the EEG channels measures in the 10/20 system.

Table 1. The details of Seizure Type in TUH database v1.5.2
Seizure Type Number of Seizures Percentage

Focal Non-Specific (FNSZ) 1536 65%

Generalized Non-Specific (GNSZ) 409 17%

Complex Partial (CPSZ) 283 12%

Absence (ABSZ) 50 2%

Tonic (TNSZ) 18 1%

Tonic Clonic (TCSZ) 30 1%

Simple Partial (SPSZ) 49 2%

Myoclonic (MYSZ) 2 0%

Table 2. Montages definition
Montage Differential of Channels Montage Differential of Channels

0 FP1-F7 11 CZ-C4

1 F7-T3 12 C4-T4

2 T3-T5 13 T4-A2

3 T5-O1 14 FP1-F3

4 FP2-F8 15 F3-C3

5 F8-T4 16 C3-P3

6 T4-T6 17 P3-O1

7 T6-O2 18 FP2-F4

8 A1-T3 19 F4-C4

9 T3-C3 20 C4-P4

10 C3-CZ 21 P4-O2
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Feature Extraction

Discrete Fourier Transform (DFT) transforms 
a time series from time-domain to frequency-
domain. The Fast Fourier Transform (FFT) is a 
computationally efficient way of computing DFT. 

Let x0, x1, ..., xN − 1 is a time series. The Dis-
crete Fourier Transform can be calculated by 
equation (1) as follows:

𝑋𝑋𝑘𝑘 = ∑ 𝑥𝑥𝑛𝑛𝑒𝑒−𝑗𝑗2𝜋𝜋𝑘𝑘
𝑁𝑁⁄

𝑁𝑁−1

𝑛𝑛=0
 𝑘𝑘 = 0,1, … , 𝑁𝑁 − 1 (1)

N-points FFT were applied on each of the mon-
tage signals and concatenated as a feature vector.

Methods to treat Data Imbalance

In many real-world applications, the normal 
class dominates the abnormal courses, and hence a 
bias in the classifier training produces poor classi-
fication performance. There are numerous publica-
tions handling the class imbalance problem. There 
are two ways to tackle this problem. Either the ma-
jority class is under-sampled to reduce the number 
of instances in the majority class, oversample the 
minority class to increase its instances, or both. The 
under-sampling methods may include a random se-
lection of instances, selection of instances based on 
some criteria [38, 39, 40], selection of borderline 
instances [41], considering the overlapping regions 
of minority and majority class belonging to the 
minority class [42], etc. In turn, the oversampling 
techniques for minority classes include Synthetic 
Minority Over-sampling Technique (SMOTE) [43], 
borderline SMOTE [44], Adaptive synthetic sam-
pling approach for imbalanced learning (ADASYN) 
[45], etc. In SMOTE, a minority class is selected 
randomly and finds K nearest neighbours of this 
instance. One neighbour is chosen randomly from 
these nearest neighbours, and a new instance is gen-
erated between the instance and the selected nearest 
neighbour. In turn, in the ADASYN algorithm, the 
number of synthetic instances generated depends 
on the instance that is difficult to learn. In border-
line SMOTE, only those instances from the minor-
ity classes are over-sampled near the classification 
boundary. A good survey can be found in [46].

Random Forest Classifier

Random Forest (RF) classifier [47] is a su-
pervised classifier based on an ensemble of deci-
sion trees. The ensemble of trees is training by 

the bagging method. Merging the classification 
of the ensemble of the decision trees improves 
the overall classification performance. Different 
hyper-parameters associated with the RF classi-
fier can be optimized to maximize the classifica-
tion accuracy. These parameters are the number 
of decision trees, the maximum number of fea-
tures to split the node, and the minimum number 
of leaves to split the node.

Performance Measures

The classifier performance can be expressed 
in terms of accuracy, precision, Recall, and F-
measure. Precision is defined as the number of 
truly positive instances (TP: True Positive) di-
vided by the total number of positive instances 
(including True Positive and False Positive).

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 (2)

Recall or Sensitivity is defined as the number 
of instances truly classified as positive (TP: True 
Positive) divided by the total Positive instances 
including TP and FN (False Negative).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 (3)

F-measure is the combination of precision 
and Recall and defined as:

𝐹𝐹 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 ×  𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑅𝑅𝑚𝑚𝑃𝑃𝑚𝑚𝑅𝑅𝑅𝑅
𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑚𝑚𝑃𝑃𝑚𝑚𝑅𝑅𝑅𝑅  (4)

RESULTS AND DISCUSSIONS

A window size of 10 seconds contains 2500 
data points. A 128-points FFT is applied to mu-
tually exclusive windows of 10 seconds in all 22 
montages, giving a feature set of 1430 points. Ta-
ble 3 shows the class distribution of all eight class-
es. Since the number of TNSZ, TCSZ, and SPSZ 
is very low, these three classes were ignored and 
only four classes were retained for classification. 
It is evident from table 3 that the Normal class 
dominates all other classes creating severe class 
imbalance. Therefore, it is essential to balance the 
class distribution before applying any classifier. 
First, the majority class was treated by under-sam-
pling this class and only important instances were 
kept. The under-sampling algorithm is described 
in Table 4. This algorithm is similar to the concept 



173

Advances in Science and Technology Research Journal 2021, 15(3), 167–178

of support vectors in the support vector machines. 
In the support vector machine, support vectors are 
calculated that are most important in the sense of 
decision boundary [70]. The algorithm finds the 
nearest neighbours of the majority class from the 
instances of the minority classes that lie near the 
decision boundary. These instances are near the 
decision boundary and play a crucial role in de-
ciding the classification boundary by the classifier.

Figure 4 shows the class distribution of 
four classes after applying the under-sampling 

algorithm. Although the majority class instanc-
es are reduced, it still dominates other classes 
(Normal 75%, GNSZ 7.9%, FNSZ 14%, CNSZ 
3.1%). Random Forest classifier is applied to 
the dataset, and performance of the classier for 
10-folds cross-validation is listed in Table 5 as 
Precision, Recall, F-measure, and area under the 
ROC (AUC). The normal class has shown high-
er values for precision (0.84) and Recall (0.992) 
but a low AUC value. The same is true for other 
classes. The Recall values for GNSZ, FNSZ, 
and CNSZ are meager, showing the poor per-
formance of the classifier in recognizing these 
classes. Table 6 shows the confusion matrix for 
all four classes. It is evident from the table that 

Table 3. Distribution of Classes
Class Instances Percentage

Normal 161886 94.95

GNSZ 2596 1.52

FNSZ 4696 2.75

CNSZ 1051 0.62

TNSZ 173 0.10

TCSZ 52 0.03

SPSZ 36 0.02

Table 4. Under-sampling Algorithm for Majority Class
Algorithm Under-sampling Algorithm

Inputs

M Majority Class

Ci Minority Classes

K Number of Nearest Neighbors

Ø List of important Majority Class instances

KNN Function to find K-nearest neighbors

Step 1 for i=1 to number of minority classes

Step 2 For j=1 to instances in class Ci

Step 3
For each instance j in Class Ci find K 
nearest instances in Majority Class M 

using function KNN

Step 4 Put K instances in Ø

Step 5 end j

Step 6 end i

Step 7 Remove redundant instances from Ø

Outputs: Under-sampled Majority Class Ø

Fig. 4. Distribution of the Classes after 
under-sampling the majority class

Table 5. Performance analysis of random forest classifier on an under-sampled dataset
Class Precision Recall F-Measure AUC

Normal 0.814 0.992 0.894 0.474

GNSZ 0.891 0.446 0.595 0.612

FNSZ 0.938 0.204 0.335 0.407

CNSZ 0.978 0.430 0.597 0.642

Weighted Average 0.842 0.823 0.784 0.480

Table 6. Confusion matrix of random forest classifier on an under-sampled dataset
Class Normal GNSZ FNSZ CNSZ

Normal 25132 139 47 10

GNSZ 1423 1158 15 0

FNSZ 3738 2 956 0

CNSZ 598 0 1 452
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many instances of minority classes are confused 
with the majority class of Normal. Due to this 
reason, the Recall values of these classes are 
low. The overall classification accuracy is 82%.

In order to reduce the class imbalance further, 
oversampling algorithms are applied to the minor-
ity classes. Over-sampling algorithms are used to 
create additional instances of minority classes. In 
this paper, two algorithms were tried, SMOTE and 
ADAYSN. The new 16000 instances are created 
for three minority classes (GNSZ, FNSZ, CNSZ) 
using SMOTE algorithm. The distribution of all 
four classes after oversampling through SMOTE 
is plotted in Figure 5. The number of instances 
in each class shows that now all the classes have 
almost equal number of instances.

Random Forest is applied to this over-sampled 
dataset, and the performance of the classifier is ob-
tained by ten-fold cross-validation. Table 7 explains 
the performance of the classifier of the new dataset.

Precision and Recall for all the classes are 
above 90%, which shows better classification 
than the dataset before oversampling. Overall 

classification accuracy is 96%. The RF classi-
fier showed excellent performance on minority 
classes as well. A weighted average of Preci-
sion and Recall is 0.96, and AUC is 0.996. The 
confusion matrix in Table 8 shows that there 
are still few instances that are confused with 
Normal Class.

Similarly, few instances of the Normal class 
are also confused with other classes. The CNSZ 
class has the least number of instances confused 
with other classes, whereas many instances of 
the Normal class are confused with the FNSZ 
class. Oversampling the minority classes im-
proved the ability of the classifier to find the 
best decision boundary among all the classes. 
Hence, the random classifier trained on an over-
sampled training dataset helps optimize the 
classifier parameters.

The adaptive synthetic (ADASYN) over-
sampling method is different from SMOTE as 
ADASYN uses the density distribution informa-
tion to generate new instances. It can also com-
pensate for the skewed density distribution of the 
classes. Hence, ADASYN is used to over-sample 
the minority classes, and the performance of the 
random forest classifier is compared to the perfor-
mance of the random forest classifier trained on 
an SMOTE-based over-sampled dataset.

Random Forest classifier is applied to the 
over-sampled dataset, and performance measures 
are tabulated in the Table 9 for ten-folds cross-
validation. Precision, Recall, F-measure, and 
AUC for all the classes are similar to the perfor-
mance of the RF classifier on the over-sampled 
dataset by SMOTE. The overall classification ac-
curacy is 96.2%. The confusion matrix for all four 

Table 7. Performance analysis of random forest classifier (Over-sampled by SMOTE)
Class Precision Recall F-Measure AUC

Normal 0.945 0.910 0.927 0.988

GNSZ 0.969 0.975 0.972 0.998

FNSZ 0.937 0.966 0.951 0.997

CNSZ 0.995 0.998 0.997 1.000

Weighted Average 0.960 0.960 0.960 0.996

Table 8. Confusion matrix of Random Forest classifier (Over-sampled by Smote)
Class Normal GNSZ FNSZ CNSZ

Normal 23045 673 1518 92

GNSZ 468 22115 109 0

FNSZ 831 34 24523 4

CNSZ 35 0 9 21058

Fig. 5. Distribution after Over-sampling 
Minority Classes using SMOTE
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classes is illustrated in Table 10. It is evident from 
the table that more instances of Normal class and 
FNSZ class are confused with each other. Ta-
bles 7 and 9 presents classification results when 
two different types of over-sampling methods 
(SMOTE and ADASYN) are used. Both over-
sampling methods have shown similar results, 
and ADASYN based over-sampling is slightly 
better than SMOTE. 

CONCLUSIONS

This paper focused on classifying various 
types of seizures from the healthy brain elec-
trical activity using EEG data. It is essential to 
diagnose abnormal brain activity and the type 
of seizures affecting brain activity. Three types 
of epileptic seizures were considered and suc-
cessfully classified against regular brain electri-
cal activity. As of many real-life scenarios, the 
number of epilepsy patients is few as compared 
to healthy subjects. Therefore, the healthy class 
(a person with normal EEG) dominates the 
seizure classes in terms of the number of in-
stances.  The majority class was under-sampled 
by an under-sampling algorithm, and minority 
classes were over-sampled by two algorithms 
before applying the Random Forest Classifier. It 
is evident from the results that the Random For-
est classifier was able to classify all four classes 
with an average classification accuracy of more 
than 96%. Future directions of this research in-
clude adding more seizure types and improv-
ing the classification performance in a broader 
range of seizure types.
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