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ABSTRACT
The paper deals with approximations of random sums. By random sum we mean a 
sum of random number of independent and identically distributed random variables. 
Distribution of this sum is called a compound distribution. The model is especially im-
portant in non-life insurance. There are many methods for approximating compound 
distributions, one of the most popular one is approximation with shifted gamma dis-
tribution. In this work we show an alternative way – using kernel density, Fast Fourier 
Transform and numerical optimization methods – for finding shifted gamma approxi-
mations and show results suggesting its superiority over classical method.

Keywords: random sums, Fast Fourier Transform, shifted gamma distribution.

INTRODUCTION

One of main problems in actuary science, 
which can be very clearly interpreted in the area 
of insurance, is approximation of random sum of 
random variables [2, 8]. Formally speaking, let:

Y1, Y2, Y2, ...

be a sequence of identically distributed random 
variables, with distribution function FY and let N 
be a random variable taking values in the set {0, 
1, 2, ...}. Moreover, assume that:

N, Y1, Y2, Y2, ...

are defined on the same probability space and are 
independent. Then we define sum X as:
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independent. Then we define sum  as 

 (1) 

with the convention, that the sum equals  

whenever . 

Now if we think of each  as a possible 

claim in some insurance framework, and if we 

treat  as a number of claims in given time 

interval, then the distribution of  is the 

distribution of total claims. 

Throughout the rest of the paper, we will 

assume, that  is continuous and concentrated on 

. In that case,  has the same properties. 

By distribution function  of a random 

variable  we mean a function, that for any real  

is calculated as 

 

It is clear, that , for  described by (1), 

can be expressed in terms of  and  , namely 

 (2) 

where 

 (3) 

for  and  is the distribution of random 

variable taking value  with probability . 

Formulae (2) and (3) show why it is not in 

general possible to obtain  analytically, even if 

	 (1)

with the convention that the sum equals 0 when-
ever N = 0.

Now if we think of each Yi as a possible claim 
in some insurance framework, and if we treat N as a 
number of claims in a given time interval, then the 
distribution of X is the distribution of total claims.

Throughout the rest of the paper, we will as-
sume, that Y is continuous and concentrated on 
(0, ∞). In that case, X has the same properties.

By distribution function FZ of a random vari-
able Z we mean a function, that for any real x is 
calculated as:

FZ(x) = Pr(Z ≤ x)

It is clear, that FX, for X described by (1), can 
be expressed in terms of FY and FN, namely
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        (3)

for k > 0 and F*0 is the distribution of random 
variable taking value 0 with probability 1.

Formulae (2) and (3) show why it is not in 
general possible to obtain FX analytically, even if 
one has both FN and FY. The real-life situation is 
even worse, because one has only samples, not FY.

Knowing a good approximation of FX is crucial 
for insurer calculating optimal premium [12]. Dis-
tribution of X is known as compound distribution. 
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PROPERTIES OF COMPOUND 
DISTRIBUTION

It is generally accepted to assume FN is known 
– or at least known is the class of distributions 
from which FN is taken [9].

There are many factors suggesting such an as-
sumption; one of them is theoretically and experi-
mentally confirmed property of Poisson distribu-
tion as a distribution for “rare” cases, what ideally 
fits the situation in non-life insurance.

So in this paper we will assume, that N has 
Poisson distribution. Poisson distribution has 
only one parameter λ, which can be approximated 
by average number of claims in unit of time, that 
is why in practice we can think of FN as known 
distribution.

Basic parameters of compound distributions, 
when N is Poisson with parameter λ are easy to 
obtain, if moments of F1 are known. Namely [8] 
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where:	 γ1 is skewness and γ2 kurtosis of random 

variable.

Example 1. Consider Yi having continuous uni-
form distribution in (0, 1) and let N be Poisson 
with λ = 15. On Figure 1 we have the density of 
compound distribution. Details of calculating 
density functions for compound distributions are 
given later. We can see that in spite of symmetry 
of all Yi, the distribution of X has positive skew-
ness, which is implied by positive skewness of 

Poisson distribution. In insurance practice usually 
also Yi are positively skewed, so in general we ex-
pect strong skewness of the distribution of X. In 
this example the skewness of compound distribu-
tion is about 0.33541, whilst γ1(Y1) = 0, γ1(N) = 

strong skewness of the distribution of . In this 

example the skewness  of compound 

distribution is about , whilst , 

. 

 
 

3. Approximation with shifted 

gamma distribution 

Having samples of claims one can easily 

estimate moments of  and . Together with (4)–

(7) basic parameters of  are to be estimated with 

no effort. 

Unlike in many other situations, where 

one-modal continuous distributions are 

approximated with normal distribution, here 

normal distribution is not suitable, since normal 

random variables have skewness equal zero. 

To obtain useful distribution with the same 

three first moments as  (and therefore the same 

expected value, standard deviation and skewness) 

one has to take simple three parametric one-modal 

distribution and it is common to consider shifted 

gamma distribution [8]. 

A random variable  is said to have shifted 

gamma distribution, if there are real parameters , 

 , , for which –  has standard gamma 

distribution with parameters , . In other words 

–  has density function 

 

The solution of equations leading to 

equality of first three moments of distribution of  

and shifted gamma distributions is as follows 

 (8) 

 (9) 

 
(10) 

However, there are many situations when 

this approximation fails. The main problem is, that 

kurtosis of such approximation always equals 

 which can be very far from real 

data, moreover, for too big value of skewness 

gamma distribution does not fit typical compound 

distribution. Therefore it is suggested (see [4]) that 

the approximation with shifted gamma 

distribution can be applied if 

 (11) 

 (12) 

The trouble with the above criteria is that it 

is very hard to estimate , since according to 
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normal with mean  and standard deviation . 

Since for -th moment of log-normal distribution 

we have formula 

 

then we calculate . 

Now generate – in statistical R software 

(see [10])  – 1000 samples from log-normal 

distribution with 
> n = 1000; mu = 0; sigma = 1 

> set.seed(1) # to reproduce later 
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 ≈ 0.258199.

APPROXIMATION WITH SHIFTED 
GAMMA DISTRIBUTION

Having samples of claims one can easily esti-
mate moments of Y1 and λ. Together with (4)–(7) 
basic parameters of X are to be estimated with 
no effort. Unlike in many other situations, where 
one-modal continuous distributions are approxi-
mated with normal distribution, here normal dis-
tribution is not suitable, since normal random 
variables have skewness equal zero.

To obtain a useful distribution with the same 
three first moments as X (and therefore the same 
expected value, standard deviation and skew-
ness) one has to take simple three parametric one-
modal distribution and it is common to consider 
shifted gamma distribution [8].

A random variable  is said to have a shifted 
gamma distribution, if there are real parameters 
α, β, x0, for which (Z– x0) has standard gamma 
distribution with parameters α, β. In other words 
(Z– x0) has density function:
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However, there are many situations when this 
approximation fails. The main problem is that 
kurtosis of such an approximation always equals   
1.5·(γ1(X))2 which can be very far from real data, 
moreover, for too big value of skewness gamma 
distribution does not fit typical compound distri-
bution. Therefore, it is suggested (see [4]) that the 
approximation with shifted gamma distribution 
can be applied if:

Fig. 1. Density function of compound distribution 
from example 1 
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is very hard to estimate γ2(X), since according to 
(4)–(7) we have to estimate E(Y1

4) which – for 
skewed distributions – cannot be reliably approx-
imated unless sample is extremely big.
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μ = 0 and σ = 1, that is lnY1 is normal with mean 0 
and standard deviation 1. Since for k-th moment of 
log-normal distribution we have a formula:
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then we calculate E(Y1
4) ≈ 2980.96.

Now generate – in statistical R software (see 
[10]) – 1000 samples from log-normal distribu-
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> n = 1000; mu = 0; sigma = 1
> set.seed(1) # to reproduce later
> samples = rlnorm(n, meanlog = mu,
+ sdlog = sigma)
> mean(samples^4)
[1] 4706.422

The obtained estimation of 4-th moment is 
much bigger than the true value. And for another 
sample of the same size from the same distribu-
tion we have:
> set.seed(2) # to reproduce later
> samples = rlnorm(n, meanlog = mu,
+ sdlog = sigma)
> mean(samples^4)
[1] 791.0706

and the obtained value is much smaller than the 
true 4-th moment. Thus we see that even a reason-
ably big sample may fool us about 4-th moment 
of distribution.

CALCULATING DENSITY OF COMPOUND 
DISTRIBUTION WITH FAST FOURIER 
TRANSFORM

If the distribution of Y1 is known, then there 
exist – using nowadays computer technology 
– quite an easy way to obtain an approxima-
tion of the density function of X. Namely, if φZ 
is the characteristic function of Z, that is φZ(t) = 
E(exp(itZ)) (where i is the imaginary unit) and 
PN is the probability generating function, that is 

PN(x) = E(xN) for N taking only non-negative in-
teger values, then, in terms of previous sections:
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Let us generate sample with 
> n = 200; mu = 0; sigma = 1 

> set.seed(1) 

> samples = rlnorm(n, meanlog = mu, 

for N Poisson with parameter λ, the whole proce-
dure described above may be scripted as one-liner 
in R language.

Example 3. In this example we illustrate effec-
tiveness of approximation with shifted gamma 
distribution. Say, we have n = 200 samples from 
log-normal distribution with parameters μ = 0 and 
σ = 1, that is lnY1 is normal with mean 0 and stan-
dard deviation 1.

Let us generate sample with:
> n = 200; mu = 0; sigma = 1
> set.seed(1)
> samples = rlnorm(n, meanlog = mu,
+ sdlog = sigma)

Let us assume for a moment that we have only 
these data. Let us assume that from some other 
considerations we fixed the frequency of claims 
parameter λ equal 15. 
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Having samples of claims and parameter λ we 
can of course calculate estimations of E(Y1

k), for  
k = 1, 2, 3, 4 and – using (4)–(7) – we can find es-
timations of EX, y1(X) and y2(X). Then, with equa-
tions (8)–(10) we find α ≈ 9.3403, β ≈ 0.32337 
and x0 ≈ –4.6347.

Moreover, left side of (11) is about 0.654 and 
left side of (12) is about 1.27, so both (11) and 
(12) are fulfilled.

Now suppose we take p = 0.95 and we want 
to know what p-quantile of unknown distribution 
of X is. This is a common task, as it estimates with 
high probability maximum of total claims in given 
period. Of course it is to be found as p-quantile 
of shifted gamma distribution. In this example it 
equals about 41.345.

How does the latter figure compare to the 
p-quantile of real distribution of X? If we knew 
what is the distribution of Y1, we could calculate 
the distribution of X – with fft and ifft, and then of 
course calculate p-quantile which turns out to be 
about 43.905 so relative error of our estimation is 
about 5.8.

Well, that is only one p-quantile, what about 
the whole distribution? As usual, an image might 
be better than numbers. On Figure 2 one can see 
the density of compound distribution (the blue 
line, calculated with fft, knowing the distribu-
tion of Y1) and the density estimated with shifted 
gamma distribution based on samples (the red, 
dashed line).

Of course one set of samples is not enough, 
one might suspect some sort of coincidence. We 
repeat experiment analogous to example 3 – for 

seeds equal 1, 2, ... until we find  situations which 
fit (11)–(12) (during the process about 1/5 sets 
are rejected) – and calculate mean relative error 
that we have for different tail p-quantiles (and 
standard deviations of these errors). We use tail 
p-quantiles, (p close to 1) as these are the most 
important in the procedure of premium calcula-
tions. The results are summarized in Table 1.

Fig. 2. Comparison of true compound density (blue, 
solid) with its shifted gamma approximation (red, 

dashed) based on sample, see example 3

Table 1. Relative errors obtained when p-quantiles of 
true compound distribution are replaced by their ap-
proximations with shifted gamma distribution based 
on 200-element samples, with (8)–(10). Samples are 
from log-normal distribution with μ = 0 and σ = 1, for 
Poisson with λ = 15, averages are calculated after con-
sidering 1000 situations which fit (11)–(12)

p Average relative 
error [%]

St. dev. of relative 
errors [%]

0.90 8.1 5.8

0.91 8.2 5.9

0.92 8.3 5.9

0.93 8.4 6.0

0.94 8.6 6.1

0.95 8.8 6.2

0.96 9.1 6.3

0.97 9.5 6.5

0.98 10.1 6.8

0.99 11.3 7.4

NON-CLASSICAL SHIFTED GAMMA 
APPROXIMATION

In this section an alternative method for find-
ing approximation of compound distribution with 
shifted gamma distribution will be described. The 
motivation for this method may be found in the 
following example.

Example 4. Let us assume Yi are all log-normal 
with μ = 0 and σ = 1.1. Let N be Poisson with λ = 
15. The density of X (calculated with fft) is illus-
trated on Figure 3 – solid blue line (partly shad-
owed by green line).

After calculating EX, σ(X) and y1(X) we 
can find α ≈ 1.59097, β ≈ 0.0971156, and x0 ≈ 
11.0866 for approximation with shifted gamma 
distribution. The density of shifted gamma dis-
tribution for these parameters is pictured with 
dashed red line on Figure 3. As we see, the lines 
are far from fitting.

Now look at the green solid line at the same 
Figure 3. That also is the density of gamma dis- 
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tribution, this time with parameters α ≈ 3.88213, 
β ≈ 0.160105, and x0 ≈ 3.08835. This green line is 
very close to the line of true density of X.

In the example 4 it was not very hard to ob-
tain better than classical shifted gamma approxi-
mation, since we know the exact distribution of 
X (due to fft calculations) and we can minimize 
maximum of absolute value of differences be-
tween distribution functions.

In the real insurance work there is one more 
problem – we do not have distribution of Yi, only 
samples of values of Yi. The algorithm that we 
propose in this work is as follows:
1.	 Find approximation of density of Yi, basing on 

samples, let F be distribution function corre-
sponding to that density.

2.	 Basing on density from step 1, find approxi-
mation of distribution of X.

3.	 If by Fα,β,x0 we denote the distribution func-
tion of shifted gamma distribution with shape 
parameter α, rate parameter β and shift param-
eter x0, then find 

corresponding to that density. 

2. Basing on density from step 1, find 

approximation of distribution of . 

3. If by  we denote the distribution 

function of shifted gamma distribution with 

shape parameter , rate parameter  and shift 

parameter , then find ,  and  

minimizing 

 (14) 

And here are some explanations 

concerning above three steps. 

5.1. Density based on samples. 

To find an approximation of unknown 

distribution of claim size  based on samples 

 we use Gaussian kernel density 

estimation which approximates unknown density 

with mean of normal densities , 

where parameter  is selected according to 

method of Sheather and Jones [11]. 

5.2. Compound distribution based on 

density of claim size. 

In this step – as it was mentioned at the 

beginning of the paper – we assume that 

frequency of claims is Poisson with given 

parameter , and having calculated density of 

claim size we then proceed just in a way described 

in §4. 

5.3. Optimizing parameters. 

To minimize (14) we use general-purpose 

Nelder-Mead method [7]. This method needs 

starting point (in this case three-dimensional). Our 

proposition is to take a few starting points lying 

between parameters of classical shifted gamma 

distribution and parameters of gamma distribution 

with no shift (taking  – based only on mean 

and standard deviation) and choose the one giving 

best result. 
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And here are some explanations concerning 
the above three steps.

Density based on samples

To find an approximation of unknown distri-
bution of claim size Yi based on samples y1, y2, 

..., yn we use Gaussian kernel density estimation 
which approximates unknown density with mean 
of normal densities N(μ = yi, σ = h), where param-
eter h is selected according to method of Sheather 
and Jones [11].

Compound distribution based on density of 
claim size

In this step – as it was mentioned at the be-
ginning of the paper – we assume that frequency 
of claims is Poisson with given parameter λ, and 
having calculated density of claim size we then 
proceed with the algorithm using fft.

Optimizing parameters

To minimize (14) we use general-purpose 
Nelder-Mead method [7]. This method needs 
starting point (in this case three-dimensional). 
Our proposition is to take a few starting points ly-
ing between parameters of classical shifted gam-
ma distribution and parameters of gamma distri-
bution with no shift (taking x0 = 0 – based only on 
mean and standard deviation) and choose the one 
giving best result.

Example 5. In this example we fix μ = 0 and σ = 1,
generate n = 200 claims from log-normal dis-
tribution. If conditions (11)–(12) are not met, 
repeat generation. After successful generation, 
taking λ = 15 as frequency of claims we calculate 
exact distribution of X, classical shifted gamma 
distribution based on samples and non-classical 
gamma distribution based on samples. We then 
calculate chosen p-quantiles and calculate rela-
tive errors. The above procedure is repeated  times 
and average relative errors and their standard de-
viations are obtained. The results are summarized 
in Table 2.

CONCLUSIONS

The presented calculations and illustrations 
show that it makes sense to use an alternative way 
to find shifted gamma approximations of com-
pound distributions. Of course our novel method 
is much more cumbersome than the classical 
method, but calculating premium in real environ-
ment does not have to be done in seconds. 

The method still needs much more evidence, 
especially its usefulness for other types of dis-
tributions used for modelling claim size should 
be checked.

Fig. 3. Motivation for non-classical shifted gamma ap-
proximation: blue solid line is the density of compound 
distribution (Yi log-normal with μ = 0 and σ = 1.2, N – 
Poisson with λ = 15); red dashed line is the density of 
shifted gamma approximation obtained with (8)–(10); 
green solid line is another shifted gamma, apparently 
better fitting than the red one
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