
INTRODUCTION

Currently, the sheet metal parts are used in 
most of the branches of industry, such as auto-
motive, aerospace, household appliances, elec-
tronics, industrial machines, heavy duty ma-
chines etc., mainly for chassis and cases. For 
manufacturing of sheet metal parts there are 
many forming processes that can be used like: 
bending, deep drawing, hydroforming, roll 
forming, stretch forming or spinning, but two 
are the most common, namely: bending with 
deep drawing and the stamping. In order to re-
duce the cost of production, the manufacturers 
strive to reduce material consumption. Expen-
sive test rigs are replaced by cheaper and faster 
numerical simulations. However, the optimiza-
tion of the element design and the process of its 
forming, using numerical simulation requires 
knowledge of the material behaviour subjected 

to the specific load. Therefore researchers create 
a database in the form of, for example, Forming 
Limit Diagram (FLD) for the material [1÷3].

Currently, determination of FLD requires 
time-consuming and labour-intensive experi-
mental research. In practice, two types of tests 
are used (Fig. 1):
	• out of plane stretching- Nakazima et al. [4] 

and Hecker et al. [5];
	• in plane stretching - Marciniak et al. [6].

To induce a plastic deformation in the sample, 
both of these methods use piston which deforms 
the sample in a direction perpendicular to its 
plane. In Nakazima method (Fig. 1a), the sample 
forms a dome with a curvature of the spherical 
piston. In Marciniak-Kuczyński method (Fig. 2b) 
because of the special shape of the piston, the 
measuring area of the sample remains flat. Draw-
backs of these methods are primarily a multitude 
of sample shapes that are needed to be loaded and 
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friction between the sample and the piston, which 
has an influence on the results. Moreover, the de-
formations of the plate in mutually perpendicular 
directions, caused by the piston pressure, are geo-
metrically connected to each other.

Another promising method for determining 
the FLD of a material is the employment of cross-
shaped samples. Leotoing et al. [8] have shown 
that the superiority of this solution lies in the fact 
that the strain path in the gauge region can be real-
ized by controlling each arm separately using only 
one specimen geometry. Since the tested area of 
the material is suspended in space, the formabil-
ity can be studied without an additional friction 
which can influence the results. The correct shape 
of the sample is essential to achieve a high level of 
relative strains in the central region of the sample.

One of the methods to decrease the strength 
in the centre of the sample is thinning by milling 
the material from one or both sides of the speci-
men. Shao at al. [9] have developed the cruciform 
sample for FLDs under hot stamping conditions. 
The influence of thickness minimisation in the 
gauge area and slots in the arms of the sample 
were optimized to enhance the strain in the cen-
tre. Fracture in the desired area under the biaxial 
tensile loading was obtained by the appropriate 
cruciform’s dimensions elaborated with the use 
of Finite Element Method (FEM). Similar solu-
tion was introduced by Creuziger et al. [10], who 
was able to achieve a crack in the sample centre. 
However, the milling process in this case has an 
influence on the material characteristics.

An innovative sample’s shape was proposed 
by Karadogan et al. [11]. The centre of the sam-
ple was also milled, but contrary to Shao’s idea, 
prominent results were achieved without the slits 
on the cruciform arms. It was feasible by devis-
ing a defined area in which the thickness of the 
specimen was reduced. What is more, the regions 
subjected to multi-type plane stress states were 
discovered. Different sample configurations 
were examined by Song et al. [12] - one-stage 
or two-stage thickness reduction of the cruciform 
centre, slits on arms or their absence. By two 
stage milling of the sample gauge region, 9% of 
strain was reached. The Authors implemented an 
interesting methodology of defining the material 
forming limit strain at the fracture. The method 
consists in the observation of strain-rate increase 
and was described in their previous work [13]. 
Just before a fracture, a sudden strain-rate boost 
can be observed.

Similarly to other authors, in order to con-
centrate plastic deformations in the central part 
of the cruciform, thinning of the sample’s centre 
was used by Baptista et al. [14]. Two objective 
functions, namely: the maximal deformations in 
the required area and the uniformity of the rela-
tive deformation distribution, were used in the 
optimization. The established optimization area 
was relatively small, what significantly limited 
the possibilities of the results assessment. Smits 
et al. [15] have also contributed to the issue by 
the work which employed FEM to analyse the 
different shapes of samples, including the milling 

 
Fig. 1. FLD tests: a) Nakazima setup, b) Marciniak-Kuczyński setup [7]
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of the central region. Afterwards, Digital Image 
Correlation (DIC) method was used, enabling the 
evaluation of the strains during experimental con-
ditions in a reliable way. 

Hou at al. [16] developed a new method to 
strengthen the arms of ISO Standard cruciform 
specimen in order to increase plastic deformation 
in the desired region. The strength of the arms of 
cruciform sample was enhanced by a laser depo-
sition of thickening layers using materials com-
patible with the base metal. The obtained plastic 
deformation was reported to be as high as 11%. 
An optimized cruciform sample geometry to de-
termine the yield surfaces was proposed by Nas-
dala at al. [17]. The authors optimized the size 
of the slits, filet radius and the thickness of the 
gauge area. The obtained ratio between the maxi-
mum equivalent strains and the fracture strain 
was around 66% which is about 2.5 times higher 
as compared to the specimen shape designed ac-
cording to the ISO 16842 standard.

Upadhyay at al. [18] presented an approach 
to define the influence of different cruciform 
shape parameters on the strains reached dur-
ing the bi-axial stretching. The researchers used 
FEM analysis to verify six different cruciform 
specimen shapes. Based on the results they pro-
vided a guidelines to design a good cruciform 
sample: symmetric along all three directions, 
size of slit-widths similar to the gauge region 
thickness, sufficiently thin gauge area thickness 
to concentrate strains in the specimen centre. 
The general overview of the influence of the 
specimen’s shape on the strains in the central 
zone of the sample was presented by Lamkanfi 
et al. [19]. A generic approach with only four 
parameters was used. According to the sugges-
tion, cruciforms should have only one curvature. 
Another outcome of the work suggests that the 
best specimen’s shape should have one big inner 
radius on the arms. The importance of interac-
tion between sample’s arms and the way, how 
the load from the equipment is introduced into 
the specimen was underlined. What is more, the 
significance of minor changes in the cruciform’s 
design was confirmed.

The noticeable dependence between the 
stress uniformity and the proper shape of the 
sample was indicated by Hanabusa et al. [20]. 
The paper presents the guidelines for choosing 
the size of the gauge area in order to increase the 
accuracy of the measurement. Another FEM sim-
ulations in search of the adequate geometry of 

the cruciform have led Liu et al. [21]. Different 
solutions like: notches and radius to decrease the 
strains in the corners and thickness reduction to 
increase the values of strains in the centre, have 
been compared in the paper. An original guidance 
for designing the cruciform shape to increase 
the plastic strain in the centre was elaborated by 
Song et al. [12]. According to the Authors, the 
sample should have tapered arms, deep notches 
and reduced thickness in the central zone. Uni-
formity of strains in the central zone is also desir-
able and can be boosted effectively by forming 
slots in the arms. Moreover, Pereira at al. [22] 
indicated that in order to avoid an occurrence of 
shearing stresses in the cruciform sample which 
can significantly influence the results, it is neces-
sary to ensure the correct position of the grips, 
guaranteeing the specimen’s centering before 
starting the experimental procedure.

As presented above, there are multiple at-
tempts to achieve the highest strains in the gauge 
area, but still there is a lot of work to be done to 
improve the shape of cruciform samples for the 
biaxial tensile testing.

Therefore, the aim of the paper is to use the 
interesting specimen shape comparison method-
ology presented by Makris et al. [23] for a wide 
variety of samples geometry, chosen based on 
the literature research. As suggested by Liu et al. 
[21] the work was carried out on flat specimens 
to avoid the unfavourable influence of the mill-
ing process of the measurement area. Two types 
of samples were chosen according to Lamkanfi 
et al. [19] - sample with two curvatures, denoted 
as sample C in our specimens tests group and 
sample D which was characterized by one big 
inner radius on the arms. Based on the work of 
Song et al. [12] samples D, E and G had tapered 
arms, however slots and milling of the central 
region were abandoned since those treatments 
modify the properties of the material and disturb 
the reliability of the results. Dimensions of the 
measurement region were adopted on the basis 
of work of Hanabusa et al. [20]. The comparison 
method was implemented using the factors al-
lowing the evaluation of the results of simula-
tions for different samples and to find the one the 
matches the requirements in terms of the high-
est level of strain in the gauge region. The work 
includes the elaboration of specimen’s digital 
models employing FEM as well as an experi-
mental validation with DIC method on a tests 
stand for each specimen’s geometry.
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SIMULATION

Comparison methodology

In order to compare samples, a series of equa-
tions were used to derive factors enabling the com-
parison. The factor should indicate whether the 
sample is better or worse than the other. Therefore 
the samples were divided in two regions. In the 
centre of the sample a gauge region was chosen, 
defined as a circle of 25 mm diameter and it was 
called the “Section A”. The region outside the Sec-
tion A was called “Section B”. According to Makris 
et al. [23], two factors were introduced which later 
were combined into one main factor.

(1)

First equation (1) that was used, is called Fail-
ure Ratio (FR) and it defines the ratio between the 
maximum plastic strain in section B (εmax,B) to 
section A (εmax,A). The minimisation of this ob-
ject function FR can lead to an optimised shape 
concerning damage initiation-concentration in 
the centre of the specimen.

(2)

Second equation (2) is the ratio between the 
standard deviation sd(ε1A) and the mean value 
mean(ε1A) of the major strain in the centre of the 
sample, called Coefficient of Variation (COV) in the 
section A. The location and number of points taken 
into account to calculate above parameters were de-
termined from the FEM’s grid. Therefore, all mesh 

points inside the A section were considered. The COV 
parameter defines how uniform is the strain inside 
the centre of the sample. The uniformity of strain 
in the centre region is not related to fracture of the 
specimen but it defines the quality of biaxial testing.

(3)

The third equation [23] allows to compare all 
samples taking into account both previously in-
troduced factors: FR and COV. This equation is 
called the Cost Function (CF) and it uses wf coef-
ficient which indicates, which of the first two co-
efficients is more important. According to Makris 
et al. [23], the coefficient was equal to 0.8, which 
means that FR coefficient was 4 times more im-
portant than the COV. Finally, the CF was used to 
derive the best samples out of all tested ones.

Samples geometry and model

The nominal dimensions of the samples are 
presented in Figure 2. Because of the test stand 
geometry, the main boundary condition for their 
design is clamping position and dimensions as 
presented in Fig. 3 (red ellipse).

All the samples were prepared in ANSYS 
modelling software as one body with two parts, 
where one part was the centre of the sample (cir-
cle of 25 mm in diameter) and the second was 
the rest of the specimen. Also, each sample was 
prepared as 1/4 of the geometry and later full ge-
ometry was created with pattern function. The 
thickness of all samples was 0.5 mm. 

 
Fig. 2. Geometry requirements for samples to fit in to test stand [24]
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First group of the prepared cruciform samples 
were those with straight arms as presented in Fig-
ure 3. Sample A is the sample where the radius 
was the investigated parameter in the range from 
4 mm to 20 mm with an increment of 2 mm. In 
Sample B, the radius of the circular cut-out was 
the analysed parameter in range from 1 mm to 19 
mm with an increment of 1 mm. Sample C is very 
similar to Sample B, the parameter 1 in both cases 
is the same, but there is also an additional sec-
ond radius (Param. 2). The Param. 1 was analysed 
from 4 mm to 14 mm with an increment of 2 mm, 

while Param. 2 was investigated in range from 4 
mm to 12 mm with an increment of 2 mm.

Second group of samples that were created were 
the samples with the curved arms as presented in 
Figure 4. Samples D – F were created with the use 
of spline which was based on five points: two points 
at the ends of the arms (red), one point close to the 
centre on the symmetry line (red) between two arms 
and other two points of which position coordinates 
were parametrized (orange). However, in Sample D, 
the curvature is on the whole arm while in Samples 
E and F, the curvature starts at 50 mm and 70 mm 

 
Fig. 3. Group of geometries with straight arms

 
Fig. 4. Group of geometries with curved arms
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from its end, respectively. Values of the coordinates 
and the increment can be seen in Table 1.

Sample G was created on the basis of the two 
lines at an angle to the arms connected with the 
radius, which was a parameter. What is more, the 
lower parameter, the closer cut-out was approach-
ing the centre of the sample. The values of radius 
were analysed in the range from 1 mm to 10 mm 
with an increment of 1 mm. In order to have a 

reference for the CF coefficient, the geometry H 
was created, which can be seen in Figure 5. It has 
no refinement of the arms so its CF coefficient 
should approach the highest value out of all simu-
lations as it was later validated.

Materials

Steel sheets (0.5 mm thick) of cold-rolled 
DC5 (1.0312, EN10139; C ≤ 0.06; Mn ≤ 0.35; P   
≤ 0.025; S ≤ 0.025) were used in the experiment. 
The mechanical characteristics (Table 2), includ-
ing proof stress at 0.2%, plastic strain (Rp0.2), 
ultimate stress (Rm), maximum force (Fm), uni-
form elongation (Ag) and strain at rupture with 
80 mm gauge length (A80), were tested using the 
Zwick/Roell tensile test machine according to 
DIN EN ISO 6891-1/ISO 10113. The true strain 
and true stress which were used as input data to 
describe strain hardening behaviour of the mate-
rial were calculated according to the formulas:
	• True stress σT = σ(1+ε)
	• True strain εT = ln(1+ε)

where: σ and ε are engineering stress and engi-
neering strain respectively.

The stress strain curves are shown in Figure 6.

Table 1. Ranges of coordinates that were analysed for Samples D - F
Specification Sample D Sample E Sample F

X coordinate range (mm) 50 – 70 50 – 70 50 – 70

Increment (X) (mm) 5 5 5

Y coordinate range (mm) 15 – 25 15 – 25 15 – 25

Increment (Y) (mm) 2.5 2.5 2.5

 
Fig. 5. Sample with no arms refine-

ment (reference geometry)

 
Fig. 6. DC5 steel stress strain curves
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Mesh

The specimen in the FE model was meshed 
by 8-nodes hexahedral elements. The mesh con-
vergence study was done starting with the default 
meshing configuration and finishing with the 
global mesh size lower than 2 mm, subsequently 
refined for central part of the sample. The mesh 
seed of the circle which is a contact point between 
section A and Section B was set to 80 divisions 
for both parts. The skewness in all simulations 
was below 0.9 which is in a range of good and the 

aspect ratio was no larger than 4 which is also an 
indication of a good mesh quality. The boundary 
conditions imitated the equal displacement of the 
4 jaws with a constant speed set up to 1 mm/s. 
The simulation time was set up to 10 seconds 
what results in 10 mm displacement of each jaw.

Samples selection

Based on the CF coefficient, several depen-
dencies were found, which indicate the opti-
mal geometries for cruciform samples. Figure 
7 presents the dependency between the radius 
between the arms and the CF coefficient of Sam-
ple A. It can be observed, that according to the 
simulated configurations the minimum CF coef-
ficient was obtained for radius of 10 mm, which 
suggests that this value may work best out of all 
simulated ones.

Table 2. Mechanical parameters of DC5 steel 
determined based on static tensile test

Rp0.2 
MPa

Rm 
MPa

Fm 
kN

Ag 
%

A80 
%

220 360 3.83 20.01 42.6

 
Fig. 7. The influence of parameter 1 on the Cost Function for Sample A

 
Fig. 8. The influence of parameter 1 on the Cost Function for Sample B
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Fig. 9. The influence of parameters 1 and 2 on the Cost Function for Sample C

 
Fig. 10. The influence of the coordinates X and Y on the Cost Function for sample D

Figure 8 presents the dependency between the 
radius of the cut-out between the arms and the CF 
coefficient for Sample B. It can be noticed, that 
the further increase in the radius of the cut-out 
does not influence the CF coefficient for values 
higher than 10 mm. This suggests that the sample 
performance is not changing as soon as the cut-
out radius reaches ca. 10 mm.

Figure 9 presents the influence of the radius 
of the cut-out between the arms (called inner ra-
dius or parameter 1) for five different outer radii 
(parameter 2) on the CF coefficient for Sample C. 
It can be noticed that the influence of the outer ra-
dius is negligible. Therefore the effects are simi-
lar to the results obtained for Sample B.

Figure 10 depicts the dependency of the 
X-coordinate for seven different Y-coordinates 
with reference to the CF coefficient. It can be 
noticed, that the lowest value was obtained for 
the X - coordinate equal to 65 mm and Y - co-
ordinate of 20 mm.

Figure 11 depicts the dependency of the X-
coordinate for five different Y-coordinates with 
reference to CF coefficient. It can be seen that the 
lowest value was obtained for the X - coordinate 
equal to 22.5 mm and Y - coordinate of 70 mm.

Figure 12 shows the dependency of the X-
coordinate for five different Y-coordinates with 
reference to CF coefficient. It can be seen that the 
lowest value was obtained for the X - coordinate 
of 22.5 mm and Y - coordinate equal to 70 mm.

Figure 13 presents the dependency between 
the radius between the arms and CF coefficient 
in Sample G. It can be observed that according to 
simulated configurations, at the radius of 10 mm 
the minimum CF coefficient was obtained.

TEST STAND

Laboratory experiments were conducted in 
order to verify the results of simulations. The 
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Fig. 11. The influence of the coordinates X and Y on the Cost Function for sample E

 
Fig. 12. The influence of the coordinates X and Y on the Cost Function for sample F

samples were cut from 0.5 mm thick S235JR 
steel sheet using the waterjet technique. The 
test stand consists of the two round steel plates 
as presented in the Figure 14. The sample is 
put in four jaws, where it is clamped and de-
formed by the small shaft to create the shape 
connection, preventing it from slipping during 
the test. Above the test stand, there is a camera 
placed perpendicularly on the tripod in order 
to take pictures after each small stretching mo-
tion. A measuring system has been described 
in previous work - Mitukiewicz et al. [25]. 
The ratio between millimetres and pixels was 
1 mm/20 px. The gauge length corresponded to 

ten grids. Since the size of one grid was 2 mm 
the gauge length was (400 px ± 2 pixel), the 
expected uncertainty for each data point was 
less than 1% of strain.

The test was carried out for equi-biaxial ten-
sile state. The displacement of each arm was 
driven by screw, which had a pitch of 1.5 mm. 
The test was stopped, when there was no longer 
any elongation increase in the gauge region of 
the sample. Then the load was released and the 
achieved experimental plastic elongation was 
measured directly by a digital image correlation 
(DIC) system. The experimental plastic strain 
were calculated based on the obtained results.
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RESULTS AND DISCUSSION

After the series of multiple simulations, 
it was possible to select geometries, which 
should give the best results. There are 3 sam-
ples with curved arms (D, E, G) and 2 sam-
ples with straight arms (A, B). Each of them 
is rather unique. Figures 15 and 16 show 

plastic strain distribution of the chosen sample 
geometries. 

Table 3 presents the results of the experi-
ment for five chosen sample geometries. As can 
be seen, there is a good correlation between the 
simulations outcomes and the experimental re-
sults. In Table 3 the values of CF are also indicat-
ed. As can be seen more clearly in the Figure 17, 

 
Fig. 13. The influence of parameter 1 on the Cost Function for Sample G

 
Fig. 14. a) experimental test stand, b) clamped sample, c) sample after test

a)

c)

b)
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basing on the rule of Makris methodology, that the 
smaller value of CF, the bigger value of achieved 
strains, it is hard to conclude on the geometry of 
samples of different shapes. The CF factor does 
not correspond with the values of engineering 
strains in global terms. Even if the sample A has a 
higher value of CF coefficient (1.74) as compared 
to sample E (1.29) or G (1.24) it reaches higher 
strains in the gauge region. Similarly for sample 
B with CF equal to 1.39 the obtained strains are 
higher than those for samples D, E, G with lower 
CF factors. Therefore also in Table 3 and Figure 

17 a new parameter is proposed. Relative Cost 
Function (RCF) parameter is defined as follows:

(4)

For steel S235JR εmax equals to 20%.
The proposed parameter is very useful since it 

provides an information, how far is the designed 
sample from the theoretical ideal situation when 
εmax will be achieved in the middle of the cruci-
form. The results in Table 3 show that the sample 
B has the highest RCF equal to 15% and sample 
E has the lowest RCF equal to 4%. The rest of 

 
Fig. 15. Plastic strain distribution of the sample geometries selected based on 

FEM simulations and their CF coefficients (scale from 0 to 0.2)

 
Fig. 16. Strain distribution of the sample geometries selected based on FEM sim-

ulations and their CF coefficients (scale from 0 to 0.05)
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the samples are between those values. We can 
observe as well that the values between strains 
obtained from the simulation and the strains reg-
istered during the experiment are very close. 

The results show that the maximal strain ob-
tained from the simulation is 3% for the sample 
B. The sample B also represents the highest RCF 
equal to 15 percent. The graphical representation 
in Fig. 17 shows the order of the samples with 
increasing RCF and increasing strains. So we can 
follow the effect of the RCF parameter on the me-
chanical characteristics of the samples.

CONCLUSIONS

The work summarized in this paper aimed to 
use one of the published specimen shape compar-
ison methodology, to obtain the highest possible 
elongation in the centre of the sample for different 
types of specimens used in biaxial tensile tests. 
Our paper includes parametric simulation and 
comparison of multiple types of specimens shape 

with simultaneous wide experimental validation. 
Based on the obtained results it can be noticed that 
the initially introduced comparison coefficient do 
not match to the registered elongations along all 
test results. It is strongly believed that the initial 
CF coefficient is sufficient to compare the geom-
etry of one type of samples by changing only one 
parameter of the sample shape. The sample B is 
with the highest RCF of 15% and sample E has 
the lowest RCF of 4%. For the global specimen 
shape optimisation a multi-criteria method should 
be used. A new parameter enabling a useful com-
parison of different shapes of cruciforms made 
of different materials in terms of obtaining large 
strain in the analysis of their plane stress state.

Nomenclature

Symbol Name Unit
CF Cost Function coefficient [-]
COV Coefficient of Variation [-]
FR Failure ratio coefficient [-]
εmax A or B Maximum plastic strain in region A or B [-]

ε1 A or B Major plastic strain in region A or B [-]

εmax
Maximal accessible extension for particular 
material (before the crack) [-]

mean Mean value [-]
sd Standard deviation value [-]
wf Weight function coefficient [-]
σ Engineering stress [MPa]
ε Engineering strain [-]
σT True stress [MPa]
εT True strain [-]
RCF Relative Cost Function [%]

Table 3. Test results
Sample G E B D A

CF 1.24 1.29 1.39 1.41 1.74

Plastic strain 
(%) Simulation 1.6 0.8 3.0 1.1 1.8

Plastic 
strain (%)

Experiment
2.0 0.5 3.0 1.5 2.0

RCF (%) 8 4 15 5.5 9

 
Fig. 17. Cost function versus experimentally obtained strain
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