
INTRODUCTION

The disinfection properties of short-wave-
length visible light were discovered more than 
100 years [1, 2]. They have mostly been ig-
nored because, compared to disinfection with 
ultraviolet (UV) radiation as emitted by mer-
cury vapor lamps, high doses are required that 
have long been difficult to achieve in techni-
cally feasible times. Unfortunately, UV radia-
tion also affects human cells and might lead 
to skin cancer, photokeratitis and cataratogen-
esis, so another kind of antimicrobial radia-
tion, which is less harmful to humans, would 
be desirable. The development of powerful 
violet and blue light emitting diodes (LEDs) 
in recent years has restarted research into the 
antimicrobial properties of short-wavelength 
visible light. By now, it has been demonstrated 
that all investigated bacteria, fungi and prob-
ably even viruses can be inactivated if the ir-
radiation dose is sufficiently [3÷8].

The basics of the mechanism of action are un-
derstood meanwhile and schematically illustrated 
in Figure 1. Naturally occurring photosensitizers 
(PS) such as porphyrins and flavins absorb vio-
let or blue light and generate so-called reactive 
oxygen species (ROS) in the presence of oxygen. 
These are radicals that attack virtually all relevant 
structures in the cell and can thus lead to its death 
[3÷5, 9÷12].

Maclean and coworkers successfully in-
vestigated the antimicrobial effect of violet 
light in hospital environments in several stud-
ies [13÷15]. Violet light with a wavelength of 
about 405 nm has a significantly stronger anti-
microbial effect compared to blue light [6], and 
is at the same time better tolerated by human 
cells than ultraviolet radiation [16]. However, 
violet light generates effects similar to black 
light on fluorescent materials and can therefore 
be perceived as irritating and interferes with the 
viewer’s color perception. Therefore, Gillespie 
et al. have proposed a white LED illumination 
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composed of pulsed violet, green, yellow, and 
red LEDs [17]. This white illumination dem-
onstrated improved color rendering and a si-
multaneous disinfecting effect on the clinical 
relevant pathogens Staphylococcus aureus and 
Pseudomonas aeruginosa.

Rohan et al. and Rutala et al. performed simi-
lar successful studies in hospital environments 
with 405 nm LEDs [18, 19]. Rutala et al. [19] in-
vestigated the antimicrobial effect of white light 
with a noticeable staphylococci reduction even 
for low irradiation doses. These results fit to an 
own study, in which we investigated the disin-
fecting properties of a touch screen, and observed 
that a highly luminous blue screen was capable 
of pronounced bacterial reduction, while a white 
luminous screen, for which the light was a com-
bination of red, green, and blue emissions, was 
even slightly more effective [20].

The study presented here aims to:
1.	Investigate the disinfecting properties of com-

mercial warm-white and cool-white LEDs, 
which both consist of blue LEDs and phospho-
rescent layers, in comparison to the antimicro-
bial properties of pure blue LEDs and whether 
green, yellow or red light portions of white 
LEDs deliver a significant contribution to the 
disinfection performance.

2.	Furthermore, the question is addressed wheth-
er it is possible to combine a conventional 
white LED illumination with violet LEDs 
to increase the antimicrobial effect without 
changing the perceived color impression par-
ticularly. This would pose a significant techni-
cal improvement to the approach of Gillespie 

et al. [17]. The approach seems to be realistic, 
since the human eye sensitivity at 405 nm, a 
typical wavelength of violet LEDs, is about a 
factor of 1 000 lower than in the spectral range 
520 - 590 nm, in which conventional white 
LEDs emit to a large extent.

MATERIALS AND METHODS

Irradiation Setup

The following high-power LEDs were 
employed for the irradiation experiments: 
a warm-white LED type CXB1512-0000-
000F0HN430G of Cree (Durham, North Car-
olina (USA)), a cool-white LED type Cree 
CXB1310-0000-000F0HN265E, a blue LED 
type Cree XPEBRY-L1-0000-00Q01, and a vio-
let LED type LZ1-00UB00 of LEDengin (San 
Jose, California (USA)).

The white and blue LEDs were selected to 
have similar peak wavelengths in the blue spec-
tral region around 450 nm. For the comparison 
of the antimicrobial impact of the warm-white, 
cool-white, and blue LED, the irradiance was ad-
justed using a DT-Blue 475 nm short-pass filter 
from Qioptiq (Goettingen, Germany) so that the 
blue component of the irradiance was 6.3 mW/
cm2 for all white and blue LEDs. In this way, 
it could be investigated whether only the blue 
emissions are responsible for the potential anti-
microbial effect of white LEDs.

For the experiments on the additional ef-
fect of violet LEDs, the irradiances of the 

 
Fig. 1. Scheme of the disinfection mechanism of blue and violet light for bacteria 
(PS: Photosensitizer, ROS: reactive oxygen species, DNA: deoxyribonucleic acid)
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warm-white LED and the violet LED were ad-
justed so that the irradiance in the violet-blue 
spectral region (below 480 nm) was 5 mW/
cm2. The spectra of the applied LEDs and the 
potentially involved bacterial photosensitizers 
can be found in Figure 2. The homogeneous ir-
radiation of the bacterial samples was achieved 
with a pyramid-shaped mirror arrangement as 
described previously [7, 21]. Because of the 
potential influence of the violet LED on human 
color perception color coordinates, correlated 
color temperature and color rendering indices 
(CRI) of the warm-white LED, the violet LED 
and the combination of both were calculated. 

Microbiological Experiments

Since it is restricted to work with pathogens 
in the available laboratory, Staphylococcus car-
nosus (DSM 20501) was selected as a non-patho-
genic bacterium that is related to the methicillin-
resistant Staphylococcus aureus (MRSA), which 
is notorious in hospitals but slightly less sensitive 
to visible light [7]. Concentrations in the range of 
106 bacteria per ml were prepared in phosphate-
buffered saline solution (PBS) and 3 ml were irra-
diated in glass beakers at a temperature of approx-
imately 25 °C. At the beginning and during the 
course of irradiation, 100 μl samples were taken 
and plated out on agar plates at different dilution 
levels. Surviving bacteria showed up after 24 h 
at 37 °C in the incubator as visible and countable 
colonies, from which the bacterial concentration 

at the time of sampling could be calculated. As 
a control, non-irradiated bacterial samples were 
also always examined in parallel to the irradiation 
experiment. Due to the known high variability of 
such microbiological experiments, each individ-
ual sample was plated out at least three times at 
each dilution level and each series of experiments 
was performed three times separately.

RESULTS

The results of the photoinactivation of S. 
carnosus by warm-white, cold-white and blue 
LED emission are presented in Figure 3 as a 
function of the blue irradiation dose. At first 
glance, warm-white seems to have a slightly 
stronger antimicrobial impact than the blue and 
cold-white illumination, but the error bars re-
veal a high variation in the underlying results of 
the single experiments and one should keep in 
mind, that the given irradiance is just the blue 
part of the LED emission. The results of both 
white LEDs are close to the results of the blue 
LED. This indicates that the disinfecting effect 
of the white LEDs is predominantly caused by 
their blue emission components.

The blue irradiation dose necessary for 1 and 
3 log-reductions (90% and 99.9% reduction) of 
S. carnosus is about 130 J/cm2 and 210 J/cm2, 
respectively. The contribution of the blue part of 
the cool-white LED emission is approximately 
24% of its total irradiance. For the warm-white 

Fig. 2. Relative emission spectra of the selected warm-white, cool-white, blue and vio-
let LEDs and the relative absorption spectra of protoporphyrin IX and riboflavin
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LED this blue fraction is three times lower with a 
percentage of about 8%. Therefore, a cool-white 
LED should have an approximately three times 
higher disinfecting impact at the same total irradi-
ance than a warm-white one.

The antimicrobial effect of the warm-white 
and the violet LED, and the combination of both 
is given in Figure 4. A 1 log-reduction for staphy-
lococci is reached after about 8 h, 4.3 h and 2.9 
h for the warm-white LED, the violet LED and 
the LED combination. Concerning the violet 

irradiation doses the 1 and 3 log-reductions re-
quired approximately 77 and 162 J/cm2.

Table 1 and Figure 5 illustrate the human 
color impression of the warm-white and the vio-
let LED, and the combination of both. There is 
almost no difference in the color coordinates, cor-
related temperature and color rendering between 
the white LED and the combination with the vio-
let LED. Even a hypothetic tenfold increase in 
the violet irradiance would only lead to moderate 
changes in the total color perception. 

Fig. 3. S. carnosus concentration as a logarithmic relative representation of colony forming units (CFU) 
per ml as a function of the blue irradiation dose. Each value represents the average of at least three inde-

pendent experiments and the error bars depict the standard deviation of these single measurements

Fig. 4. S. carnosus concentration as a logarithmic relative representation of colony forming units (CFU) 
per ml as a function of irradiation duration. Each value represents the average of at least three indepen-

dent experiments and the error bars depict the standard deviation of these single measurements
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DISCUSSION

The results reveal that warm-white and cool-
white LEDs exhibit antimicrobial properties, 
which are predominantly caused by their blue 
components and cool-white LEDs are supposed 
to be more efficient for the same total irradiance. 

Operating theatres in hospitals represent an 
obvious field of application. Pathogen reduction 
is of great importance there and, at the same time, 
high illuminance levels of 10 000 - 100 000 lu-
men/m2 are required [23], which would be a 
maximum of up to 10 lm/cm2. If this illuminance 
is generated just with the warm-white LED, this 
corresponds to a blue irradiance of approx. 2.3 
mW/cm2. A 90% staphylococci reduction thus re-
quires about 15.7 h, which seems to be of limited 

use in this form even for an automatic overnight 
disinfection. In combination with the violet LED 
(additional 2.3 mW/cm2 of 405 nm), however, 
this time would already decrease to about 8.4 h. 
The simulated combination of a warm-white LED 
(2.3 mW/cm2 of 450 nm) and a 10x stronger vio-
let LED 23 mW/cm2 of 405 nm), a further reduc-
tion in the range of about 1 h is feasible and this 
does not have to be the limit, if the violet irradia-
tion is further increased.

In these considerations, 1 log-reduction data of 
S. carnosus in liquids were presupposed: 77 J/cm2 
for violet light and 130 J/cm2 for blue light. These 
assumptions are rather pessimistic. In our own pre-
vious investigations, the medically more signifi-
cant pathogen S. aureus turned out to be more sen-
sitive to light for both spectral ranges [7]. Applying 
405 nm in a hospital setting, Rutala et al. observed 
a 90% staphylococcus reduction on surfaces for a 
dose as little as 14.5 J/cm2 [19], and Gillespie et al. 
reported that less than 4 J/cm2 were needed for a 
log-reduction in their S. aureus experiments [17].

In addition to hospital and healthcare set-
tings, applications of white-violet combinations 
in domestic environments such as bathrooms or 
kitchens are also conceivable. For example, cam-
pylobacter, food pathogens that frequently cause 
intestinal infections, are very sensitive to violet 
light and require only a dose of 3.5 J/cm2 of 405 
nm irradiation for a 90% reduction [24]. Techni-
cally, a kitchen work area could be equipped with 
an appropriate antimicrobial lighting. Just 10 W 
of violet illumination could generate an irradi-
ance of about 4 mW/cm2 on an area of 60 x 40 
cm2, and thus reduces the previously mentioned 
campylobacters by 90 % within 15 min. Applica-
tions in which white and violet do not necessarily 
radiate simultaneously all the time are also con-
ceivable. For example, it would be imaginable to 
have a white-violet shower illumination that only 
shines white during the shower process and then 
automatically switches to violet-white or violet 
for a selected duration, afterwards. 

Table 1. CIE (Commission Internationale de l’Éclairage) xy color coordinates, correlated color temperatures (CCT) 
and color rendering indices (CRI) calculated for spectra of the warm-white, the violet, the combined warm-white and 
violet LED and an additional hypothetic combination of the warm-white LED with a ten times stronger violet one

LED CIE x CIE y CCT [K] CRI
Violet 0.172 0.028 – –

Warm-white 0.451 0.415 2880 98

Warm-white & violet 0.445 0.406 2901 98

Warm-white & 10x violet 0.397 0.341 3256 92

Fig. 5. Representation of the different tested 
LED illuminations in a CIE color diagram. 

Included is a hypothetic additional combina-
tion of the warm-white LED and a 10x stron-
ger violet LED (Modified according to [22])
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CONCLUSION 

White LEDs and the combination of white 
and violet LEDs do not replace UV irradiation in 
its antimicrobial effect and short application du-
ration, but allow many possible approaches for 
pathogen reduction and infection prevention in 
medical and domestic environments in the imme-
diate vicinity of humans.
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