
INTRODUCTION

Among the many types of load-bearing struc-
tures used in modern technology, a significant 
role is played by thin-walled structures, com-
monly used when it is necessary to meet rigor-
ous mass criteria. In most cases, their correct op-
eration is expected in the load ranges that do not 
cause the effects of stability loss, and the buckled 
elements of the structure are treated as damaged. 
Only some types of thin-walled structures, such 
as aircraft structures, are an exception.

Most of the typical air load-bearing structures 
are based on the semi-monocoque model, the un-
questionable advantage of which is a relatively low 
weight in relation to the possible load capacity of 
the system. A feature that distinguishes the aviation 
semi-monocoque structures from most other struc-
tures is the limited acceptability of post-critical de-
formations. This phenomenon is permissible only 
in relation to the fragments of coverings, limited 
by skeleton elements (e.g. ribs and stringers), and 
therefore it must have a local character. In the case 
of a post-critical deformation of any of the remain-
ing structure elements, the element is considered to 

be damaged. The elastic nature of the phenomenon 
is also an obligatory requirement. 

Controlled loss of stability of shell fragments 
in aircraft structures is allowed primarily for 
metal structures, although in some cases it is also 
applicable for composite structures (e.g. load-
bearing structures of the Boeing 787 and Airbus 
350 aircrafts). While several types of aeronauti-
cal load bearing components are characterized by 
a pronounced shell curvature (e.g., fuselage skin 
segments), many others are flat systems. An ex-
ample of a design scheme with completely planar 
components is a wing spar with a wall forming a 
thin-walled structure subjected to shear (Fig. 1).

Similar solutions are used in various parts of 
the airframe structure, e.g. in the case of a wing 
spar, but also in the case of the parts of the fuse-
lage or tail elements. However, the fragments of 
the fuselage and wing coverings are also charac-
terized by relatively small curves in the case of 
large aircraft. With a sufficiently dense arrange-
ment of the skeleton elements, from the computa-
tional point of view, they can be treated as flat. In 
all of the shell systems mentioned, the phenom-
enon of loss of stability due to shear stresses can 
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occur. In many cases, this phenomenon is also ac-
ceptable, either in the range of permissible loads 
or in the range between their permissible and de-
structive values. In most cases, it is necessary to 
perform advanced supercritical deformation anal-
ysis in the design processes. In the flat segments 
of the covering, the tangential stress distributions 
caused by shear have the character of a drawing 
field, which under real system conditions are the 
cause of geometric imperfections, as a result of 
which the supercritical deformations appear with-
out the occurrence of distinct bifurcations and in 
the case of rectangular shells, they usually have 
the form of oblique folds (Fig. 2).

An important problem related to the numeri-
cal mapping of this type of deformation in the case 
of non-linear numerical analyses using the finite 
element method is the natural lack of tendency 
to the formation of the imperfections mentioned, 
resulting from the idealized geometric form of the 
model. Therefore, it is necessary to take them into 
account in the form of an appropriate extortion, of 
a geometric or physical nature.

In this study, the advantages and disadvan-
tages of selected methods used in this field were 
analysed, and a solution that would allow obtain-
ing correct results of numerical analyses with 
relatively easy adjustments to the basic system, 
based on a perfectly flat model, was proposed.

PURPOSE AND SCOPE OF THE STUDY

The subject of the considerations was a thin-
walled square plate, subjected to pure shear. With 
its geometry and boundary conditions, it corre-
sponded to the system, which is the subject of the 
planned experimental studies, using a model made 
of polycarbonate (Fig. 3). The edges of the plate 
are stiffened with steel cladding, articulated in the 
corners. The fastening system consisted of two 
supports, located in two opposite corners (Fig. 4). 
The first one (point A) deprived the joint of trans-
lational degrees of freedom and rotation about the 
axis u (Fig. 4). The second (point B) blocked the 
displacements corresponding to the axis directions 

Fig. 1. Spar with flat thin-walled components

Fig. 2. The distribution of advanced post-criti-
cal deformation typical for a rectangular shear 

shell presented in a model, oversized scale

 
Fig. 3. The geometry of the plate and the complete layout
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of geometric nonlinearities. Polycarbonate was 
used as the model material for the plate (E = 2150 
MPa, ν = 0.38), while in the case of stiffening el-
ements, steel was employed (E = 2.1∙ 105 MPa, 
ν = 0.3). The value of the load applied in the 
lower corner of the system was 500 N. The nu-
merical representation of the diagram presented 
above was based on the use of surface elements 
in relation to the tested thin-walled structure and 
eight-node three-dimensional elements in relation 
to the stiffening edges. The choice of the latter 
solution was dictated by the desire to maximally 
simplify the model geometry by not using contact 
functions. In the adopted geometry variant, the 
articulated joints were modelled by using the ap-
propriate shape of the stiffening corners, using the 
properties of a three-dimensional element, char-
acterized by the lack of active rotational degrees 
of freedom (Fig. 5).

The models use a finite element mesh of a 
regular nature and a density ensuring a satisfacto-
ry convergence of the solution in the linear range. 
The mesh consisted of 21,830 three-dimensional 
elements and 21,138 shell elements with linear 

 
Fig. 4. Method of fixing and apply-

ing the load: a) in the numerical model, b) 
in the anticipated experimental system

 

Fig. 5. Geometry of the numerical model with loading and boundary conditions: a) front view, b) isometric view

 

Fig. 6. An example of finite element grid: a) front view, b) isometric view

v, w. In a real experimental setup, the support cor-
responding to point B is not necessary.

For numerical analyses in all cases, the MSC 
Patran/MSC MARC software was used, which 
is characterized by an extensive implementation 
of numerical methods that enable the mapping 

a) b)

b)a)

b)a)
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shape functions (Fig. 6). The aim of the consid-
erations was to compare the effectiveness of the 
selected methods of obtaining the correct form 
of supercritical deformations of the analysed ob-
ject under the conditions of non-linear numerical 
analysis. For this purpose, several selected vari-
ants of the system based on the assumptions re-
garding geometry, boundary conditions and load-
ing presented above were analysed.

NUMERICAL ANALYSES

Numerical mapping of advanced deformation 
states in the case of flat systems, loaded in their 
plane, is related to the problem resulting from the 
idealized geometric form of the model and the 
direction of load application. In the case of real 
systems, the presence of natural imperfections 
is the factor that initiates the appearance of dis-
placements in the direction normal to the plane 
of the object. In the case of an idealized model, 
the result of the nonlinear numerical analysis is an 
idealized distribution of displacements occurring 
only in the model plane (Fig.7).

Therefore, in order to obtain correct results of 
the supercritical deformation analysis, it is neces-
sary to use one of the methods of applying imper-
fections of a geometric or physical nature.

For some types of commercial software 
based on the finite element method, it is pos-
sible to apply the procedures to implement the 
results of a linearized stability analysis as data 
used by the nonlinear analysis. In such cases, 

the first part of the numerical problem involves 
the application of the method based on the Euler 
stability criterion, also known as the method of 
adjacent states. As a result, it leads to solving the 
problem on eigenvalues: 

K ∙ zi = (K0 + λ ∙ K1) ∙ z = 0 (1)
where:K0 is the stiffness matrix resulting from 

the material properties, determined for 
the initial state, and λ ∙ K1 stiffness matrix 
resulting from the current geometry of 
the system, depending on the state (load) 
control parameter l. 

The essential nonlinear analysis, in turn, con-
sists in determining the course of the equilibrium 
path of the system, which in the general case is a 
hypersurface in n-dimensional state space, where 
n is the number of degrees of freedom of the sys-
tem. In each subsequent step of the analysis, relat-
ed to the load increment, the discrete system must 
satisfy the matrix equation of residual forces:

r(u, λ) = 0 (2)
where: u is a state vector containing the displace-

ment components of structure nodes cor-
responding to its current geometric con-
figuration, λ is a control parameter corre-
sponding to the current load level, and r is 
vector residual containing the unbalanced 
force components related to the current 
state of deformation of the system.

A feature of all nonlinear procedures is the pres-
ence of an incremental phase. For each successive 
increment, at the transition from state n to the state 
n + 1, the values not specified are the increments:

 

Fig. 7. Distribution of displacements in the model without imperfections: a) resultant dis-
placements, b) displacements in the direction normal to the model plane

b)a)
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Δun = un+1 −un , Δλn = λn+1 − λn (3)
In order to determine them, an additional 

equation is formulated, called the increment con-
trol equation, or constraint equation:

c(Δun, Δλn) = 0 (4)
constituting a condition defined by the user, re-
sulting from the adopted correction strategy.

In the discussed case, due to the procedural 
limitations resulting from the applied software 
type, on the basis of the lowest form of the model 
buckling determined in a linearized manner, an-
other geometric model was prepared, containing 
the resulting imperfections. In the next, non-linear 
step, using the Newton-Raphson method and the 
correction based on the state control, the supercrit-
ical deformation distributions were determined, 
corresponding to the assumed load value (Fig. 8).

Although the linearized pre-buckling analysis 
in many cases is an unreliable method and does 
not allow for the correct determination of the 
buckling mode, in the analysed case, due to the 
nature of the stress distribution corresponding to 
the drawing field, the obtained results can be con-
sidered as reliable in terms of quality. A precise 
quantitative analysis would only be possible with 
the results of the experiment. Therefore, recog-
nizing the correctness of the presented solution, it 
should be emphasized that, as it was mentioned, 
in the case of a number of types of commercial 
software, the method used is sometimes labour-
intensive and does not allow reproducing the de-
formation states corresponding to the load ranges 
slightly exceeding the critical values.

The aim of these considerations is to pres-
ent an alternative method that allows initiating 
a geometric imperfection in a relatively simple 
way, which in turn makes it possible to numeri-
cally map supercritical deformations, already the 
load level corresponding to the critical value. The 
method is based on the application of a load in the 
form of concentrated forces applied at the corners 
of the model edge stiffening system, in the direc-
tion normal to its median plane (Fig. 9).

It causes a slight deflection of the system 
in the u-v plane, as a result of which the nu-
merical model loses its perfectly flat geometric 
character. This effect is a desired imperfection 

 

Fig. 8. Displacement distributions determined on the basis of the results of the lin-
earized stability analysis: a) buckling mode, b) displacements in the direction nor-

mal to the model plane determined as a result of nonlinear analysis.

 
Fig. 9. Diagram illustrating the idea 

of the proposed method

b)a)
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in the case of analyses, causing the initiation of 
local bifurcations in the state hyperspace. The 
forces in the drawing marked with the symbols 
Pn by assumption, have the values significantly 
lower than the basic load applied in the model 
plane. An important factor determining the cor-
rectness of the solution seems to be the applica-
tion of their correct values. In the next step of 
numerical analyses, a model was used without 
preliminary geometric imperfections, addition-
ally loaded with the forces corresponding to 
the diagram presented above. As expected, the 

form of supercritical deformations turned out 
to be largely dependent on the value of the ex-
citing forces (Fig. 10).

As a result of a series of analyses, during 
which successive increases in the exciting load 
were applied, a diagram was drawn up illustrat-
ing the relationship between the ratio of the force 
value Pn to the value of the load in the plate plane 
and the value Δλ corresponding to the difference 
between the absolute value of the maximum dis-
placement λ in the direction perpendicular to the 
model plane and the value considered to coincide 
with that obtained via the previously described 
method using linearized buckling analysis λ0, re-
ferred to λ0 (Fig. 11).

Fig. 10. Distribution of displacements determined by the proposed alternative method: a) incorrect solution, 
for too low value of the exciting force, b) solution similar to that obtained in the previous analysis step

 
Fig. 11. Graph of the dependence of Δλ 
and the force ratio Pn to the load value

 
Fig. 12. An example of an incorrect solution, 
with too high a force that forces imperfection

b)a)
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The above-mentioned dependence proves 
that there is a very narrow range of values of the 
force causing imperfection, at which it is possible 
to obtain a correct solution. The rapid increase in 
the value of Δλ corresponds to a very rapid in-
crease in the height of the fold on the main diago-
nal of the model with a relatively small increase 
in imperfection. In turn, a sharp decrease in said 
value with a further increase in the value of Pn 
corresponds to an increase in the height of the 
side folds with a simultaneous decrease in the 
fold height on the main diagonal (Fig. 11).

CONCLUSIONS

The presented method of initiating the pro-
cess of loss of stability of the analysed thin-walled 
structure by introducing transverse loads of small 
values, resulting in a geometric imperfection, 
seems to be effective, despite its simplicity. Its 
additional advantage is the potential possibility of 
tracing the initial phase of supercritical deforma-
tion, which does not seem possible in the case of 
specifying the buckling form resulting from the 
linearized pre-buckling analysis. 

The disadvantage of the method in relation 
to the aforementioned comparative procedure is 
a very small range of values of transverse forces 
causing the imperfection, allowing for obtaining 
a correct solution. In the case when the distribu-
tion of displacements corresponding to supercriti-
cal deformations is determined by experiment or 
calculations carried out by another method, rec-
ognized as reliable, the selection of the values 
of transverse forces may be carried out with the 
method of successive approximations until a sat-
isfactory solution is reached. It cannot be ruled 
out that the relationship between the values of the 
exciting forces and the load in the plane of the 
model is fixed, either generally or for a specific 
type of material. However this thesis must be 
proven based on careful analyses of a number of 
models, supported by a model experiment. 
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