
Introduction

Work-based tests constitute a group of in-
direct research, which takes place while a ma-
chine tool performs specific technological tasks. 
The conditions under which the measurements 
are performed correspond to the actual working 
conditions, most frequently occurring during the 
finishing process [1]. The recommendations relat-
ing to operation-based studies are also partially 
standardised [2]. The rules for machining tests 
depend strictly on the kind, power, type and size 
of the machine tool. The performance of the op-
eration-based test is usually based on carrying out 
a number of machining operations on the tested 
machine tool using test pieces (Figure 1)

The current operation-based test procedures 
have one thing in common, which is that they are 
largely based on the subjectively accepted ma-
chine user recommendations and individual ar-
rangements between the machine manufacturer 
and its customer. There are numerous works [5-8], 
concerning the operation-based research of ma-
chine tools, in which the probability distribution 

of machining operations in the working space of 
the tested machine tool is not taken into account 
and is not developed. The reason for this is the 
lack of appropriate distributions, the development 
of which requires the knowledge of the spectrum 
of workpieces. In this publication, an attempt was 
made to develop such a distribution for the DMC 
1035V Ecoline vertical machining centre operat-
ing under industrial conditions.

Developing applications for discretization 
of tool positions in the milling machine 
workspace

The most difficult task when creating an ap-
plication for the discretization of the tool posi-
tions in the workspace of the milling machine was 
to establish a compromise between the degree of 
program complexity and the resulting application 
complexity and the number of achievable ma-
chining programs that will allow the analysis of 
the loads occurring in the workspace of the ma-
chine. It was finally decided to adopt the follow-
ing simplifying assumptions:
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•• The selected programs will concern the process-
ing of flat workpieces machining on numeri-
cally controlled three-axis milling machines 
or such that were performed on other machine 
tools, but could also be performed on numeri-
cally controlled three-axis milling machines,

•• The result of the application will be a set of 
points in the Cartesian system (x, y, z), defining 
the position of the tool during the execution of 
subsequent machining operations, determined 
with an appropriate discretization step,

•• The discretisation step will be determined by 
distance and not by time, so that it is not nec-
essary to analyse the cutting parameters,

•• When determining the coordinates of the tool 
position, fast movements will not be taken 
into account, but only those that indicate the 
working movements of the tool,

•• The only working movements that may occur 
in the analyzed program are straight and circu-
lar movements.

In the case of the attempts to develop G-code 
converters, the difficulty in determining the inter-
mediate points during circular movement is pri-
marily indicated, taking into account the discre-
tisation step. In the literature [9] one can find the 
formulas that allow calculating the coordinates of 
such points. Ultimately, however, a new propri-
etary algorithm was used, which also took into 
account the possibility of introducing an appro-
priate discretisation step [10]. The idea of the ap-
plication for discretization of tool positions in the 
machine working space is illustrated in Figure 2.

Finally, assuming an appropriate discretiza-
tion step, the effect of the program is to obtain 
all the discretized tool position coordinates in the 
milling machine workspace. The application used 
for this purpose allows the necessary information 
to be obtained from the machining program to 
determine the load distribution occurring in the 
machine working space during machining. The 
algorithm for determining the coordinates of the 

Fig. 1. Examples of test subjects used in operation-based tests: a) on the ma-
chining centre [3], b) on a numerically controlled lathe [4]

a)

b)

Fig. 2. The idea of the application for determining the position distribu-
tion of the machined surfaces on milled workpieces
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tool position in the working space of the numeri-
cally controlled milling machine is performed ac-
cording to the adopted block diagram (Figure 3).

Determination of the probability distribution 
of the tool position in the working space of 
a numerically controlled milling machine

The set of all discretized coordinates of the 
tool’s position in the working space made it pos-
sible to determine the frequency distribution of 
events, which was difficult to present in three-
dimensional space. Therefore, it was decided to 
simplify the description of this distribution and 
to present it in the form of many two-dimension-
al distributions determined for all subranges of 
nominal dimensions that occur in the working 
space of the analyzed milling machine. It was es-
tablished that the most representative statistical 
distribution that will allow mapping the position 
of the tool in a single subrange of the machine 
working space is a two-dimensional Beta distri-
bution. It is a continuous probability distribution, 
which allows describing it by means of a density 
function defined on a standardized range [0,1]. 
The function of density of such decomposition 
takes the following form [11]:

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦

− 𝑦̅𝑦 (5) 

𝛾𝛾 = 𝛽𝛽
𝑦̅𝑦 − 𝛼𝛼 − 𝛽𝛽 (6) 

𝑥̅𝑥 = 1
2 ·

𝑎̅𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

𝑦̅𝑦 = 1
2 ·

𝑏̅𝑏−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

𝑆𝑆𝑥𝑥2 =
𝑆𝑆𝑎𝑎2

4·(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)2
 (9) 

𝑆𝑆𝑦𝑦2 =
𝑆𝑆𝑏𝑏2

4·(𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)2
 (10) 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦̅𝑦)2
 (11) 

𝛤𝛤(𝛼𝛼) = ∫ 𝑥𝑥𝛼𝛼−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (12) 

𝛤𝛤(𝛽𝛽) = ∫ 𝑥𝑥𝛽𝛽−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (13) 

𝛤𝛤(𝛾𝛾) = ∫ 𝑥𝑥𝛾𝛾−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (14) 

𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = ∫ 𝑥𝑥𝛼𝛼+𝛽𝛽+𝛾𝛾−1
∞

0
· 𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥 

(1)

According to equation (1), determine the un-
known values of x, y, α, β, γ and determine the 
values of the unknowns in the form of the Euler’s 
gamma. Euler›s Gamma is a special function that 
generalizes the notion of factorial to a set of com-
plex and real numbers. Since in the basic formula 
of the density function of the two-dimensional beta 
distribution, normalized variables x and y appear, 
it was established that instead of marking [x, y] co-
ordinate in the working space of the machine tool, 
the notation [a, b] will be used in the following 
formulas, so that no collision of markings appears. 
Accordingly, the normalized values of xi and yi as 
a function of the density of the two-dimensional 
beta distribution take the following values:

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦

− 𝑦̅𝑦 (5) 

𝛾𝛾 = 𝛽𝛽
𝑦̅𝑦 − 𝛼𝛼 − 𝛽𝛽 (6) 

𝑥̅𝑥 = 1
2 ·

𝑎̅𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

𝑦̅𝑦 = 1
2 ·

𝑏̅𝑏−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

𝑆𝑆𝑥𝑥2 =
𝑆𝑆𝑎𝑎2

4·(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)2
 (9) 

𝑆𝑆𝑦𝑦2 =
𝑆𝑆𝑏𝑏2

4·(𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)2
 (10) 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦̅𝑦)2
 (11) 

𝛤𝛤(𝛼𝛼) = ∫ 𝑥𝑥𝛼𝛼−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (12) 

𝛤𝛤(𝛽𝛽) = ∫ 𝑥𝑥𝛽𝛽−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (13) 

𝛤𝛤(𝛾𝛾) = ∫ 𝑥𝑥𝛾𝛾−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (14) 

𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = ∫ 𝑥𝑥𝛼𝛼+𝛽𝛽+𝛾𝛾−1
∞

0
· 𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥 

(2)

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦

− 𝑦̅𝑦 (5) 

𝛾𝛾 = 𝛽𝛽
𝑦̅𝑦 − 𝛼𝛼 − 𝛽𝛽 (6) 

𝑥̅𝑥 = 1
2 ·

𝑎̅𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

𝑦̅𝑦 = 1
2 ·

𝑏̅𝑏−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

𝑆𝑆𝑥𝑥2 =
𝑆𝑆𝑎𝑎2

4·(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)2
 (9) 

𝑆𝑆𝑦𝑦2 =
𝑆𝑆𝑏𝑏2

4·(𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)2
 (10) 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦̅𝑦)2
 (11) 

𝛤𝛤(𝛼𝛼) = ∫ 𝑥𝑥𝛼𝛼−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (12) 

𝛤𝛤(𝛽𝛽) = ∫ 𝑥𝑥𝛽𝛽−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (13) 

𝛤𝛤(𝛾𝛾) = ∫ 𝑥𝑥𝛾𝛾−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (14) 

𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = ∫ 𝑥𝑥𝛼𝛼+𝛽𝛽+𝛾𝛾−1
∞

0
· 𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥 

(3)

where: [ai, bi] denote the coordinate of a single 
point resulting from the discretization of the tool 

path, a (amin, amax) and (bmin, bmax) are the values re-
sulting from the size of the machine tool working 
space, for which a two-dimensional Beta distribu-
tion is created.

The values of the α, β, γ Beta distribution 
parameters, necessary to determine the distribu-
tion density function and to determine the Euler 
gamma values, take the following form:

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦

− 𝑦̅𝑦 (5) 

𝛾𝛾 = 𝛽𝛽
𝑦̅𝑦 − 𝛼𝛼 − 𝛽𝛽 (6) 

𝑥̅𝑥 = 1
2 ·

𝑎̅𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

𝑦̅𝑦 = 1
2 ·

𝑏̅𝑏−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

𝑆𝑆𝑥𝑥2 =
𝑆𝑆𝑎𝑎2

4·(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)2
 (9) 

𝑆𝑆𝑦𝑦2 =
𝑆𝑆𝑏𝑏2

4·(𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)2
 (10) 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦̅𝑦)2
 (11) 

𝛤𝛤(𝛼𝛼) = ∫ 𝑥𝑥𝛼𝛼−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (12) 

𝛤𝛤(𝛽𝛽) = ∫ 𝑥𝑥𝛽𝛽−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (13) 

𝛤𝛤(𝛾𝛾) = ∫ 𝑥𝑥𝛾𝛾−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (14) 

𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = ∫ 𝑥𝑥𝛼𝛼+𝛽𝛽+𝛾𝛾−1
∞

0
· 𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥 

(4)

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦

− 𝑦̅𝑦 (5) 

𝛾𝛾 = 𝛽𝛽
𝑦̅𝑦 − 𝛼𝛼 − 𝛽𝛽 (6) 

𝑥̅𝑥 = 1
2 ·

𝑎̅𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

𝑦̅𝑦 = 1
2 ·

𝑏̅𝑏−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

𝑆𝑆𝑥𝑥2 =
𝑆𝑆𝑎𝑎2

4·(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)2
 (9) 

𝑆𝑆𝑦𝑦2 =
𝑆𝑆𝑏𝑏2

4·(𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)2
 (10) 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦̅𝑦)2
 (11) 

𝛤𝛤(𝛼𝛼) = ∫ 𝑥𝑥𝛼𝛼−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (12) 

𝛤𝛤(𝛽𝛽) = ∫ 𝑥𝑥𝛽𝛽−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (13) 

𝛤𝛤(𝛾𝛾) = ∫ 𝑥𝑥𝛾𝛾−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (14) 

𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = ∫ 𝑥𝑥𝛼𝛼+𝛽𝛽+𝛾𝛾−1
∞

0
· 𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥 

(5)

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦

− 𝑦̅𝑦 (5) 

𝛾𝛾 = 𝛽𝛽
𝑦̅𝑦 − 𝛼𝛼 − 𝛽𝛽 (6) 

𝑥̅𝑥 = 1
2 ·

𝑎̅𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

𝑦̅𝑦 = 1
2 ·

𝑏̅𝑏−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

𝑆𝑆𝑥𝑥2 =
𝑆𝑆𝑎𝑎2

4·(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)2
 (9) 

𝑆𝑆𝑦𝑦2 =
𝑆𝑆𝑏𝑏2

4·(𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)2
 (10) 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦̅𝑦)2
 (11) 

𝛤𝛤(𝛼𝛼) = ∫ 𝑥𝑥𝛼𝛼−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (12) 

𝛤𝛤(𝛽𝛽) = ∫ 𝑥𝑥𝛽𝛽−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (13) 

𝛤𝛤(𝛾𝛾) = ∫ 𝑥𝑥𝛾𝛾−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (14) 

𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = ∫ 𝑥𝑥𝛼𝛼+𝛽𝛽+𝛾𝛾−1
∞

0
· 𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥 

(6)

In order to determine the values from formu-
las (4–5) it is necessary to determine the mean 
values (x, y) and standard deviations (Sx, Sy) 

Fig. 3. Algorithm for determining the tool co-
ordinates in the machine’s working space
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parameters x and y, as well as the correlation co-
efficient between them (ρx,y). The following for-
mulas are used for this:

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦

− 𝑦̅𝑦 (5) 

𝛾𝛾 = 𝛽𝛽
𝑦̅𝑦 − 𝛼𝛼 − 𝛽𝛽 (6) 

𝑥̅𝑥 = 1
2 ·

𝑎̅𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

𝑦̅𝑦 = 1
2 ·

𝑏̅𝑏−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

𝑆𝑆𝑥𝑥2 =
𝑆𝑆𝑎𝑎2

4·(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)2
 (9) 

𝑆𝑆𝑦𝑦2 =
𝑆𝑆𝑏𝑏2

4·(𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)2
 (10) 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦̅𝑦)2
 (11) 

𝛤𝛤(𝛼𝛼) = ∫ 𝑥𝑥𝛼𝛼−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (12) 

𝛤𝛤(𝛽𝛽) = ∫ 𝑥𝑥𝛽𝛽−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (13) 

𝛤𝛤(𝛾𝛾) = ∫ 𝑥𝑥𝛾𝛾−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (14) 

𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = ∫ 𝑥𝑥𝛼𝛼+𝛽𝛽+𝛾𝛾−1
∞

0
· 𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥 

(7)

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦

− 𝑦̅𝑦 (5) 

𝛾𝛾 = 𝛽𝛽
𝑦̅𝑦 − 𝛼𝛼 − 𝛽𝛽 (6) 

𝑥̅𝑥 = 1
2 ·

𝑎̅𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

𝑦̅𝑦 = 1
2 ·

𝑏̅𝑏−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

𝑆𝑆𝑥𝑥2 =
𝑆𝑆𝑎𝑎2

4·(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)2
 (9) 

𝑆𝑆𝑦𝑦2 =
𝑆𝑆𝑏𝑏2

4·(𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)2
 (10) 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦̅𝑦)2
 (11) 

𝛤𝛤(𝛼𝛼) = ∫ 𝑥𝑥𝛼𝛼−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (12) 

𝛤𝛤(𝛽𝛽) = ∫ 𝑥𝑥𝛽𝛽−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (13) 

𝛤𝛤(𝛾𝛾) = ∫ 𝑥𝑥𝛾𝛾−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (14) 

𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = ∫ 𝑥𝑥𝛼𝛼+𝛽𝛽+𝛾𝛾−1
∞

0
· 𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥 

(8)

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦

− 𝑦̅𝑦 (5) 

𝛾𝛾 = 𝛽𝛽
𝑦̅𝑦 − 𝛼𝛼 − 𝛽𝛽 (6) 

𝑥̅𝑥 = 1
2 ·

𝑎̅𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

𝑦̅𝑦 = 1
2 ·

𝑏̅𝑏−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

𝑆𝑆𝑥𝑥2 =
𝑆𝑆𝑎𝑎2

4·(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)2
 (9) 

𝑆𝑆𝑦𝑦2 =
𝑆𝑆𝑏𝑏2

4·(𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)2
 (10) 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦̅𝑦)2
 (11) 

𝛤𝛤(𝛼𝛼) = ∫ 𝑥𝑥𝛼𝛼−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (12) 

𝛤𝛤(𝛽𝛽) = ∫ 𝑥𝑥𝛽𝛽−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (13) 

𝛤𝛤(𝛾𝛾) = ∫ 𝑥𝑥𝛾𝛾−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (14) 

𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = ∫ 𝑥𝑥𝛼𝛼+𝛽𝛽+𝛾𝛾−1
∞

0
· 𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥 

(9)

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦

− 𝑦̅𝑦 (5) 

𝛾𝛾 = 𝛽𝛽
𝑦̅𝑦 − 𝛼𝛼 − 𝛽𝛽 (6) 

𝑥̅𝑥 = 1
2 ·

𝑎̅𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

𝑦̅𝑦 = 1
2 ·

𝑏̅𝑏−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

𝑆𝑆𝑥𝑥2 =
𝑆𝑆𝑎𝑎2

4·(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)2
 (9) 

𝑆𝑆𝑦𝑦2 =
𝑆𝑆𝑏𝑏2

4·(𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)2
 (10) 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦̅𝑦)2
 (11) 

𝛤𝛤(𝛼𝛼) = ∫ 𝑥𝑥𝛼𝛼−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (12) 

𝛤𝛤(𝛽𝛽) = ∫ 𝑥𝑥𝛽𝛽−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (13) 

𝛤𝛤(𝛾𝛾) = ∫ 𝑥𝑥𝛾𝛾−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (14) 

𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = ∫ 𝑥𝑥𝛼𝛼+𝛽𝛽+𝛾𝛾−1
∞

0
· 𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥 

(10)

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦

− 𝑦̅𝑦 (5) 

𝛾𝛾 = 𝛽𝛽
𝑦̅𝑦 − 𝛼𝛼 − 𝛽𝛽 (6) 

𝑥̅𝑥 = 1
2 ·

𝑎̅𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

𝑦̅𝑦 = 1
2 ·

𝑏̅𝑏−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

𝑆𝑆𝑥𝑥2 =
𝑆𝑆𝑎𝑎2

4·(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)2
 (9) 

𝑆𝑆𝑦𝑦2 =
𝑆𝑆𝑏𝑏2

4·(𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)2
 (10) 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦̅𝑦)2
 (11) 

𝛤𝛤(𝛼𝛼) = ∫ 𝑥𝑥𝛼𝛼−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (12) 

𝛤𝛤(𝛽𝛽) = ∫ 𝑥𝑥𝛽𝛽−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (13) 

𝛤𝛤(𝛾𝛾) = ∫ 𝑥𝑥𝛾𝛾−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (14) 

𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = ∫ 𝑥𝑥𝛼𝛼+𝛽𝛽+𝛾𝛾−1
∞

0
· 𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥 

(11)

The last unknowns in the density function of 
the two-dimensional Beta distribution remain the 
Euler gammas, which are determined from the 
following formulas:

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦

− 𝑦̅𝑦 (5) 

𝛾𝛾 = 𝛽𝛽
𝑦̅𝑦 − 𝛼𝛼 − 𝛽𝛽 (6) 

𝑥̅𝑥 = 1
2 ·

𝑎̅𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (7) 

𝑦̅𝑦 = 1
2 ·

𝑏̅𝑏−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

𝑆𝑆𝑥𝑥2 =
𝑆𝑆𝑎𝑎2

4·(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)2
 (9) 

𝑆𝑆𝑦𝑦2 =
𝑆𝑆𝑏𝑏2

4·(𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)2
 (10) 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦̅𝑦)2
 (11) 

𝛤𝛤(𝛼𝛼) = ∫ 𝑥𝑥𝛼𝛼−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (12) 

𝛤𝛤(𝛽𝛽) = ∫ 𝑥𝑥𝛽𝛽−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (13) 

𝛤𝛤(𝛾𝛾) = ∫ 𝑥𝑥𝛾𝛾−1∞
0 · 𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 (14) 

𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = ∫ 𝑥𝑥𝛼𝛼+𝛽𝛽+𝛾𝛾−1
∞

0
· 𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥 

(12)

𝑓𝑓𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)

𝛤𝛤(𝛼𝛼) + 𝛤𝛤(𝛽𝛽) + 𝛤𝛤(𝛾𝛾) · 

· 𝑥𝑥𝛼𝛼−1 · 𝑦𝑦𝛽𝛽−1 · (1– 𝑥𝑥–𝑦𝑦)𝛾𝛾−1 (1) 

𝑥𝑥𝑖𝑖 =
1
2 ·

𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

𝑦𝑦𝑖𝑖 =
1
2 ·

𝑏𝑏𝑖𝑖−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

𝛼𝛼 = 𝛽𝛽 · 𝑥̅𝑥𝑦̅𝑦 (4) 

𝛽𝛽 = 𝑥̅𝑥·𝑦̅𝑦2
𝜌𝜌𝑥𝑥,𝑦𝑦·𝑆𝑆𝑥𝑥·𝑆𝑆𝑦𝑦
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These dimensions for the preselected DMC 
1035V Ecoline vertical machining centre are 
1035×560×510 mm. As the evaluation of prop-
erties is strongly correlated with acceptable 
dimensional deviations and related dimension-
al ranges and ISO accuracy classes, the divi-
sion into subspaces of the machine tool work-
ing space along the z-axis will result from the 
ranges of nominal dimensions given in ISO ta-
bles [12]. Taking into account the assumptions 
above, the working space of the machine tool 

has been divided into subspaces in such a way 
(Figure 4) that:
•• The working space of the machine tool along 

the x axis has been divided into 5 parts (every 
207 mm),

•• The working space of the machine tool along 
the y axis has been divided into 4 parts (every 
140 mm),

•• The working space of the machine tool along 
the z axis has been divided into 14 parts (fur-
ther dimensional ranges are [mm]: 0-3, 3-6, 
6-10, 10-18, 18-30, 30-50, 50-80, 80-120, 
120-180, 180-250, 250-315, 315-400, 400-
500, 500-510).

For such a division of the working space of 
the analyzed milling machine (total of 280 sub-
spaces), a highly uneven distribution of machin-
ing operations in individual subspaces was ob-
tained. The machine tool system was linked with 
the workpiece system, based on the data from 
the industrial sector regarding the tested machine 
and the methods of clamping appropriate work-
pieces on it. The position of the workpiece varied 
in the small extent within the working space of 
the machine (it is worth mentioning that there is 
a risk of errors resulting from a human factor and 
a work of  operators). The highest probabilities 
of machining events were concentrated in only 8 
subspaces (Table 1).

The remaining subspace of the milling ma-
chines where the machining took place was rep-
resented in less than 5% of the total share, which 
means that their share in all machining operations 
was small and will therefore not be used when 
assessing the properties of the numerically con-
trolled machine tools. On the basis of analysis re-
sults, it can be observed for the given workpiece 
spectrum that machining is mostly carried out 
in the nominal dimensions (height) range 18-50 
mm. It was found that 85.3% of all machining 

Table 1. Subspaces where the machining operations are most likely to occur
Ranges of nominal dimensions 

on the z axis [mm]
Dimensional ranges 
on the x axis [mm]

Dimensional ranges 
on the y axis [mm]

Probability of frequency 
of events [%]

30-50 207-414 140-280 21.51

30-50 207-414 280-420 11.34

30-50 414-621 140-280 14.19

30-50 414-621 280-420 10.06

18-30 207-414 140-280 10.34

18-30 207-414 280-420 5.83

18-30 414-621 140-280 6.91

18-30 414-621 280-420 5.12
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Fig. 4. Diagram of the division of the milling machine working space into work-
ing subspaces (red color indicates a single exemplary subspace)

Fig. 5. Diagram of distribution of selected subspaces of the milling machine work-
ing spaces, in which machining operations are most likely to occur

Table 2. Normalized weighting factors “w” dependent on dimensional ranges of the coordinate system axes
Dimensional range 
on the z axis [mm]

Dimensional range 
on the x axis [mm]

Dimensional range 
on the y axis [mm]

Normalized weighting 
factor “w”

30-50 207-414 140-280 0.253

30-50 207-414 280-420 0.133

30-50 414-621 140-280 0.167

30-50 414-621 280-420 0.118

18-30 207-414 140-280 0.122

18-30 207-414 280-420 0.069

18-30 414-621 140-280 0.081

18-30 414-621 280-420 0.06

operations are carried out (Fig. 5) in the indicated 
8 subspaces of the machine working space.

The knowledge of these subspaces can be 
used to design a test piece reflecting the machin-
ing tasks performed on the milling machine. The 
specified event frequencies can be used in the 
evaluation procedures used in the operation-based 

tests. Normalization was carried out, which con-
sisted in rejecting the results from 14.7% of 
the subspaces that were least represented in the 
analysis and treating the results from the 8 most 
frequently used subspace of the machine tool as 
100%. The results were normalized to obtain the 
weighting coefficients useful for assessing the 
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Fig. 6. Distributions of the frequency of occurrence of the cutting force in the milling machine work-
ing space in (x, y) coordinates for over 600 machining programs: a) for the range of nominal dimen-

sions 30-50 mm on the z axis, b) for the range of nominal dimensions 18–30 mm on the z axis

Fig. 7. Two-dimensional beta distributions of the probability of the cutting force in the milling machine 
working space in (x, y) coordinates for more than 600 machining programs: a) for the range of nominal di-

mensions 18–30 mm on the z axis, b) for the range of nominal dimensions 30–50 mm on the z axis.

a)

b)

a) b)

properties of a numerically controlled milling 
machine (Table 2).

Since the highest probabilities of machin-
ing events occurred in the two ranges of nominal 

dimensions, namely 18–30 mm and 30–50 mm, 
the corresponding frequency distributions (Fig. 6) 
were approximated with two-dimensional beta-
systems, which are presented in Figure 7. 
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Both obtained distributions are character-
ized by the asymmetry of the positions of the 
cutting tool in the working space of the milling 
machine. The load distributions are clearly con-
centrated in a limited area of the working space. 
This can be used to develop a suitable geometry 
for the test pieces used in the operation-based 
tests of these machines and to evaluate the prop-
erties of this milling machine based on the ma-
chining tests performed.

Conclusions

The results presented in this paper show that 
it is possible to develop the appropriate applica-
tions that allow determining the probability of the 
cutting tool position in the working space of a 
numerically controlled milling machine based on 
machining programs. Their application makes it 
possible to determine the load distribution in the 
working space of this machine tool, even before 
machining. Under industrial conditions, this may 
allow the rapid testing of the milling machine’s 
accuracy to be limited to the areas where machin-
ing is expected.

The presented two-dimensional Beta distri-
butions reflect the asymmetrical probability dis-
tribution of the cutting tool position in the ma-
chine working space. The load distribution in the 
working space of the numerically controlled mill-
ing machine is clearly concentrated in a limited 
working area. This can be used to develop a meth-
od for evaluating the properties of a numerically 
controlled milling machine based on machining 
tests. This knowledge can also be used to develop 
the machine tool acceptance procedures, which 
are usually agreed between the machine manu-
facturer and the user. The information on the 
most common load conditions in a numerically 
controlled milling machine structure can also be 
taken into account when creating the numerical 
model of the machine tool and in the prototype 
development stage.

The presented results also show that two-
dimensional Beta distributions can be used to 
describe the load distribution in the working 
space of a numerically controlled milling ma-
chine, which are a simplification of the three-
dimensional actual probability distributions, 
linking them to the limits of nominal dimensions 
according to the ISO standard. These results 
also allow obtaining the information about the 

correct mounting point of the workpiece in order 
to change the load distribution to one, which al-
lows for a more even distribution of loads in the 
machine tool working space.
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