
41

Advances in Science and Technology
Research Journal
Volume 8, No. 23, Sept. 2014, pages 41–44
DOI: 10.12913/22998624.1120321

Research Article

Received: 	 2014.07.18
Accepted: 	 2014.08.11
Published: 	 2014.09.09

FAST WATERSHED-BASED DILATION

Jakub Smołka1

1	 Section of Computers Science, Department of Technical Sciences, Pope John Paul II State School of Higher
Education in Biała Podlaska, Sidorska 95/97, 21-500 Biała Podlaska, Poland, e-mail: j.smolka@dydaktyka.pswbp.pl

ABSTRACT 	
A watershed-based region growing image segmentation algorithm requires a fast wa-
tershed-based dilation implementation for effective operation. This paper presents a
new way for watershed image representation and uses this representation for effective
implementation of dilation. Methods for improving the algorithm speed are discussed.
Presented solutions may also be used for solving other problems where fast set sum-
mation is required.

Keywords: image processing, dilation, watershed transformation.

INTRODUCTION

Watershed dilation is defined for the purpose
of watershed-based region growing [1]. It turns
out that a version of the algorithm that utilizes bit-
maps is too slow. It is necessary to create a proper
data structure for representation of watersheds
and image region built by the algorithm. Addi-
tionally, the most important part of watershed-
based region growing – the dilation – needs to be
implemented in an effective manner.

BASIC CONCEPTS

Watershed transformation is performed on
images in which high values (that is bright points)
correspond to edges [2, 3, 4]. In the case of most
natural images this is not the case. That is why
it is necessary to apply a gradient filter or an-
other edge detection algorithm before watershed
transformation [4]. The transformation algorithm
treats pixel values in the gradient image as infor-
mation about terrain relief. Watershed segmen-
tation consists in simulated pouring water onto
the relief. As water accumulates in lower areas,
the catchment basins form and divide the image
into multiple watersheds. Each watershed corre-
sponds to a local minimum in the gradient image.
Implementation of the watershed transformation

used for the purpose of this paper produces output
images in which all pixels belonging to a certain
watershed have the same number. All watersheds
have unique numbers.

Watershed-based region growing is a seg-
mentation algorithm introduced in [1]. The al-
gorithm begins with a start region that contains
only one watershed and then tries to add addi-
tional watersheds through dilation. Some water-
sheds are then removed in order to bring the re-
gion’s standard deviation below a certain level.
The algorithm repeats the sequence of adding
and removing selected watersheds until it reach-
es a point where the region cannot be expanded
anymore, and its standard deviation is below a
given threshold.

WATERSHED-BASED DILATION

Dilation is a well-known morphological op-
eration [5, 6]. Due to irregular watershed shapes it
is necessary to redefine watershed-based dilation
in the following way: Dilated region D(R) con-
tains all watersheds wi, which have at least one
common point with region R before it is dilated
(watersheds and regions are considered to be sets
of points):

() { }∅≠∩∪ Ra|aR=RD ii

Advances in Science and Technology Research Journal vol. 8 (23) 2014

42

The above definition assumes that watersheds
have common border points.

∅≠∩⇒∪ ∃
≠∑ jijii

in

=j
iji aaab=w

0

where:	bij – jth arc that belongs to the border of the
watershed wi,

	 ai – interior of the watershed wi,
	 ni – number or arcs that constitute the bor-

der of the watershed wi.

WATERSHED REPRESENTATION IN THE
OPTIMAL ALGORITHM VERSION

In the optimal algorithm version watersheds
are not represented as bitmaps. Instead, an array
consisting of N sets is used. The ith array element
(Ni) is a set that contains numbers of the ith wa-
tershed neighbors. The set Ni also contains the
number of the watershed i itself. It is important
to note that unique numbers for watersheds are
assumed. In the practical implementation of the
algorithm two class templates are used – namely:
vector i set from The Standard Template Library
for C++ [7].

WATERSHED-BASED DILATION
UTILIZING SETS

Using the way of representing the above-de-
scribed watersheds, it is possible to define the di-
lation D(R) of region R as a sum of all neighbors
of all watersheds that constitute region R:

() 
k

i
ik N=NNN=RD

1
21 ...

=

∪∪∪

where:	k – number of watersheds in region R,
	 Ni – set containing numbers of ith water-

shed neighbors and the number of ith wa-
tershed itself.

A set summation is carried out with a set_
union() function template from the STL library.
It computes the sum of two sets and its worst-case
computational complexity is [7]:

() 12 −ji n+n

for two sets whose sizes are ni i nj (comparison is
considered to be the dominating operation).

The way in which the sets are summed can
significantly influence the region growing speed.

Several methods are proposed and tested. The
first of them is adding sets in the order in which
they are stored in the array. This method is given
by the following equation:

() { }[]()kNNNN=RD ∪∪∪∪ ...321

The pessimistic complexity of computing
the sum of k sets is given by:

() () () () =n++n+n++n+n+n+n+n=kW k 1...2...1212 2132121 −−−

() () () () =n++n+n++n+n+n+n+n=kW k 1...2...1212 2132121 −−−

2

where: bij – jth arc that belongs to the border of the watershed wi, ai – interior of the watershed wi,
ni – number or arcs that constitute the border of the watershed wi.

WATERSHED REPRESENTATION IN THE OPTIMAL ALGORITHM VERSION
In the optimal algorithm version watersheds are not represented as bitmaps. Instead, an array

consisting of N sets is used. The ith array element (Ni) is a set that contains numbers of the ith

watershed neighbors. The set Ni also contains the number of the watershed i itself. It is important
to note that unique numbers for watersheds are assumed. In the practical implementation of the
algorithm two class templates are used – namely: vector i set from The Standard Template
Library for C++ [7].

WATERSHED-BASED DILATION UTILIZING SETS
Using the way of representing watersheds described above, it is possible to define the dilation

D(R) of region R as a sum of all neighbors of all watersheds that constitute region R:

() U
k

i
ik N=NNN=RD

1
21 ...

=

∪∪∪

where: k – number of watersheds in region R, Ni – set containing numbers of ith watershed
neighbors and the number of ith watershed itself.

A set summation is carried out with a set_union() function template from the STL library. It
computes the sum of two sets and its worst-case computational complexity is [7]:

() 12 −ji n+n

for two sets whose sizes are ni i nj (comparison is considered to be the dominating operation).
The way in which the sets are summed can significantly influence the region growing speed.

Several methods are proposed and tested. The first of them is adding sets in the order in which
they are stored in the array. This method is given by the following equation:

() { }[]()kNNNN=RD ∪∪∪∪ ...321

The pessimistic complexity of computing the sum of k sets is given by:
() () () () =n++n+n++n+n+n+n+n=kW k 1...2...1212 2132121 −−−

() 12n12 1
1

+kni+k= i

k

=i

−−−∑
where: k – number of watersheds, ni – number of ith watershed's neighbors.
The above equation shows that the ordering of sets (with respect to their size) affects the number
of comparison operations that need to be performed. The algorithm is tested with different sets
ordering: increasing size, decreasing size and unsorted.

A second way of adding sets is adding them in pairs such that the sets being added are similar
in size. This method can be expressed in the following equation

() { } { }[] { } { }[]()k'k'k'k' NNNNNNNN=RD ∪∪∪∪∪∪∪∪ −−− 1234321 ...

where: k’ – number of watersheds (lowest power of 2 that satisfies following condition kk' ≥),
For simplicity it is assumed that the number of watersheds k' is a power of 2. If the real number
of sets does not meet this requirement, an appropriate number of empty sets can be added to the
set array. The pessimistic computational complexity of this method is given in the following
equation:

() () () () +n+n++n+n+n+n=k'W k'k' 12...1212 14321 −−− −

() () +n+n+n+n++n+n+n+n+ k'k'k'k' 12...12 1234321 −− −−−

() () =
k'

+++n++n+nk'=n++n+n++ k'k' 





−−

2
...21...2log1...2... 21221

where:	k – number of watersheds,
	 ni – number of ith watershed’s neighbors.

The above equation shows that the order-
ing of sets (with respect to their size) affects the
number of comparison operations that need to be
performed. The algorithm is tested with different
sets ordering: increasing size, decreasing size
and unsorted.

A second way of adding sets is adding them
in pairs such that the sets being added are similar
in size. This method can be expressed in the fol-
lowing equation:

() { } { }[] { } { }[]()k'k'k'k' NNNNNNNN=RD ∪∪∪∪∪∪∪∪ −−− 1234321 ...

() { } { }[] { } { }[]()k'k'k'k' NNNNNNNN=RD ∪∪∪∪∪∪∪∪ −−− 1234321 ...

where:	k’ – number of watersheds (lowest pow-
er of 2 that satisfies following condition
k’ ≥ k).

For simplicity it is assumed that the number
of watersheds k’ is a power of 2. If the real num-
ber of sets does not meet this requirement, an ap-
propriate number of empty sets can be added to
the set array. The pessimistic computational com-
plexity of this method is given in the following
equation:

() () () () +n+n++n+n+n+n=k'W k'k' 12...1212 14321 −−− −

() () () () +n+n++n+n+n+n=k'W k'k' 12...1212 14321 −−− − () () +n+n+n+n++n+n+n+n+ k'k'k'k' 12...12 1234321 −− −−−

() () +n+n+n+n++n+n+n+n+ k'k'k'k' 12...12 1234321 −− −−−

() () =k'+++n++n+nk'=n++n+n++ k'k' 





−−

2
...21...2log1...2... 21221

() () =k'+++n++n+nk'=n++n+n++ k'k' 





−−

2
...21...2log1...2... 21221

12log
21

211
2log

1
2

2log

1
2 k'+nk'=

k'

nk'=
k'

=i
i

k'

=i
i −

−






 −⋅

− ∑∑

43

Advances in Science and Technology Research Journal vol. 8 (23) 2014

The above equation shows that, in this case,
the order in which the sets are added (with re-
spect to their size) should not influence algo-
rithm’s performance.

If one assumes that t=k'=k 2 and Zt �∈Z
and additionally n1 = n2 = ... = nk (with watershed
segmentation - in practice - sets’ sizes are usu-
ally similar), then the complexity of the algorithm
adding sets in the order they are given will be in
the order ()2k'W while the algorithm adding sets
in pairs will have the complexity of ()k'k'W 2log .
As one can see, adding sets in pairs results in a
significantly faster algorithm.

EDGE TRACKING

An additional speedup of dilation computa-
tion can be achieved by limiting the number of
sets that need to be added. It is important to note
that only the watersheds that are neighbors of the
region’s R boundary B  R influence the dila-
tion’s result. This fact can be used for limiting
the number of added watersheds. Taking this into
consideration the dilation can be expressed in the
following manner:

() () 
bk

i
ibk NR=NNNR=BDR=RD

1
21

=

∪∪…∪∪∪∪

where:	kb – number of watersheds in the boundary B.

After each dilation the current boundary B’
(necessary for performing consecutive dilations)
can be computed using:

() RBD=B' �

where:	B  R – region’s boundary before dilation,
	 R – region before dilation.

The above equation contains a certain simplifi-
cation that may cause the region’s inner watersheds
to be included in the boundary. This inconsistency,
however, does not affect the region dilation’s cor-
rectness. The extra watershed can be removed by
using a simple equation (but this is unnecessary for
the purpose of the edge tracking algorithm).

COMPARISON OF DIFFERENT DILATION
ALGORITHMS

In order to compare the algorithms described
above, a test is performed. The test consists in
performing a series of dilations. Watershed trans-
formation is applied to a test image. The start re-
gion for dilation consists of only one watershed
that has a middle number (more precisely: “wa-
tershed count/2”). Dilations are performed until
the dilated region contains all watersheds in the
image. Times needed to complete the test are
given in Table 1. These are the total times of all
dilations performed using a given algorithm. The
time required for the old bitmap version of water-
shed-based dilation is also given for comparison.

Table 2 compares algorithms that add sets one
by one and in pairs. Table 3 shows how enabling
edge tracking affects the dilation performance.
As one can see, adding sets in pairs can increase

Table 1. Times needed for dilation test completion

Set summation algorithm Sorting
(with respect to size) Edge tracking ttest [s] Test image

Pairs none yes 0.73 original

Pairs none no 1.17

Pairs increasing yes 0.80

Pairs increasing no 2.40

Pairs decreasing yes 0.80

Pairs decreasing no 2.40

Consecutive none yes 0.93 watersheds

Consecutive none no 22.00

Consecutive increasing yes 1.00

Consecutive increasing no 32.87

Consecutive decreasing yes 1.13

Consecutive decreasing no 39.33

Bitmap not applicable 22.37

Advances in Science and Technology Research Journal vol. 8 (23) 2014

44

the speed dramatically (up to approximately 19
times). Enabling edge tracking can improve algo-
rithm’s performance even more – up to 35 times
– depending upon the algorithm version.

Table 4 shows the influence of set sorting on
summation performance. In general sets ordered
with respect to size can be added faster. What is
more the algorithm that adds sets in pairs is insen-
sitive to set ordering (whether it is increasing or
decreasing).

SUMMARY

The optimized version of watershed-based di-
lation is significantly faster than the bitmap-based
original. The best execution times are in the order
of tenths of a second (on an Intel Core i5 U3317U
computer), which means that a single watershed-
based dilation is computed in a couple of hun-
dredths of a second. This allows for adding optimi-
zation algorithms to watershed-based region grow-
ing that would automatically adjust its parameters.

Table 2. Dilation type comparison

Sorting Edge tracking tconsecutive / tpairs

None yes 1.27

None no 18.86

Increasing yes 1.25

Increasing no 13.69

Decreasing yes 1.42

Decreasing no 16.39

REFERENCES

1.	 Smołka J., Watershed Based Region Growing
Algorithm. Annales Informatica UMCS AI 3,
2005, 169–178.

2.	 Beucher S., Lantuejoul C., Use of watersheds in
contour detection. International Workshop on Im-
age Processing: Real-time Edge and Motion Detec-
tion/Estimation, 1979.

3.	 Beucher S., The watershed transformation applied
to image segmentation. Scanning Microscopy In-
ternational, 6, 1992, 299–314.

4.	 Ibanez L., Schroeder W., Ng L., Cates J., The ITK
Software Guide. Kitware Inc., 2003.

5.	 Seul M., O’Gorman L., Sammon M.J., Practical
Algorithms for Image Analysis: Description. Ex-
amples, and Code, Cambridge Univerisity Press
2000.

6.	 Gonzalez R.C., Woods R.E., Digital Image Pro-
cessing. Addison-Wesley Publishing Company
1993.

7.	 Standard Template Library Programmer’s Guide
http://www.sgi.com/tech/stl/

Table 3. Edge tracking influence
Summation
algorithm Sorting tno tracking / twith tracking

Pairs none 1.59

Pairs increasing 3.00

Pairs decreasing 3.00

Consecutive none 23.57

Consecutive increasing 32.87

Consecutive decreasing 34.71

Table 4. Sorting influence

Set summation algorithm Edge tracking tunsorted /tincreasing tunsorted / tdecreasing tdecreasing / tincreasing

Pairs yes 1.09 1.09 1.00

Pairs no 2.06 2.06 1.00

Consecutive yes 1.07 1.21 1.13

Consecutive no 1.49 1.79 1.20

