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INTRODUCTION

Maximum mass diffusion transfer is the aim 
of many manufacturing fields. It is defined as the 
transport of particles by the random vibration of 
molecules [Crank 1975]. The mass diffusion trans-
fer is commonly used in carburization and many 
other manufacturing processes and it is governed 
by the Fick’s laws of diffusion. The Fick’s law is 
extensively used as a model for the description 
of diffusion phenomena, such as heat conduc-
tion [Paradisi 2001, Valdes-Parada 2007, Webb 
and Pruess 2003]. Mejbro [1996] investigated 
chloride ingression into concrete. It will require 
solving Fick’s second law with time dependent 
diffusion coefficient and surface concentration. 

The author stated that “The heat equation from 
a mathematical point of view is identical with 
the simplest equation of diffusion”. Furthermore, 
Zeng et al. [2014] studied the transparency of dif-
fusion of chloride ions into concrete.

Chatterji [1995] discussed the applicability of 
the Fick’s second law to chloride ion migration 
through Portland cement concrete. The author con-
cluded that there is a fundamental contradiction 
between the experimental results of the chloride 
ion migration through the cement and the assump-
tion of a constant diffusion coefficient. Therefore, 
the diffusivity was considered as a function of time 
and depth. Lehner [1979] carried out the validity 
of Fick’s law of transient diffusion through a po-
rous medium. He proved mathematically that the 
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diffusion equation is restricted by the requirements 
of having quasi-steady diffusion on a pore scale. 
Moreover, he used the reciprocal theorem in ap-
plying the Fick’s law on macro level. In turn, Mil-
liigen et al. [2005] investigated the applicability of 
the Fick’s law in non-homogenous material and he 
concluded that by choosing the appropriate level of 
approximation for the particle flux, the difficulty of 
interpreting the Fick’s law is negligible.

The effect of mechanical vibrations on diffu-
sion process for a model consists of a gas diffused 
into a metal (hydrogen in steel) was investigated 
by Nowacki [1976]. The heat effect on the pro-
cess of diffusion was neglected to simplify the 
solution. He eliminated the thermo-diffusion and 
heat conduction differential equations and exam-
ined the displacement and the chemical potential 
by means of two methods; the elastic potential 
and basic energy methods. 

This manuscript develops a new approach to 
determine a maximum mass diffusion transfer 
between two solids by implementing of the ex-
tended surface on each solid and use the advan-
tage of the similarity between heat transfer and 
mass diffusion transfer.

DIFFUSION MASS TRANSFER 

On the basis of the previous and current au-
thors’ knowledge, the similarities between heat 
transfer and mass diffusion transfer are clear in 
the case of conduction heat transfer and mass dif-
fusion transfer in solids. From this idea, the con-
cept of mass diffusion resistance was introduced. 
Since the governing equation for conduction heat 
transfer (Fourier’s law) is identical to the mass 

diffusion transfer equation in solids (Fick’s first 
law) then the behavior of both (heat transfer and 
mass diffusion) is predicted to be identical.

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝑘𝑘

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕) = 0𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟′𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤 (1)

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝐷𝐷

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕) = 0𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘′𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤 (2)

where:	 k is the thermal conductivity of the 
medium,

	 dT/dx is temperature gradient,
	 D is a diffusion coefficient (or mass dif-

fusivity), and
	 dc/dx is concentration gradient.

From this principle, the expanding heat transfer 
applications based on the Fourier’s law of conduc-
tion to mass diffusion transfer equations will con-
sequentially be valid. If the thermal resistance con-
cept [Fried 1969] is used in diffusion transfer then:

𝑅𝑅 =
|𝑐𝑐1 − 𝑐𝑐2|

𝐽𝐽𝑅𝑅
 (3)

where:	 R is the mass diffusion resistance,
	 c1 is the initial concentration,
	 c2 is the final concentration and
	 JR is the mass diffusion rate. 

Similarly, for a series connection, the equiva-
lent resistance is expected to be the summation of 
the resistances of all materials along the path of 
mass transfer, while in the parallel connection the 
equivalent diffusion resistance is the sum of the re-
ciprocals of the diffusion resistances of the materi-
als perpendicular to the path of diffusion transfer.

Table 1. Nomenclature

𝑐𝑐1 initial concentration D diffusion coefficient (or mass diffusivity) 
c2 final concentration dc/dx concentration gradient 
𝐽𝐽𝑅𝑅 mass diffusion rate dT/dx temperature gradient 
𝐴𝐴𝑏𝑏 area of the base G.S general solution 
𝐴𝐴𝑓𝑓 area of a single fin k thermal conductivity of the medium 
𝐴𝐴𝑡𝑡 total area for both fins and base L fin Length 
𝐽𝐽𝑇𝑇 total mass diffusion rate N number of fins 
𝑟𝑟0 inner radius P perimeter 
𝑟𝑟1 outer radius R mass diffusion resistance, gas constant 
𝜂𝜂𝑇𝑇 overall surface efficiency T absolute temperature 
∆𝑥𝑥 thickness of the wall 𝜀𝜀 effectiveness of a fin 
A cross-sectional area of the wall 𝜂𝜂 efficiency of a fin 
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Using the mass diffusion resistance equa-
tion depends on the rate of mass diffusion (JR ). 
However, (JR) is found by 𝐽𝐽𝑅𝑅 = 𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . Noting 

that the slope (
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ) is depending on the profile 

of the concentration. Thus, for a linear profile 
(plane wall): 𝐽𝐽𝑅𝑅 =

𝐷𝐷
∆𝑥𝑥 𝐴𝐴∆𝐶𝐶  and 𝐽𝐽𝑅𝑅 = 2𝜋𝜋𝜋𝜋𝜋𝜋

𝑙𝑙𝑙𝑙 (𝑟𝑟1𝑟𝑟0)
∗ ∆𝐶𝐶  for 

the cylindrical case.
By applying the mass diffusion resistance 

concept on the mentioned cases (plane wall and 
a cylinder):

Plane Wall Resistance:

𝑅𝑅 = ∆𝐶𝐶
𝐽𝐽𝑅𝑅

= ∆𝐶𝐶
𝐷𝐷
∆𝑥𝑥 𝐴𝐴∆𝐶𝐶

= ∆𝑥𝑥
𝐷𝐷𝐷𝐷 (4)

where:	 D is the mass diffusivity of the material,
	 Δχ is the thickness of the wall and
	 A is the cross-sectional area of the wall.

Cylinder resistance:

𝑅𝑅 = ∆𝐶𝐶
𝐽𝐽𝑅𝑅

= ∆𝐶𝐶
2𝜋𝜋𝜋𝜋𝜋𝜋
𝑙𝑙𝑙𝑙 (𝑟𝑟1𝑟𝑟0)

∗ ∆𝐶𝐶
=
𝑙𝑙𝑙𝑙 (𝑟𝑟1𝑟𝑟0)
2𝜋𝜋𝜋𝜋𝜋𝜋  (5)

where:	 r1 and r0 are the outer and inner radii, 
respectively.

EXTENDED SURFACES FOR MASS 
DIFFUSION TRANSFER

Extended surfaces are extension solid surfac-
es that are connected to the boundaries of the base 
of the solid to enhance the base solid ability for 
heat or mass transfer [Cengel and Ghajar 2014]. 
The main goal here is to ensure the maximum 
mass diffusion transfer between material A and B 
as depicted in Figure 1.

Unlike fins in heat transfer, the introduced mass 
diffusion fin here has a mass transfer from a solid to 
a solid, rather than from a solid to a fluid. Therefore, 
the similarity of solutions of fins will occur.

Mathematical derivation of the general 
mass diffusion transfer in a fin

In order to find a governing equation to de-
scribe the mass diffusion transfer in fins, a steady-
state mass balance was done. A control volume 
for a non-uniform section fin was chosen as dis-
played in Figure 2.

Examining Figure 2 shows that:

𝐽𝐽𝑥𝑥 = 𝐽𝐽𝑥𝑥+𝑑𝑑𝑑𝑑 + 𝑑𝑑𝐽𝐽𝑃𝑃 (6)

while:

𝐽𝐽𝑥𝑥 = 𝐷𝐷1𝐴𝐴𝑐𝑐
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝐽𝐽𝑥𝑥+𝑑𝑑𝑑𝑑 = 𝐽𝐽𝑥𝑥 +

𝑑𝑑𝐽𝐽𝑥𝑥
𝑑𝑑𝑑𝑑 𝑑𝑑𝑥𝑥 

𝑑𝑑𝐽𝐽𝑃𝑃 = 𝐷𝐷2𝑑𝑑𝐴𝐴𝑠𝑠(𝐶𝐶 − 𝐶𝐶∞) 
(7)

where:	 D1 = DA, D2 = DE. 
	 DE is a fin that will mesh with this fin per-

fectly as shown in Figure 2.

Substituting back to equation (6) yields:

𝐷𝐷1𝐴𝐴𝑐𝑐
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 − (𝐷𝐷1𝐴𝐴𝑐𝑐

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 +

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝐷𝐷1𝐴𝐴𝑐𝑐

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑) − 𝐷𝐷2𝑑𝑑𝐴𝐴𝑠𝑠(𝐶𝐶 − 𝐶𝐶∞) = 0 

𝐷𝐷1𝐴𝐴𝑐𝑐
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 − (𝐷𝐷1𝐴𝐴𝑐𝑐

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 +

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝐷𝐷1𝐴𝐴𝑐𝑐

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑) − 𝐷𝐷2𝑑𝑑𝐴𝐴𝑠𝑠(𝐶𝐶 − 𝐶𝐶∞) = 0 

(8)

Canceling terms yields:

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝐷𝐷1𝐴𝐴𝑐𝑐

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑 − 𝐷𝐷2𝑑𝑑𝐴𝐴𝑠𝑠(𝐶𝐶 − 𝐶𝐶∞) = 0 (9)

Dividing by D1dχ:

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝐷𝐷1𝐴𝐴𝑐𝑐

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑) −

𝐷𝐷2
𝐷𝐷1

𝑑𝑑𝐴𝐴𝑠𝑠
𝑑𝑑𝑑𝑑 (𝐶𝐶 − 𝐶𝐶∞) = 0 (10)

Taking the derivatives in the equation yields:

𝐴𝐴𝑐𝑐
𝑑𝑑2𝑐𝑐
𝑑𝑑𝑥𝑥2 +

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝐴𝐴𝑐𝑐
𝑑𝑑𝑑𝑑 − (𝐷𝐷2𝐷𝐷1

𝑑𝑑𝐴𝐴𝑠𝑠
𝑑𝑑𝑑𝑑 (𝐶𝐶 − 𝐶𝐶∞)) = 0 (11)

Dividing by Ac:

𝑑𝑑2𝑐𝑐
𝑑𝑑𝑥𝑥2 + ( 1𝐴𝐴𝑐𝑐

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝐴𝐴𝑐𝑐
𝑑𝑑𝑑𝑑 ) − ( 1𝐴𝐴𝑐𝑐

𝐷𝐷2
𝐷𝐷1

𝑑𝑑𝐴𝐴𝑠𝑠
𝑑𝑑𝑑𝑑 (𝐶𝐶 − 𝐶𝐶∞)) = 0 (12)

Equation (12) governs the mass diffusion 
transfer for uniform and non-uniform cross sec-
tional area fins.

Figure 1. Different mass diffusion fins, material 
A – donor/receiver; material B – receiver/donor
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Extended plate with uniform cross-sectional 
area

For a constant cross sectional area [Harper 
and Brown 1922], the following terms are applied 
back to equation (12): 

𝑑𝑑𝐴𝐴𝑐𝑐
𝑑𝑑𝑑𝑑 = 0, 𝐴𝐴𝑠𝑠 = 𝑃𝑃𝑥𝑥 (13)

where:	 P is the perimeter.
	 The Pχ term is the function that will gov-

ern the area.

Plugging those assumptions back to equation 
(12) yields [Incropera et al. 2011]:

𝑑𝑑2𝑐𝑐
𝑑𝑑𝑥𝑥2 −

𝑃𝑃𝑃𝑃2
𝐴𝐴𝑐𝑐𝐷𝐷1

(𝐶𝐶 − 𝐶𝐶∞) = 0 (14)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑐𝑐 − 𝑐𝑐∞ ∧ 𝜔𝜔2 = 𝑃𝑃𝑃𝑃2
𝐴𝐴𝑐𝑐𝐷𝐷1

𝑡𝑡ℎ𝑒𝑒𝑒𝑒: 

𝑑𝑑2𝛼𝛼
𝑑𝑑𝑥𝑥2 − 𝜔𝜔2𝛼𝛼 = 0 (15)

Equation (12) is a 2nd order, homogeneous 
and ordinary differential equation [Zill 2016]. 
Since we have only two constants,thus, only two 
boundary conditions are needed. The first one 
is at χ = 0, α = αbase. While the second bound-
ary condition depends on what assumptions 
were made. The four common assumptions are 
[Holman 2009, Callister 2013]:

1.	Very Long Fin.

2.	Finite length with an insulated tip.

3.	Finite length with diffusion transfer at the tip.

4.	At a prescribed temperature.

Case 1: Very Long Fin

Applying the first boundary condition on the 
general solution (G.S) yields:

∝𝑏𝑏= 𝐶𝐶1 + 𝐶𝐶2 (16)

The second boundary condition is:
𝑥𝑥 ⟶ ∞, 𝑐𝑐 ⟶ 𝑐𝑐∞ ∧ 𝛼𝛼 ⟶ 0 (17)

Plugging it back to the G.S, produces;

𝛼𝛼
𝛼𝛼𝑏𝑏

= 𝑒𝑒−𝜔𝜔𝜔𝜔 (18)

Equation (18) is referred to as the profile of 
the transfer process, further simplification yields:

𝑐𝑐 − 𝑐𝑐∞
𝑐𝑐𝑏𝑏 − 𝑐𝑐∞

= 𝑒𝑒−𝜔𝜔𝜔𝜔 

𝑐𝑐 − 𝑐𝑐∞ = (𝑐𝑐𝑏𝑏 − 𝑐𝑐∞) ∗ 𝑒𝑒−𝜔𝜔𝜔𝜔 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝜔𝜔(𝑐𝑐𝑏𝑏 − 𝑐𝑐∞)𝑒𝑒−𝜔𝜔𝜔𝜔 

(19)

When → 0:

∴ 𝐽𝐽 = −𝐷𝐷1𝐴𝐴 ∗ (−𝜔𝜔(𝑐𝑐𝑏𝑏 − 𝑐𝑐∞)) 
𝐽𝐽 = 𝐷𝐷1𝐴𝐴𝐴𝐴(𝑐𝑐𝑏𝑏 − 𝑐𝑐∞) (20)

or:

𝐽𝐽 = √𝐷𝐷2𝐷𝐷1𝑃𝑃𝑃𝑃𝛼𝛼𝑏𝑏 (21)

Equation (21) gives the total amount of 
mass diffusion transfer in a fin with infinite 
length (the actual length is infinite relative to 
the base). In other words, a finite length can be 
considered as infinitely far away from the base 
[Incropera et al. 2011].

Figure 2. Control volume a non-uniform section fin
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Case 2: Finite length with an insulated tip

The first boundary condition is:

∝𝑏𝑏= 𝐶𝐶1 + 𝐶𝐶2 (22)

The second boundary condition is:

𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐿𝐿, (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑥𝑥=𝐿𝐿
= 0, (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑥𝑥=𝐿𝐿

= 0 (23)

Plugging the two boundary conditions into 
the G.S gives;

𝛼𝛼
𝛼𝛼𝑏𝑏

= 𝑐𝑐𝑐𝑐𝑐𝑐ℎ[𝜔𝜔 ∗ (𝐿𝐿 − 𝑥𝑥)]
𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜔𝜔𝜔𝜔)  (24)

Equation 24 is the mass diffusion transfer 
profile along the fin with finite length and insu-
lated tip.

Taking the derivative of the profile:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑑𝑑

𝑑𝑑𝑑𝑑 (𝛼𝛼𝑏𝑏 (
𝑐𝑐𝑐𝑐𝑐𝑐ℎ[𝜔𝜔 ∗ (𝐿𝐿 − 𝑥𝑥)]

𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜔𝜔𝜔𝜔) )) (25)

Simplifying and plugging it back to 
𝐽𝐽 = −𝐷𝐷1𝐴𝐴

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  yields:

𝐽𝐽 = √𝐷𝐷2𝐷𝐷1𝑃𝑃𝑃𝑃𝛼𝛼𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝜔𝜔𝜔𝜔) (26)

Similarly, this is the mass diffusion transfer 
equation for this case.

Case 3: Finite length with diffusion 
transfer at the tip

The first boundary condition is:

∝𝑏𝑏= 𝐶𝐶1 + 𝐶𝐶2 (27)

The second boundary condition is at x = L. 
The solution for finite length with diffusion trans-
fer at the tip is:

𝛼𝛼
𝛼𝛼𝑏𝑏

=
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝜔𝜔(𝐿𝐿 − 𝑥𝑥) + (1𝜔𝜔

𝐷𝐷2
𝐷𝐷1) 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝜔𝜔(𝐿𝐿 − 𝑥𝑥)

𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝜔𝜔𝜔𝜔 + (1𝜔𝜔
𝐷𝐷2
𝐷𝐷1) 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝜔𝜔𝜔𝜔

…(11) (28)

Where equation (27) is the mass diffusion 
profile. Taking the derivative and plugging back 

to 𝐽𝐽 = −𝐷𝐷1𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  

𝐽𝐽 = √𝐷𝐷2𝐷𝐷1𝑃𝑃𝑃𝑃𝛼𝛼𝑏𝑏
𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝜔𝜔𝜔𝜔 + ( 𝐷𝐷2𝜔𝜔𝐷𝐷1) 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝜔𝜔𝜔𝜔

𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝜔𝜔𝜔𝜔 + ( 𝐷𝐷2𝜔𝜔𝐷𝐷1) 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝜔𝜔𝜔𝜔
 (29)

Equation (29) is the mass diffusion transfer 
equation for a fin with finite length and mass dif-
fusion transfer at the tip. The transfer equation for 
case (4) can be similarly constructed.

For the ratio 
𝐷𝐷2
𝐷𝐷1

  [19], where D1 = DA, D2 = DE:

𝐷𝐷 = 𝐷𝐷0 ∗ 𝑒𝑒
−𝑄𝑄
𝑅𝑅𝑅𝑅  (30)

where:	 D0 is a temperature-independent Pre-
	 exponential,
	 Q is the activation energy for diffusion,
	 R is the gas constant and
	 T is the absolute temperature. Using this 

formula:

𝐷𝐷2
𝐷𝐷1

= 𝐷𝐷0 ∗ 𝑒𝑒
−𝑄𝑄
𝑅𝑅𝑇𝑇2

𝐷𝐷0 ∗ 𝑒𝑒
−𝑄𝑄
𝑅𝑅𝑇𝑇1

= 𝑒𝑒
−𝑄𝑄
𝑅𝑅𝑇𝑇2 ∗ 𝑒𝑒

𝑄𝑄
𝑅𝑅𝑇𝑇1 = 𝑒𝑒

𝑄𝑄
𝑅𝑅(

1
𝑇𝑇1−

1
𝑇𝑇2) (31)

Performance of mass diffusion fins

The purpose of fins is to increase the mass dif-
fusion transfer for the system. The effectiveness 
(ε) definition is the ratio between the mass diffu-
sion rate and the mass diffusion rate that would 
exist without the fin. Thus:

𝜀𝜀 =
𝐽𝐽𝑓𝑓𝑓𝑓𝑓𝑓

𝐷𝐷2𝐴𝐴𝑐𝑐𝛼𝛼𝑏𝑏
 (32)

where:	 Jfin is the amount of mass diffusion trans-
fer in the fin, αb = cb – ∞. 

The effectiveness in terms of mass diffusion 
resistances:

𝜀𝜀 = 𝑅𝑅𝑏𝑏
𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓

 (33)

While the efficiency of a fin (η) is defined as 
mass diffusion in the fin (Jfin) divided by the maxi-
mum mass diffusion rate (JMax), the mass diffu-
sion that would exist if the entire fin is at the base 
concentration)[20].

𝜂𝜂 =
𝐽𝐽𝑓𝑓𝑓𝑓𝑓𝑓
𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀

=
𝐽𝐽𝑓𝑓𝑓𝑓𝑓𝑓

𝐷𝐷2𝐴𝐴𝑓𝑓𝛼𝛼𝑏𝑏
… (17) (34)

Overall surface efficiency for mass diffusion 
fins

Usually, a single fin is not sufficient to the 
overall desired transfer, in practical applications 
an array of fins is used and finding the efficien-
cy of every single fin individually is tedious. 
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Therefore, the overall efficiency is considered as 
follows:

𝜂𝜂𝑇𝑇 =
𝐽𝐽𝑇𝑇
𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀

= 𝐽𝐽𝑇𝑇
𝐷𝐷2𝐴𝐴𝑡𝑡𝛼𝛼𝑏𝑏

 (35)

where:	ηr is the overall surface efficiency,
	 Jr is the total mass diffusion rate from the 

surface and At is the total area for both 
fins and base.

The mathematical expression for At is [In-
cropera et al. 2011]:

𝐴𝐴𝑡𝑡 = 𝑁𝑁𝐴𝐴𝑓𝑓 + 𝐴𝐴𝑏𝑏 … (19) (36)

where:	 N is the number of fins attached to the base,
	 Af is the area of a single fin and
	 Ab is the area of the base.

Applying the same principle for the mass dif-
fusion transfer:

𝐽𝐽𝑇𝑇 = 𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐽𝐽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
𝐽𝐽𝑇𝑇 = 𝑁𝑁𝜂𝜂𝑓𝑓𝐷𝐷2𝐴𝐴𝑓𝑓𝛼𝛼𝑏𝑏 + 𝐷𝐷2𝐴𝐴𝑏𝑏𝛼𝛼𝑏𝑏 (37)

where:	ηf is the efficiency of a single fin. 

Knowing Ab = At – NAf. Thus:

𝐽𝐽𝑇𝑇 = 𝐷𝐷2𝐴𝐴𝑡𝑡𝛼𝛼𝑏𝑏 (1 −
𝑁𝑁𝐴𝐴𝑓𝑓
𝐴𝐴𝑡𝑡

(1 − 𝜂𝜂𝑓𝑓)) 

 

(38)

Substituting this back to the main efficiency 
formula (equation 35):

𝜂𝜂𝑇𝑇 = 1 −
𝑁𝑁𝐴𝐴𝑓𝑓
𝐴𝐴𝑡𝑡

(1 − 𝜂𝜂𝑓𝑓) (39)

CONCLUSIONS

The similarity between heat transfer and mass 
diffusion transfer is very clear with both diffusion 
resistance and extended surface concepts. The 
new concept from the similarities in the governing 
equations introduces an application area (mass dif-
fusion fins) that can be used for the manufacturing 
purposes. It was shown that if the number of mass 
diffusion fins attached to the base is increased, the 
total surface efficiency increase as well, but not 
its effectiveness. The authors concluded that the 
mass diffusion for an extended plate increases the 
total mass diffusion transfer between two materi-
als. Hence, it is more efficient to design the mass 
diffusion transfer processes based on the design 
criteria mentioned in the work.
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