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INTRODUCTION

Recently, the interest in using robots that can 
mimic the natural motions of animals and insects 
to develop the robots that can improve productiv-
ity, safety, flexibility, controllability and accuracy, 
has significantly increased and is becoming more 
popular. Legged robot mechanisms in particular 
are nature-inspired models of cockroaches and 
insects [1]. With the support of powerful comput-
ers since the 1980s [2], in particular, the legged 
mechanisms of walking machines are being pro-
gressively developed because of their suitability 
for the applications that cannot be accomplished 
with tracked and wheeled walking machines. 

Recent developments have facilitated not only 
the design of the mechanisms, but also enabled 
effective control and automation of the complex 
motions of the mechanisms [3, 4]. Today’s micro 
legged robots in their construction use the indi-
vidual motor at each joint for actuation. 

The mechanisms were analyzed by Reuleaux 
[5, 6] primarily in machine elements, by study-
ing their combinations and exposed those laws of 
operation from the early science of machine kine-
matics. In its work of “Theoretische Kinematik” 
of 1875, Reuleaux [5, 6] offered many insights 
of discovering general acceptance and his second 
book “Lehrbuch der Kinematic” merged and ex-
tended earlier ideas, and philosophies in the study 
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of mechanisms. His comprehensive and orderly 
views marked a high point in the improvement 
of kinematics, which is mostly dedicated to the 
investigation of machine elements.

In the one hundred years that followed Re-
uleaux, the contributions of scientists such as 
Hartmann, et al. [7] developed the science of con-
structing mechanisms to satisfy specific motions, 
namely, kinematic synthesis. The techniques they 
used were based on mechanics and geometry. It 
was not until 1940 that Svaboda [8] developed the 
numerical methods to design a simple but versatile 
mechanism known as four-bar linkage to generate 
the desired function using sufficient precision for 
engineering resolutions. The input to the crank in-
dicates the values of the parameter of a function, 
and that on the output crank indicated the result of 
the function. Naturally, this four-bar linkage can 
generate only a partial amount of tasks because 
of the nature of the linkage itself. In early 1950s, 
the publication by Hrones and Nelson [9] of an 
“Atlas” containing approximately 10,000 coupler 
curves offered a very practical approach for the 
design engineers. This led to the progressive de-
velopment of the kinematics of mechanisms as a 
popular area of study in engineering.

This paper focuses on study of kinematic 
synthesis and analysis of the leg mechanism in a 
walking robot for a rough terrain. The leg mecha-
nism is modeled kinematically using integration 
of linkages with an objective of reducing the 
number of motors ensuring a design that mini-
mizes the machine cost. In addition, the paramet-
rically derived dimensional synthesis was carried 
out in a vector form using forward kinematic and 
inverse kinematic analysis. 

KINEMATIC ANALYSIS OF THE LEG 
MECHANISM OF A WALKING MACHINE 

The kinematic analysis of a leg mechanism 
is investigated based on the mechanism geom-
etry and the known characteristics or kinematic 
quantities such as position, angular velocity, an-
gular acceleration, that have a great importance 
in the design and analysis. In turn, the position 
and velocity give an insight into the functional 
behavior of the leg mechanism; the acceleration 
is related to the stresses and deformations in the 
leg components. The linkages are assumed to be 
fully rigid bodies for the kinematic analysis of the 
leg mechanism.

Definition of related concepts

In the past centuries, mechanisms have been 
configured into machines. Parallel with the de-
velopment of kinematics of mechanisms as en-
gineering science in the past forty years, regular 
terminologies and explanations were required to 
support its study. The definition of the concept 
mechanism by Reuleaux [5, 6], as an arrangement 
of inflexible or rigid bodies designed and coupled 
so that they can move up on each other with defi-
nite relative motion, is seen as the foundation of 
the understanding of mechanisms. 

In the study of kinematics analysis of the 
walking machine leg mechanism, distinguishing 
the definitions and the roles of some terminolo-
gies such as links, linkages, frame, joints, as well 
as high and lower pairs are important. These ter-
minologies are briefly explained below.

Links are the individual parts of the leg 
mechanism which is considered as a rigid body 
and linked with supplementary links to trans-
fer motion and forces. In principle, a true rigid 
body does not change its shape during motion 
due to the strains in members of walking ma-
chines. In reality, true rigid body does not exist, 
it is an idealization used in mechanisms that do 
not consider small deflections or are designed to 
minimally deform and are considered as a rigid 
body. In literature, real machine member links are 
considered as a perfect rigid bodies for modeling 
purposes [9, 10].

A linkage is part of a mechanism where rigid 
body parts are connected together to form a chain. 
In a four-bar mechanism, for instance, a combina-
tion of a number of pair elements is connected by 
rigid pieces or links, where a pin or pivoted joints 
allow relative motion between their parts. In ki-
nematic chains, linkages represent an assemblage 
of rigid bodies connected by kinematic joints of 
lower pairs, though both mechanisms and ma-
chines can be taken as a link. The term linkage 
is, in general, limited to kinematic chains made of 
lower pairs [8, 11].

A frame is a part which serves as the frame of 
reference for the motion of all parts. It is a typical 
part that does not exhibit motions. It is station-
ary or a fixed link in a leg mechanism, and when 
there is no link, it is actually a fixed link which 
determines the relative motion of other links. It 
is the reference from which all motions of the leg 
mechanisms are accounted for [8. 12]. 

Joints are movable connections used to al-
low relative motions between links of the leg 
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mechanism of a walking machine. Each joint re-
duces the mobility of the system. The joint be-
tween a crank and connecting rod of the slider-
crank mechanism, for instance, is called a revolute 
joint or pin joint. The revolute joint has one DOF 
in that if one element is fixed, the revolute joint 
allows only the rotation of the other in a plane [8]. 

Lower and Higher Pairs: Connection between 
rigid bodies can be categorized as lower and high-
er pairs of elements. The gear and pinion which 
is used in the leg mechanism to transfer motion 
have a lower pair and a theoretical surface con-
tact with one another, while the two elements in 
a higher pair joint have theoretically a point or a 
line contact. Lower pairs include the revolute or 
pin connections [9].

Any mechanical system can be classified ac-
cording to its number of independent parameters 
which are needed to uniquely define the position 
in its space at any instant of time; i.e. degrees of 
freedom (DOF). The number of joints in a robot 
roughly translated to the DOF. In the design pro-
cess, three different possibilities were considered. 
However, the up-down and forward-back motion 
is approximately linear and provides a method 
to propel forward or backward while adjusting 
to uneven terrain. For the leg mechanism of the 
walking machine, the general Gruebler-Kutzbach 
criterion can be applied to find the number of the 
DOF. This criterion is given as:

𝐷𝐷𝐷𝐷𝐷𝐷 = 6(𝑛𝑛 − 1) − 2𝑝𝑝 − ℎ (1)
where:	 n – number of linkages,
	 p – number of lower pairs and
	 h – number of higher pairs

It is desired for a walking machine to have the 
flexibility required for walking on rough terrain 
while still being able to achieve fast locomotion 
and requiring minimal actuation for walking on 
flat terrain. For a walking machine to be capable 
of walking on various terrains, each leg requires 
three DOF to carry out the back and forth motion, 
up and down motion, and turning motion. Since 
the turning motion can be separated from other 
two motions in a leg mechanism, a two DOF 
planar mechanism, which provides the back and 
forth and the up and down motions are of interest. 
If all three DOF need to be simultaneously actu-
ated for a rough terrain walking, then the walking 
machines can be slow. Conversely, if a leg mech-
anism is designed that only one DOF is required 
to be actuated for normal walking, then the speed 
of the walking machine can be fast. 

Direct kinematic analysis of a leg mechanism 

In earlier studies of mechanisms, two basic 
types of methods for analysis of mechanisms have 
mostly been used, namely; graphical and analyti-
cal. These methods involve different techniques 
for the analysis of mechanisms and they are suit-
able for a particular category of mechanisms. The 
graphical method is the classical approach conve-
niently used for simple mechanisms and provides 
better visualization. Nowadays, due to the de-
veloped sophisticated computer programs, some 
engineers in the design of mechanisms desire to 
work with the analytical approach. 

When mechanisms are becoming more com-
plex and many generalized coordinates are neces-
sary, other types of analysis techniques are pre-
ferred, such as the Denavit-Hartenberg (DH) ap-
proach [6, 13, 14], as well as computational tools, 
by developing the analysis algorithms. In walking 
machine construction, links are assumed as a rig-
id body and connected together by joints. When 
a walking machine leg mechanism is placed in a 
three-dimensional space, it has three positional 
DOFs and three orientation DOFs, i.e. a total of 
six. Denavit and Hartenberg [6] suggested that it 
is imaginable to use four parameters to achieve 
kinematic analysis of robots in multi-degree 
of freedom for the first time, in which links are 
connected by rotary or prismatic joints. This DH 
mechanism (depicted in Fig. 1) is used to repre-
sent and model the leg mechanism and drive its 
equation of motion. This representation is now 
used as a standard approach for the kinematic 
analysis of the walking machine leg mechanisms. 
It simplifies the ways of modeling the leg mecha-
nism arrangement, irrespective of its order and 
difficulty or complexity [15, 16].

The significance of kinematic study over-
views the presence of a technique which permits 
numerous locations of end-effector to be defined 
in a reliable and definite means. The DH concept 
technique says that each joint of the robot is as-
signed to a coordinate frame. Under this assump-
tion, it is possible to simplify complex kinematic 
structures. In order to model the walking machine 
leg mechanism with DH representation [13] first, 
assign a local reference frame for every single 
joint i.e. assign a z -axis and an x -axis. In DH 
representation, the y -axis cannot be used. 

While performing the analysis of a walking 
machine by calculating the position, velocity and 
acceleration of points on the different parts of the 
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leg mechanism and tracing the trajectory they 
follow are represented by homogeneous transfor-
mation matrices. Each homogenous transforma-
tion matrix is represented as a product of basic 
transformations, obtained for each link of the leg 
mechanism. For instance, in the DH representa-
tion in Fig. 1, the direct kinematics functions are 
constructed by decomposition of the individual 
transformations into a homogeneous transforma-
tion matrix. 

 Since the links lie on the same axis offset an-
gle, the offset distance (excluding prismatic ones) 
between them is insignificant. The forward kine-
matic analysis is conducted to determine the posi-
tion and orientation of the end points of the leg 
that touch the ground relative to the base frame 
of the walking robot. This is done in terms of the 
joint variables, which are the link extensions in 
the case of sliding or prismatic joint, and the an-
gle between the links in the case of rotational or 
revolute joints.

Once the coordinate systems are rigidly fixed 
to each link of the leg mechanism and the link 
joint parameter is formed, coordinate transforma-
tion matrices are specified. The coordinate trans-
formation matrices contain the information about 
the links and the displacements (both sliding and 
rotation) between the coordinate frames in the 
form of dual angles. Using the transformation 
matrix along the z -axis, the overall transforma-
tion matrix is given by:

[𝐴𝐴]0
𝑛𝑛 = [𝐴𝐴]0

1 [𝐴𝐴]1
2 [𝐴𝐴]2

3[𝐴𝐴]3
4 [𝐴𝐴]4

5 [𝐴𝐴]5
𝑛𝑛 (2)

where:	 n is a number of joints.

Each of the homogeneous transformation ma-
trices for all the joints, both the revolute joints 
(when n = 1, 2, …5) and the prismatic joint (when 
n = 6) are determined as follows. 

When n = 1: revolute joint – exhibits rota-
tional motion and the homogeneous matrix 𝐴𝐴0

1   
is given as: 

𝐴𝐴0
1 = [

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1) −𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃1) 0  𝑎𝑎1 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1)
𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃1) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1) 0  𝑎𝑎1 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃1)

0 0 1 0
0 0 0 1

] (3)

When n = 2 revolute joint – exhibits rotational 
motion, and the homogenous matrix 𝐴𝐴12  is given 
as:

𝐴𝐴1
2 = [

cos(𝜃𝜃2) − sin(𝜃𝜃2) 0  𝑎𝑎2 ∗ cos(𝜃𝜃2)
sin(𝜃𝜃2) cos(𝜃𝜃2) 0 𝑎𝑎2 ∗ sin(𝜃𝜃2)

0 0 1 0
0 0 0 1

] (4)

In a similar fashion, the matrices for the ro-
tational motion of the revolute joints when n = 3, 
n = 4 and n = 5 are expressed as given in Eq. 5, 6 
and 7, respectively. 

𝐴𝐴2
3 = [

cos(𝜃𝜃3) − sin(𝜃𝜃3) 0  𝑎𝑎3 ∗ cos(𝜃𝜃3)
sin(𝜃𝜃3) cos(𝜃𝜃3) 0 𝑎𝑎3 ∗ sin(𝜃𝜃3)

0 0 1 0
0 0 0 1

] (5)

𝐴𝐴3
4 = [

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃4) −𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃4) 0  𝑎𝑎4 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃4)
𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃4) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃4) 0 𝑎𝑎4 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃4)

0 0 1 0
0 0 0 1

] (6)

𝐴𝐴4
5 = [

cos(𝜃𝜃5) − sin(𝜃𝜃5) 0  𝑎𝑎5 ∗ cos(𝜃𝜃5)
sin(𝜃𝜃5) cos(𝜃𝜃5) 0 𝑎𝑎5 ∗ sin(𝜃𝜃5)

0 0 1 0
0 0 0 1

] (7)

When n = 6, the mechanism has a prismatic 
joint that exhibits translational motion. Its ho-
mogenous matrix is then expressed as: 

𝐴𝐴5
6 = [

1 1 0  0
0 1 0 0
0 0 1 𝑑𝑑6
0 0 0 1

] (8)

As a result, the overall homogeneous trans-
formation matrix defining the last link in touch 

Fig. 1. DH convention of leg mechanism
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with the ground with respect to the robot body is 
given by: 

[𝐴𝐴]0𝑛𝑛 = [
𝑛𝑛𝑥𝑥 𝑜𝑜𝑥𝑥 𝑠𝑠𝑥𝑥 𝑝𝑝𝑥𝑥
𝑛𝑛𝑦𝑦 𝑜𝑜𝑦𝑦 𝑠𝑠𝑦𝑦 𝑝𝑝𝑦𝑦
𝑛𝑛𝑧𝑧 𝑜𝑜𝑧𝑧 𝑠𝑠𝑧𝑧 𝑝𝑝𝑧𝑧
0 0 0 1

] = [𝐴𝐴0
𝑛𝑛 𝑃𝑃0𝑛𝑛
0 1 ] (9)

where:	𝐴𝐴0𝑛𝑛 = [
𝑛𝑛𝑥𝑥 𝑜𝑜𝑥𝑥 𝑠𝑠𝑥𝑥
𝑛𝑛𝑦𝑦 𝑜𝑜𝑦𝑦 𝑠𝑠𝑦𝑦
𝑛𝑛𝑧𝑧 𝑜𝑜𝑧𝑧 𝑠𝑠𝑧𝑧

]  is the rotation ma-

trix and

	 𝑃𝑃0
𝑛𝑛 = [

𝑝𝑝𝑥𝑥 
𝑝𝑝𝑦𝑦
𝑝𝑝𝑧𝑧

]   is the position vector.

Both the position vector and the rotation ma-
trix are functions of joint position θ, and the leg 
tip position px, py, pz that can be directly obtained 
from the position vector 𝑃𝑃0𝑛𝑛 . The rotation ma-
trix 𝐴𝐴0𝑛𝑛   represents the orientation of the tip leg 
point, relative to the body of the robot. 

The homogeneous transformation matrix for 
n number of joints can also be formulated as

[𝐴𝐴]0𝑛𝑛 = [
𝑛𝑛𝑥𝑥 𝑜𝑜𝑥𝑥 𝑠𝑠𝑥𝑥 𝑝𝑝𝑥𝑥
𝑛𝑛𝑦𝑦 𝑜𝑜𝑦𝑦 𝑠𝑠𝑦𝑦 𝑝𝑝𝑦𝑦
𝑛𝑛𝑧𝑧 𝑜𝑜𝑧𝑧 𝑠𝑠𝑧𝑧 𝑝𝑝𝑧𝑧
0 0 0 1

] (10)

Inverse kinematic analysis of a leg mechanism 

In inverse kinematic modeling of mecha-
nisms of the walking machine, the value of a joint 
position is determined in terms of the position and 
orientation of the tip leg point by employing in-
verse kinematics method. Thus, the homogeneous 
transformation matrix defining the walking leg 
with respect to the body of the walking machine 
is calculated as:

[𝐴𝐴]0𝑛𝑛 = [𝐴𝐴0
𝑛𝑛 𝑃𝑃0𝑛𝑛
0 1 ] = [

𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 𝑎𝑎14
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23 𝑎𝑎24
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33 𝑎𝑎34
𝑎𝑎41 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44

] 

[𝐴𝐴]0𝑛𝑛 = [𝐴𝐴0
𝑛𝑛 𝑃𝑃0𝑛𝑛
0 1 ] = [

𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 𝑎𝑎14
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23 𝑎𝑎24
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33 𝑎𝑎34
𝑎𝑎41 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44

] 
(11)

Assuming [𝐴𝐴]0𝑛𝑛 = 𝑈𝑈0   

𝑈𝑈0 = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 𝑎𝑎14
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23 𝑎𝑎24
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33 𝑎𝑎34
𝑎𝑎41 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44

] (12)

All elements of the matrix U0 are known and 
given by a homogeneous transformation matrix. 
In fact, determining the joint position θ directly 
from the equation of the homogeneous transfor-
mation matrix is very difficult. Therefore, by suc-
cessively pre-multiplying the two equations by 
the matrices (j-1Aj)

-1, for j = 1,...,n,  a new set of 
equations can be obtained. 

𝑈𝑈0 = [𝐴𝐴]0
𝑛𝑛 = [𝐴𝐴]0

1 [𝐴𝐴]1
2 [𝐴𝐴]2

3[𝐴𝐴]3
4 [𝐴𝐴]4

5 [𝐴𝐴]5
𝑛𝑛 (13)

In a similar way, a new set of equations are 
given for n = 6 as:

𝑈𝑈1 = ([𝐴𝐴]0
1)−1𝑈𝑈0 =  [𝐴𝐴]1

2 [𝐴𝐴]2
3[𝐴𝐴]3

4 [𝐴𝐴]4
5 [𝐴𝐴]5

𝑛𝑛 
𝑈𝑈2 = ([𝐴𝐴]1

2)−1𝑈𝑈1 =  [𝐴𝐴]2
3[𝐴𝐴]3

4 [𝐴𝐴]4
5 [𝐴𝐴]5

𝑛𝑛 
𝑈𝑈3 =  ([𝐴𝐴]2

3)−1𝑈𝑈2 = [𝐴𝐴]2
3[𝐴𝐴]3

4 [𝐴𝐴]4
5 [𝐴𝐴]5

𝑛𝑛 

𝑈𝑈4 = ([𝐴𝐴]3
4)−1𝑈𝑈3 =  [𝐴𝐴]3

4 [𝐴𝐴]4
5 [𝐴𝐴]5

𝑛𝑛 
𝑈𝑈5 = ([𝐴𝐴]4

5)−1𝑈𝑈4 =  [𝐴𝐴]4
5 [𝐴𝐴]5

𝑛𝑛 
𝑈𝑈6 = ([𝐴𝐴]5

6)−1𝑈𝑈5 =  [𝐴𝐴]5
𝑛𝑛 

 
𝑈𝑈1 = ([𝐴𝐴]0

1)−1𝑈𝑈0 =  [𝐴𝐴]1
2 [𝐴𝐴]2

3[𝐴𝐴]3
4 [𝐴𝐴]4

5 [𝐴𝐴]5
𝑛𝑛 

𝑈𝑈2 = ([𝐴𝐴]1
2)−1𝑈𝑈1 =  [𝐴𝐴]2

3[𝐴𝐴]3
4 [𝐴𝐴]4

5 [𝐴𝐴]5
𝑛𝑛 

𝑈𝑈3 =  ([𝐴𝐴]2
3)−1𝑈𝑈2 = [𝐴𝐴]2

3[𝐴𝐴]3
4 [𝐴𝐴]4

5 [𝐴𝐴]5
𝑛𝑛 

𝑈𝑈4 = ([𝐴𝐴]3
4)−1𝑈𝑈3 =  [𝐴𝐴]3

4 [𝐴𝐴]4
5 [𝐴𝐴]5

𝑛𝑛 
𝑈𝑈5 = ([𝐴𝐴]4

5)−1𝑈𝑈4 =  [𝐴𝐴]4
5 [𝐴𝐴]5

𝑛𝑛 
𝑈𝑈6 = ([𝐴𝐴]5

6)−1𝑈𝑈5 =  [𝐴𝐴]5
𝑛𝑛 

 
where:	 Uj = (j-1Aj)

-1Uj-1, j = 1, … 6, and these equa-
tions are named as forward equations.

By equating the position matrix from the ho-
mogeneous transformation matrix, the position of 
the tip of the leg touching the ground can be de-
termined. This analytical approach considers the 
initial assumption that 

𝑃𝑃0𝑛𝑛 = [
𝑃𝑃𝑥𝑥𝑛𝑛
𝑃𝑃𝑦𝑦𝑛𝑛
𝑃𝑃𝑧𝑧𝑛𝑛

] and [𝑅𝑅]0𝑛𝑛 = [𝐴𝐴0
𝑛𝑛 𝑃𝑃0𝑛𝑛
0 1 ] (14)

where:	 𝑅𝑅0𝑛𝑛 = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

]  and 

	 𝑃𝑃0𝑛𝑛 = [
𝑃𝑃𝑥𝑥𝑛𝑛
𝑃𝑃𝑦𝑦𝑛𝑛
𝑃𝑃𝑧𝑧𝑛𝑛

] , 

	 R0
n = rotation matrix   and 

	 P0
n = position matrix .

Instantaneous kinematic analysis of leg 
mechanism 

In order to derive the velocity relationships 
between the operational coordinates and the 
joint coordinates, the direct kinematic model that 
can express the linear velocities (vx, vy, vz)

 
and 
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angular velocities (wx, wy, wz)  of the tool frame in 
terms of the Jacobian matrix and the derivatives 
of the joint variables, are obtained by differentia-
tion with respect to time of the forward position 
kinematics equation.

𝑋̇𝑋 =

[
 
 
 
 
 
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
 𝑣𝑣𝑧𝑧
 𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
 𝜔𝜔𝑧𝑧 ]

 
 
 
 
 

=

[
 
 
 
 𝜕𝜕𝑓𝑓1
𝜕𝜕𝜃𝜃1

⋯ 𝜕𝜕𝑓𝑓1
𝜕𝜕𝜃𝜃𝑛𝑛

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑚𝑚
𝜕𝜕𝜃𝜃1

⋯ 𝜕𝜕𝑓𝑓𝑚𝑚
𝜕𝜕𝜃𝜃𝑛𝑛]

 
 
 
 
(

𝜃̇𝜃1
:
:

𝜃̇𝜃𝑛𝑛

) (15)

where:	 n is the number of joints and this relation 
can simply be denoted as 

𝑋̇𝑋 = 𝐽𝐽(𝜃𝜃) 𝜃̇𝜃 (16)

where:	 𝑋̇𝑋  = [𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦, 𝑣𝑣𝑧𝑧, 𝜔𝜔𝑥𝑥, 𝜔𝜔𝑦𝑦, 𝜔𝜔𝑧𝑧]𝑇𝑇  denotes 
the vector of operational velocities, which 
is the velocity of the origin of the tool 
frame combined with its angular velocity 
with respect to the fixed Cartesian coordi-

nate frame and 𝜃̇𝜃 = [𝜃𝜃1̇ 𝜃𝜃2̇ 𝜃𝜃3 ̇ 𝜃𝜃4̇ 𝜃𝜃5 ̇ 𝑑𝑑6̇]𝑇𝑇  
is the vector of angular velocities. 

The 6×6 matrix J(θ) is the Jacobian matrix of 
the tool frame with respect to the base frame. The 
Jacobian matrix is composed of two parts: the up-
per half of the Jacobian Jv(θ)  which is used to 
calculate the linear velocity v, and the lower half 
of the Jacobian J ω (θ), which calculates the angu-
lar velociy ω . Thus, Eq. (15) can be rewritten as:

[ v
𝜔𝜔] = [𝐽𝐽𝑣𝑣(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)

𝐽𝐽𝜔𝜔(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)
] [𝜃̇𝜃1 𝜃̇𝜃2 𝜃̇𝜃3 𝜃̇𝜃4 𝜃̇𝜃5 𝑑̇𝑑6]𝑇𝑇 (17)

The elements of the Jacobian matrix can be 
obtained by differentiating the direct geometric 
model X = J(θ) with respect to joint position θ as:

𝐽𝐽𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕𝑖𝑖 (𝜃𝜃)
𝜕𝜕𝜕𝜕𝑗𝑗

 (18)

In order to compute the Jacobian matrix, us-
ing the DH frames, i.e.

 𝐽𝐽𝑣𝑣(𝜽𝜽) = { 𝐙𝐙𝟎𝟎
𝐢𝐢−𝟏𝟏, ∶ 𝐟𝐟𝐟𝐟𝐟𝐟 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣 

𝐙𝐙𝟎𝟎
𝐢𝐢−𝟏𝟏 ∗ [𝐎𝐎𝟎𝟎

𝐢𝐢 − 𝐎𝐎𝟎𝟎
𝐢𝐢−𝟏𝟏]: 𝐟𝐟𝐟𝐟𝐟𝐟 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣  

𝐽𝐽𝜔𝜔(𝜽𝜽) = {
𝟎𝟎, ∶ 𝐟𝐟𝐟𝐟𝐟𝐟 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣 

𝐙𝐙𝟎𝟎
𝐢𝐢−𝟏𝟏 ∶ 𝐟𝐟𝐟𝐟𝐟𝐟 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣  

The Jacobian matrix is formulated in the form of
𝐽𝐽𝑣𝑣(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)
𝐽𝐽𝜔𝜔(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)

=

[
 
 
 
 
 𝑅𝑅0

1 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
1) 𝑅𝑅0

2 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
2) 𝑅𝑅0

3 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
3) 𝑅𝑅0

4 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
4) 𝑅𝑅0

5 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
5) 𝑅𝑅0

6 [
0
0
1
]

𝑅𝑅0
1 [

0
0
1
] 𝑅𝑅0

2 [
0
0
1
] 𝑅𝑅0

3 [
0
0
1
] 𝑅𝑅0

4 [
0
0
1
] 𝑅𝑅0

5 [
0
0
1
] 𝑅𝑅0

6 [
0
0
0
]
]
 
 
 
 
 

 = 

𝐽𝐽𝑣𝑣(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)
𝐽𝐽𝜔𝜔(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)

=

[
 
 
 
 
 𝑅𝑅0

1 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
1) 𝑅𝑅0

2 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
2) 𝑅𝑅0

3 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
3) 𝑅𝑅0

4 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
4) 𝑅𝑅0

5 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
5) 𝑅𝑅0

6 [
0
0
1
]

𝑅𝑅0
1 [

0
0
1
] 𝑅𝑅0

2 [
0
0
1
] 𝑅𝑅0

3 [
0
0
1
] 𝑅𝑅0

4 [
0
0
1
] 𝑅𝑅0

5 [
0
0
1
] 𝑅𝑅0

6 [
0
0
0
]
]
 
 
 
 
 

 

𝐽𝐽𝑣𝑣(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)
𝐽𝐽𝜔𝜔(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)

=

[
 
 
 
 
 𝑅𝑅0

1 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
1) 𝑅𝑅0

2 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
2) 𝑅𝑅0

3 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
3) 𝑅𝑅0

4 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
4) 𝑅𝑅0

5 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
5) 𝑅𝑅0

6 [
0
0
1
]

𝑅𝑅0
1 [

0
0
1
] 𝑅𝑅0

2 [
0
0
1
] 𝑅𝑅0

3 [
0
0
1
] 𝑅𝑅0

4 [
0
0
1
] 𝑅𝑅0

5 [
0
0
1
] 𝑅𝑅0

6 [
0
0
0
]
]
 
 
 
 
 

 

𝐽𝐽𝑣𝑣(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)
𝐽𝐽𝜔𝜔(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)

=

[
 
 
 
 
 𝑅𝑅0

1 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
1) 𝑅𝑅0

2 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
2) 𝑅𝑅0

3 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
3) 𝑅𝑅0

4 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
4) 𝑅𝑅0

5 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
5) 𝑅𝑅0

6 [
0
0
1
]

𝑅𝑅0
1 [

0
0
1
] 𝑅𝑅0

2 [
0
0
1
] 𝑅𝑅0

3 [
0
0
1
] 𝑅𝑅0

4 [
0
0
1
] 𝑅𝑅0

5 [
0
0
1
] 𝑅𝑅0

6 [
0
0
0
]
]
 
 
 
 
 

 

𝐽𝐽𝑣𝑣(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)
𝐽𝐽𝜔𝜔(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)

=

[
 
 
 
 
 𝑅𝑅0

1 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
1) 𝑅𝑅0

2 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
2) 𝑅𝑅0

3 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
3) 𝑅𝑅0

4 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
4) 𝑅𝑅0

5 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
5) 𝑅𝑅0

6 [
0
0
1
]

𝑅𝑅0
1 [

0
0
1
] 𝑅𝑅0

2 [
0
0
1
] 𝑅𝑅0

3 [
0
0
1
] 𝑅𝑅0

4 [
0
0
1
] 𝑅𝑅0

5 [
0
0
1
] 𝑅𝑅0

6 [
0
0
0
]
]
 
 
 
 
 

 

𝐽𝐽𝑣𝑣(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)
𝐽𝐽𝜔𝜔(𝜃𝜃)(𝟑𝟑𝟑𝟑𝟑𝟑)

=

[
 
 
 
 
 𝑅𝑅0

1 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
1) 𝑅𝑅0

2 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
2) 𝑅𝑅0

3 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
3) 𝑅𝑅0

4 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
4) 𝑅𝑅0

5 [
0
0
1
]𝑋𝑋(𝑃𝑃0

6 − 𝑃𝑃0
5) 𝑅𝑅0

6 [
0
0
1
]

𝑅𝑅0
1 [

0
0
1
] 𝑅𝑅0

2 [
0
0
1
] 𝑅𝑅0

3 [
0
0
1
] 𝑅𝑅0

4 [
0
0
1
] 𝑅𝑅0

5 [
0
0
1
] 𝑅𝑅0

6 [
0
0
0
]
]
 
 
 
 
 

 

(19)

Similarly, the acceleration can be obtained by 
differentiating the velocity equations as:

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑋̇𝑋) =

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝐽𝐽(𝜃𝜃)𝜽̇𝜽) (20)

𝑋̈𝑋 = 𝐽𝐽(𝜃𝜃)𝜽̈𝜽 + ( 𝒅𝒅𝒅𝒅𝒅𝒅 𝐽𝐽(𝜃𝜃))𝜽̇𝜽 (21)

Dynamic analysis of a walking 
machine leg mechanism 

In the study of the dynamics of leg mecha-
nisms, the forces and/or torques required to cause 
motion of the mechanisms are considered to de-
rive the kinematics of the leg mechanisms or sus-
pension systems using DH convention approach 
(as discussed in the previous section) without 
consideration of the forces and moments produc-
ing the motion. Under this section, the dynamic 
analysis is carried out to formulate the parametric 
equation of motion which describes the relation-
ship between force and motion. 

The dynamics of mechanisms can be obtained 
in various ways, namely by using a Newton-Euler 
dynamic formulation, a Lagrangian formulation, 
Kane’s Method, and the like. The Newton-Eul-
er method is based on Newton’s second law of 
motion with its rotational analog called Euler’s 
equation. It describes how forces and moments 
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are related to acceleration. In the iterative New-
ton-Euler algorithm, the position, velocity and 
acceleration of the joints are known. Using these 
parameters as input and assuming that the mass 
properties of the mechanism and any externally 
acting forces are known, the joint torques re-
quired to cause this motion can be calculated. 

Dynamics of the walking machine can be 
divided into two basic categories: forward and 
inverse dynamics. The forward dynamics deals 
with finding the response of a given rigid body in-
fluenced by force and torques applied on it, which 
was simulated by providing link length and rotat-
ing angle to determine the position [14]. On the 
other hand, the opposite procedure is implement-
ed to find the force and torques where motion is 
created in the system through inverse dynamic 
analysis. The link length and position is given 
to determine the angle of rotation of the links. 
This method is widely used in the control sys-
tem of a motion [17]. In general, for the analysis 
and modeling of dynamic equations of complex 
mechanisms in robot design subjected to holo-
nomic constraints, the Newton-Euler and Euler-
Lagrange formulations are most common ones. 
The Lagrangian equation formulation involves 
the kinetic and potential energy of the system. 

For the walking machine, the kinematic mo-
tion analysis is of the leg mechanism and the con-
sideration of the equation of motion is crucial. 
In order to perform forward dynamic analysis, 
some assumptions need to be made, including the 
following. 
1.	The links are rigid.
2.	The friction in the joints is ignored.
3.	The leg mechanism is assumed to be at a con-

stant velocity with no inclination terrain. 
4.	When the leg is in contact with the ground, it is 

assumed to have zero impact.

Furthermore, the generic dynamic equation 
can be formulated as an equation of motion for 
the leg mechanism.

Euler-Lagrange equation of 
the leg mechanism 

Let θ1, ....., θ1 be generalized coordinates that 
completely locate a dynamic system. Let K and 
V  be the total kinetic and potential energy stored 
in a dynamic system, respectively. The Lagrange 
method is based on describing the scalar energy 
functions of the system, including the kinetic en-
ergy K(θ, 𝜃̇𝜃. ) and the potential energy V(θ). The 

two energy functions can be expressed in terms 
of the joint positions θ and the joint velocities 𝜃̇𝜃. .  

Lagrange equation can be defined as: 

ℒ(𝜃𝜃𝑖𝑖, 𝜃𝜃𝑖̇𝑖) = 𝐾𝐾 − 𝑉𝑉 (22)

Since the kinetic and potential energies are 
functions of 𝜃𝜃𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃𝑖̇𝑖 , (i = 1,2,3,...n)  using the 
Lagrangian equation of motion, the dynamic sys-
tem is given by 

𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑖̇𝑖

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑖𝑖

= 𝑄𝑄𝑖𝑖 (23)

where:	 Qi= externally applied generalized force, 
	 L = K – V, 
	 V = V(θ) and is the potential energy, 
	 K = K(θ) is the kinetic energy, and 
	 i = 1,...,n.

Kinetic and potential energy expression 

In order to use the Euler Lagrange equations, 
the kinetic and potential energy has to be ex-
pressed for the leg mechanisms. After the deriva-
tion of kinetic and potential energy for each link, 
the Lagrangian of the leg mechanisms is the sum-
mation of the individual Lagrangians. The overall 
kinetic energy is given by:

𝐾𝐾 = 𝐾𝐾𝑡𝑡 + 𝐾𝐾𝑟𝑟 =
1
2𝑚𝑚𝑣̇𝑣

𝑇𝑇𝑣̇𝑣 + 1
2 𝐼𝐼𝜔̇𝜔

𝑇𝑇𝜔̇𝜔 (24)

𝐾𝐾𝑖𝑖 =
1
2𝑣𝑣

𝑇𝑇𝑀𝑀𝑣𝑣 (25)

For n linkages, the kinetic energy expression 
can be expressed as 

𝐾𝐾 = ∑ 𝐾𝐾𝑖𝑖

𝑛𝑛

𝑖𝑖=1
= 1

2 ∑(𝑣𝑣𝑇𝑇𝑀𝑀 𝑣𝑣)𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (26)

This becomes

𝐾𝐾 = ∑ 1
2

𝑛𝑛

𝑖𝑖=1
𝐽𝐽(𝜃𝜃)𝜃̇𝜃𝑇𝑇𝑀𝑀 𝐽𝐽(𝜃𝜃)𝜃̇𝜃 = 1

2 𝜃̇𝜃𝑇𝑇𝑀𝑀(𝜃𝜃)𝜃̇𝜃 (27)

where:	 𝑀𝑀(𝜃𝜃) = ∑ 𝐽𝐽(𝜃𝜃)𝑇𝑇𝑀𝑀 𝐽𝐽(𝜃𝜃)
𝑛𝑛

𝑖𝑖=1
 , in which M is a 

generalized inertial matrix of mass and 
moment of inertia, symmetric and posi-
tive definite matrix. 

The kinematic properties of the rigid body 
are fully described by its mass, principal axis and 
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moments of inertia. Inertia tensor IJ can be made 
diagonal as 

𝐼𝐼𝐽𝐽 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇 = [
𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑦𝑦𝑦𝑦 𝐼𝐼𝑦𝑦𝑦𝑦 𝐼𝐼𝑦𝑦𝑦𝑦
𝐼𝐼𝑧𝑧𝑧𝑧 𝐼𝐼𝑧𝑧𝑧𝑧 𝐼𝐼𝑧𝑧𝑧𝑧

]  and 𝑀𝑀 = [
𝑚𝑚𝑥𝑥𝑥𝑥 𝑚𝑚𝑥𝑥𝑥𝑥 𝑚𝑚𝑥𝑥𝑥𝑥
𝑚𝑚𝑦𝑦𝑦𝑦 𝑚𝑚𝑦𝑦𝑦𝑦 𝑚𝑚𝑦𝑦𝑦𝑦
𝑚𝑚𝑧𝑧𝑧𝑧 𝑚𝑚𝑧𝑧𝑧𝑧 𝑚𝑚𝑧𝑧𝑧𝑧

] 

𝐼𝐼𝐽𝐽 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇 = [
𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑦𝑦𝑦𝑦 𝐼𝐼𝑦𝑦𝑦𝑦 𝐼𝐼𝑦𝑦𝑦𝑦
𝐼𝐼𝑧𝑧𝑧𝑧 𝐼𝐼𝑧𝑧𝑧𝑧 𝐼𝐼𝑧𝑧𝑧𝑧

]  and 𝑀𝑀 = [
𝑚𝑚𝑥𝑥𝑥𝑥 𝑚𝑚𝑥𝑥𝑥𝑥 𝑚𝑚𝑥𝑥𝑥𝑥
𝑚𝑚𝑦𝑦𝑦𝑦 𝑚𝑚𝑦𝑦𝑦𝑦 𝑚𝑚𝑦𝑦𝑦𝑦
𝑚𝑚𝑧𝑧𝑧𝑧 𝑚𝑚𝑧𝑧𝑧𝑧 𝑚𝑚𝑧𝑧𝑧𝑧

] 

(28)

where:	 R is a rotational matrix of the homog-
enous transformation matrix 

Considering the coordinate axis and principal 
axis aligned together, the inertial tensor would be 
only diagonal:

𝑀𝑀(𝜃𝜃) =

[
 
 
 
 
 𝑚𝑚𝑥𝑥𝑥𝑥 0 0 0 0 0

0 𝑚𝑚𝑦𝑦𝑦𝑦 0 0 0 0
0 0 𝑚𝑚𝑧𝑧𝑧𝑧 0 0 0
0 0 0 𝐼𝐼𝑥𝑥𝑥𝑥 0 0
0 0 0 0 𝐼𝐼𝑦𝑦𝑦𝑦 0
0 0 0 0 0 𝐼𝐼𝑧𝑧𝑧𝑧]

 
 
 
 
 

 (29)

By summing the translational and rotational 
kinetic energy of the link,

𝐾𝐾 =∑(12𝑚𝑚𝑖𝑖𝑣̇𝑣𝑖𝑖𝑇𝑇𝑣̇𝑣𝑖𝑖 +
1
2 𝐼𝐼𝑖𝑖𝜔̇𝜔𝑖𝑖

𝑇𝑇𝜔̇𝜔𝑖𝑖
𝑛𝑛

𝑖𝑖=1
) (30)

where:	 𝑥̇𝑥  denotes the velocity of the center of 
mass of the rigid link, 

	 𝜔̇𝜔   is the angular velocity vector and
	 I

 
is the inertia matrix.

In the case of the rigid body, gravity is the 
source of potential energy, due to the mass of 
the links. In most cases, the potential energy is 
defined along the unit vector acting through the 
center of mass of each link. The potential energy 
is expressed as:

𝑉𝑉(𝜃𝜃) =∑𝑚𝑚𝑖𝑖𝑔𝑔𝑇𝑇ℎ𝑖𝑖(𝜃𝜃)
𝑛𝑛

𝑖𝑖=1
 (31)

In Eq. 30 and 31 we have computed an ex-
pression for kinetic and potential energy given in 
respectively 

ℒ(𝜃𝜃𝑖𝑖, 𝜃𝜃𝑖̇𝑖) = 𝐾𝐾 − 𝑉𝑉  
ℒ(𝜃𝜃𝑖𝑖, 𝜃𝜃𝑖̇𝑖) =

1
2 𝜃̇𝜃

𝑇𝑇𝑀𝑀(𝜃𝜃)𝜃̇𝜃 − 𝑉𝑉(𝜃𝜃)  
 

(32)

Using the Euler Lagrange equations that de-
scribe the dynamics for each of the generalized 
coordinates, recalling the equations and inserting 

them into the Lagrange equation given in Eq. 23 
as well as taking its derivative required consider-
ing that the potential energy does not depend on 
𝜃̇𝜃.   yields [18]:

𝑀𝑀(𝜃𝜃)𝜃̈𝜃 + 𝐶𝐶(𝜃𝜃, 𝜃̇𝜃)𝜃̇𝜃 + 𝐺𝐺(𝜃𝜃) = 𝜏𝜏𝑖𝑖  
 

(33)

where	 M and C represent inertial properties (in-
ertial matrix and Coriolis effect), and

	 G  represents gravity terms. 

DISCUSSION OF RESULTS 

This chapter discusses the results obtained to 
determine the effects of the kinematic behavior 
in motion analysis tool of the leg mechanism re-
sponses. The CAD geometry of the walking ma-
chine was investigated in SolidWorks kinematic 
motion analysis. The data were exported to Excel 
and interpreted with MATLAB software. The re-
sults obtained from the kinematic motion analysis 
were explained briefly.

Kinematic motion analysis in SolidWorks 

A kinematic motion analysis is the imitation 
of the operation of a real-world process or system 
over time. It is a tool to evaluate the kinematic 
response of a system, existing or proposed, under 
different configurations of interest and over long 
periods of real time. The behavior of a system that 
evolves over time is studied by developing a ki-
nematic model. The motion analysis consists of 
building a computer model that describes the be-
havior of a system with which system exploration 
and analysis that supports decisions are conduct-
ed. The mathematical model is used to determine 
the response of the system in different situations 
using one of the motion analysis functions avail-
able in SolidWorks such as animation, kinematic 
analysis and motion analysis functionalities. 

Motion analysis is the most sophisticated 
analysis functions reflecting all the required fea-
tures such as inertial properties, external forces, 
contacts, mate friction etc. [19]. The kinematic 
analysis is performed to determine the displace-
ment, velocity, acceleration and torque responses. 
MATLAB 2016a was used to analyze the data 
obtained by importing and performing the leg 
responses in plots. The motion analysis is per-
formed based on constant input functions and 
fluctuating input functions as flat and rough ter-
rain, respectively. 
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Motion analysis of walking machine leg 
mechanism

SolidWorks motion analysis was used to 
determine the response of the walking ma-
chine leg in terms of displacement, velocity 
and acceleration based on the input provided. 
The response of the single leg in Figure 2(a) 
shows the smooth profile of its kinematic 
behavior with no external input function. As 
the displacement increases or decreases, both 
the velocity and acceleration proportionally 
change. Theoretically, it was proven that the 
relationships between displacement, velocity 
and acceleration are directly proportional and 
time-dependent. 

Figure 2(b) indicates that the generated 
torque profile shows the graph is smooth and 
repeats the same path over motion patterns. 
The degree of smoothness can determine the 
behavior of the motor that will be used in the 
system. As the smoothness of the torque graph 
decreases, the motor exhibits unwanted motion 
fluctuation that can damage the motor. Thus, 
generating the torque profile graph is basically 
used to determine the specification of the mo-
tor to be used. The maximum torque recorded 
here is 0.3 Nmm and minimum of 0.17 Nmm 
within the initial boundary considered in this 
motion analysis. The peak value obtained 
in the motion analysis describes the point at 
which high torque is required. On the basis of 
the mechanism, when the leg mechanism starts 
to move up while rotating, it needs a large 
amount of torque. 

In the motion analysis, the derived equation 
of motion parameters was considered to show 
the responses. These parameters included the 
gravitational energy, the mass matrix from the 
property of material assigned to it in modeling, 
the external force as input from the motor and 
the properties of rough terrain as an external 
input, which affect the motion of the walking 
machine legs. 

Figure 3 shows the motion analysis results 
considering the fluctuating input function from 
the ground by means of force. From this figure, 
it is possible to observe that as the amplitude of 
the input force fluctuates, the torque required 
to drive the mechanism against the force var-
ies. This can be theoretically validated because 
torque and force have a direct relationship.

Furthermore, the comparison between 
constant input function and fluctuating in-
put function was shown in Figure 4 in terms 
of displacement, velocity, acceleration and 
torque responses. Generally, with various ter-
rain parameters, the leg mechanism behaves 
differently and gives different responses. This 
is shown clearly in the motion analysis result 
from a constant input function and fluctuating 
input function, Figure 2 and 3 respectively. On 
rough terrain, the displacement, velocity and 
acceleration obtained take time when com-
pared to the flat surface. This shows that the 
performance of the walking machine can be 
affected by the terrain topology. As the ampli-
tude of the rough terrain variation increases, 
the performance of the walking machine can 
be affected even more. 

a) b)

Fig. 2. Leg mechanism response of walking machine (a) Displacement, ve-
locity and acceleration response, (b) Torque profile
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CONCLUSIONS 

In the study partly reported in this article, var-
ious previous works on the topic were reviewed 
and it was found that the leg mechanism is a com-
paratively better solution for rough terrain over 
wheels or track mechanism. The mechanism of 
the leg is modeled kinematically using integra-
tion of linkages without multiple uses of motors 
at each actuating DOF. This reduced the number 

of motors, which has a great effect on the energy 
consumption. The leg mechanism developed also 
enables to walk on rough terrain while maintain-
ing static stability. A low number of components 
and simple design ensures minimum cost for the 
machine to be manufactured. 

From kinematic synthesis and analysis, di-
mensional synthesis was parametrically derived 
for the leg mechanisms using forward kinematic 
and inverse kinematic and the position analysis 

a) b)

Fig. 3. Leg mechanism response of walking machine (a) Displacement, velocity and ac-
celeration response, (b) Torque response of fluctuating input function

a) b)

c)

Fig. 4. Comparison between constant and fluctuating input function (a) Displacement comparison,  
 (b) Velocity comparison, (c) Acceleration response
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were carried out in a vector form. The DH con-
vention approach was applied to analyze the 
mechanisms using the Transformation matrix for 
the formulated relation between position, velocity 
and acceleration analysis using the Jacobian Ma-
trix. The dynamic analysis was carried out using 
Euler-Lagrange method by considering the ki-
netic energy and potential energy expression and 
then the equation of motion was derived. 

The part and assembly geometric modeling 
was conducted in SolidWorks V2018 and the 
motion analysis results were exported and ana-
lyzed in MATLAB 2016a, in which the plots of 
displacement, velocity, acceleration and torque 
responses were generated. On the basis of the re-
sponses observed from the effect of variation of 
the rough terrain on the kinematic behavior of the 
leg mechanism, it was concluded that the used 
special type of the four-bar linkage mechanism 
is well-suited for the walking of the machine on 
rough terrain. The proposed and employed sim-
ple linkage integration also enabled the synthesis 
of the mechanism and generation of the motion 
paths. It was further concluded that the paramet-
ric equation helps to derive scalable design to any 
size for constructing the machine. Finally, the de-
sign with reduced number of actuator is a signifi-
cant factor for reducing the energy consumption. 
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