
81

INTRODUCTION

This article touches two popular aspects of mod-
ern computer sciences. Nowadays, artificial intel-
ligence (AI) is one of the fastest improving areas
of information technologies. Many global compa-
nies are trying to outdo each other in implementing.

AI solutions are employed for everyday
life tasks, e.g. Tesla is implementing algo-
rithms for autonomous cars [19], while Ama-
zon is working on a virtual assistant called Al-
exa (cloud-based voice service that allows you
to use your voice to control smart devices, ask
about real-time information and even talk with
it) [15]. Google, apart from having its own Al-
exa (Google Assistant), works on various dif-
ferent projects; however, this is just a tip of an
iceberg. There are many other important play-
ers in the game, such as Apple or Microsoft.

Machine learning (ML) gives us multiple
possibilities of implementing the solutions that
we were unheard of 50 years ago. Unfortunately,
this approach requires high computational com-
plexity, which usually results in long time of
computing. This is the moment when Parallel

Computing (PC) gives us a lot of opportunities.
What is more, we can combine ML and PC and re-
ceive extremely powerful as well as fast tools, e.g.
for data mining, image and pattern recognition [1].

In the range of intelligent systems and ML
development, we have a typical task concerning
running some perceptron algorithm with various
parameters. After performing calculations, it of-
ten turns out that there are difficulties with ob-
taining proper results in a short time due to the
high computational complexity. The genesis of
the research undertaken and presented today is
the attempt to simplify and shorten ML process-
es. In fact, a relatively simple improvement of the
learning process is possible by applying PC in
ML algorithm, which was the idea for this paper.
Optimization will be shown on the example of
perceptron algorithm and Open Multi-Processing
(OpenMP) standard that allows building concur-
rency platforms for shared-memory parallel and
multi-threaded processing. The software con-
structed using this standard is characterized by
the following advantage: the process of convert-
ing a serial sequential source code into a parallel
one is easy and only involves input of suitable

Optimization of Machine Learning Process Using Parallel Computing

Michał K. Grzeszczyk1

1	 Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19,
00-665 Warsaw, Poland, e-mail: michal.k.grzeszczyk@gmail.com

ABSTRACT
The aim of this paper is to discuss the use of parallel computing in the supervised machine learning processes in
order to reduce the computation time. This way of computing has gained popularity because sequential computing
is often insufficient for large scale problems like complex simulations or real time tasks. After presenting the foun-
dations of machine learning and neural network algorithms as well as three types of parallel models, the author
briefly characterized the development of the experiments carried out and the results obtained. The experiments on
image recognition, ran on five sets of empirical data, prove a significant reduction in calculation time compared to
classical algorithms. At the end, possible directions of further research concerning parallel optimization of calcula-
tion time in the supervised perceptron learning processes were shortly outlined.

Keywords: parallel computing, machine learning, perceptron, neural networks, OpenMP

Volume 12, Issue 4, December 2018, pages 81–87
https://doi.org/10.12913/22998624/100341

Advances in Science and Technology
Research Journal

Received: 2018.06.30
Revised: 2018.10.15

Accepted: 2018.11.05
Available online: 2018.12.15

Advances in Science and Technology Research Journal Vol. 12(4), 2018

82

compiler instructions for quick conversion to a
parallel version of a program [9].

The aim of this paper is to discuss the use of
PC in the supervised ML processes to reduce the
computation time. PC has gained popularity be-
cause sequential computing is often insufficient
for large scale problems like complex simulations
or real time tasks. After presenting the foundations
of ML and neural network algorithms as well as
three types of parallel models (shared memory,
distributed memory and hybrid model), the de-
velopment of the experiments carried out (on 5
empirical data sets) and the obtained results were
briefly characterized. At the end, possible direc-
tions of further research concerning parallel opti-
mization of calculation time in the supervised per-
ceptron learning processes were shortly outlined.

PERCEPTRON AND MACHINE LEARNING

Automatic learning is taxonomically divided
into two groups: supervised and unsupervised
learning. Supervised learning assumes that dur-
ing the process of learning an algorithm receives
a pair: sample data (specifically a vector) and ex-
pected output value (class to which the sample
data should be classified) [18], an example of
which is perceptron [16]. Then, based on the data
samples and their desired value, the algorithm
tries to create classifiers that would correctly clas-
sify unknown data sample. Unsupervised learn-
ing (often called clustering) is contrary to this
model. It helps to find new, previously unknown
common patterns in the data samples without
classifying them beforehand.

As far as terminology is concerned, all fea-
ture vectors of the data samples are considered
in representation space (E). Each data sample is
identified by the class it belongs to (C = {0,1, ...,
C}). When a new object that needs to be correctly
classified appears, a classifier is needed (G: E →
C). The classifier is built on data samples and
its goal is to classify data samples correctly – as
many times as possible. Every classifier consists
of C discriminant functions (DFs):

gc : E → R, 0 ≤ c < C
Classification rule of each data sample (x) is

as follows [6]:
ĉ = argmax gc(x), 0 ≤ c < C
The classifier is called linear when all its

DFs are linear. Let x be a feature vector of a data
sample (x = (1, x1, ..., xD)t) and ac be the vector

of coefficients of linear discriminant functions
(LDF) of class c (ac = (ac0, ac1, ..., acD)t). Then:
	 gc(x) = ac

tx

Perceptron is the example of algorithm for
building LDFs [7].

The main loop of the perceptron (line 3 in
algorithm 1) iterates until convergence (all data
samples are classified correctly) or until maxi-
mum number of iterations has been reached. The
inner loop (line 5) iterates over all data samples.
The class of each data sample is known, because
perceptron is a supervised learning algorithm [8]
(in that case the class of the data sample (xn) is
marked as c’). Then the value (discriminantVal-
ue) of the gc’ applied to the xn is counted. The in-
nermost loop iterates over all classes. If the class
(c) that is currently analysed is not the same as
c’ (line 10) and value of the gc applied to xn plus
b (margin parameter) is greater than the discrimi-
nantValue, it means that a classification error
occurred. In that case, we need to update gc by
subtracting from it the feature vector of sx multi-
plied by α (learning rate parameter). If at least one
classification error appeared, we need to update
the weight vector of class c’ as well (this time by
adding αxn). This is an example of a very simple
neural network.

Perceptron has three parameters that are
passed to it during execution: α (learning rate), b
(margin) and K (maximum number of iterations).
Analysing the influence of each of them of the re-
sult of the perceptron one may notice that the pa-
rameter α does not have an impact on the quality
of the result, it only determines how fast weight
vectors are changing (in general the greater α,
the smaller number of iterations). This parameter
should always be greater than 0. Data samples are
linearly separable when there is a possibility of
creating such weight vectors that each data sam-
ple is classified correctly.

The most important parameter is margin. For
linearly separable data, the set b = 0 sometimes can
be too small to create good quality of the results.
However, if b is greater than 0 and large enough,
decision regions for each class will be clearly sep-
arated. For non-linearly separable data set b = 0
does not guarantee quality result. For large K and
large margin, good quality results can be obtained
(only a few samples would be misclassified) [14].

The neural models based on perceptron have
many significant features, including: non-para-
metrical and non-linear, resistant to distortion,
fuzzy and noise of analysed images, easy in

83

Advances in Science and Technology Research Journal Vol. 12(4), 2018

computer (software and hardware) implementa-
tion and various applications, and useful in gen-
eralizing knowledge acquired from empirical
data [11].

OPENMP IN PARALLEL COMPUTING

Contrary to traditional sequential computa-
tions, PC solves problems concurrently. Many
classic algorithms can often be executed in paral-
lel but that sometimes requires a change of the
data structures or redesigning the algorithm. PC
has gained popularity because sequential comput-
ing is often insufficient for large scale problems
like complex simulations or real time tasks.

There are three types of parallel models:
shared memory, distributed memory model and
hybrid model. In the first one, each processor has
access to the whole memory (single computers
implement this concept through threads) [12],
while in the second one, each processor has its
own local memory space. In that case, processors
have to communicate with each other through
messages to cooperate, just like processes in the
operating systems. Therefore, they are used for
applying distributed memory model in a single
computer. Sometimes, a hybrid model is imple-
mented – different units working in shared mem-
ory model are integrated as if they were part of
distributed memory model [13].

OpenMP is a standardised application pro-
gramming interface (API) for shared memory
parallel processing [4]. It is developed by most
of the largest software and hardware companies
such as IBM, Intel or Oracle. It supports most op-
erating systems and languages such as: C, C++
or Fortran. The greatest advantages of OpenMP
are: simplicity, portability and flexibility. This
technology works in a fork-join model for multi-
threading [2]. During the execution of a parallel
program, the master thread executes sequential
parts and if a parallel region appears, the master
thread populates slave threads and solves tasks
with them in parallel. Then, all the threads are
synchronized, and the master thread continues
working on the sequential part, and the situation
repeats. Because of the fact of using shared mem-
ory model mutual exclusion functionality is also
provided in the standard.

The usage of OpenMP on a simple example
is quite straightforward (alg. 2). In order to ex-
ecute a loop in parallel, a special directive needs
to be placed above the loop initialization, thanks
to which different iterations will be distributed
among the available threads. Using the pragma
directive, one can easily customize the param-
eters of parallelization.

While designing the algorithm suitable for
PC, it is worth bearing in mind one aspect of
Bernstein’s Conditions – it is possible to run two
tasks in parallel if they are independent (there are

Algorithm 1. Perceptron

Advances in Science and Technology Research Journal Vol. 12(4), 2018

84

no data dependencies between them). The condi-
tions stating independency for two tasks (Tn and
Tm executed one after another) are [3]:
1.	Input Tm ∩ Output T (no flow

dependency)
2.	Input Tn ∩ Output T (no

anti-dependency)
3.	Output Tm ∩ Output T (no output

dependency)

If Bernstein’s conditions are fulfilled, it is
possible to run two tasks in parallel without the
risk of race conditions.

EXPERIMENTS

While running perceptron, a decision about
input parameters has to be made. However, to
make the decision about parameters, the data
samples have to be analysed. It is simpler and
more efficient to run perceptron couple of times
with parameters from different orders of magni-
tude and then to compare results (alg. 3). In this
article, the parameter K will be considered as
constant and equal 200. This value is reasonable
with many examples. For other two parameters
perceptron will be run many times with different
values (a,b ∈{0.1, 1, 10, 100, 1000, 10000}).

The time of execution of the perceptron al-
gorithm depends on the data set, for the exam-
plary data sets, it does not exceed 10 seconds.
However, because of running the program with
different variations of parameters, the execution
time increases dramatically. Computations need
to be parallelized to decrease it. In order to decide
whether a loop is able to be executed in paral-
lel, it has to be analysed by deciding whether it
fulfils Bernstein’s Conditions or not. When the

loops are nested, only one loop can be parallel-
ized with OpenMP. The strategy is to choose the
most outer loop because by that the best efficien-
cy is acquired.

In the perceptron algorithm (alg. 1) only the
innermost loop can be parallelized as there are
no data dependencies inside it. Two other loops
do not fulfil the first Bernstein’s Condition since
there are many flow dependencies, especially with
all gc variables. In the sequential algorithm, previ-
ous loop iterations recount (write) them, while
the following read from them and re-count them.
Parallelizing the most inner loop would not be ef-
ficient (specifically with few classes) due to the
synchronization time of threads [17]. However, if
perceptron is executed many times, different exe-
cutions can be parallelized (Fig. 1). The necessary
variables would be made private for each thread
– both of the loops from alg. 3 can be parallelized.
As stated earlier, the outer loop will be chosen,
and results of each perceptron will be stored, in
text files. For each execution final LDFs will be
stored as well as number of misclassified samples
from the training and testing data sets accordingly
(training set is 70% of whole randomly shuffled
data set, the rest is testing set). The comparison of
results is not the aim of this paper.

The experiment was conducted on 5 data sets,
courtesy of School of Informatics at Universitat
Politecnica de Valencia:
•• OCR14x14 – 1000 samples for digits recogni-

tion (196 features per sample),
•• expressions – 225 facial expressions (4096

features per sample, 5 classes – surprise, hap-
piness, sadness, anguish and displeasure),

•• gauss2D – 4000 samples representing a bidi-
mensional Gaussian distribution of 2 classes
that are equally-probable,

Algorithm 3. Perceptron multi-execution

Algorithm 2. OpenMP example

85

Advances in Science and Technology Research Journal Vol. 12(4), 2018

•• gender – 2836 facial expressions (1280 fea-
tures per class) classified by gender,

•• videos – 7985 basket and non-basket videos
(2000 features per class) computed from local-
feature histograms.

Perceptron was implemented in C language
for compatibility with OpenMP. The experiments
were performed on a computer characterized by:
Ubuntu 16.04, Intel Core i7–6700HQ 2.6 GHz,
4 cores, 8 logical cores and 16 GB RAM.

RESULTS

The results achieved in the experiments are
presented in Tab. 1. The parallelized loop was
executed maximally with 6 threads, because
it has only 6 iterations throughout the experi-
ment. Running the algorithm with more than 6
threads would result in the situation that some of
them would always stay idle and only take part
in the synchronization of threads and increas-
ing the execution time. The table presents times
of execution of each example data set for 1 to 6
threads (p ∈ {1, ..., 6}). Decreasing time of ex-
ecution for an increasing number of threads can
be observed. In order to present more clearly

the influence of parallelizing on the time of ex-
ecution two additional parameters are presented
(Speed-up and Efficiency).

Speed-up shows how the parallel algorithm
gains the speed with respect to its sequential
version. Here, it is counted as a ratio between
time of execution with one thread and time of ex-
ecution with p threads [20].

𝑆𝑆(𝑝𝑝) = 𝑡𝑡(1)
𝑡𝑡(𝑝𝑝)

Efficiency is a parameter denoting the us-
age of parallel units by an algorithm [5].

𝐸𝐸(𝑝𝑝) = 𝑆𝑆(𝑝𝑝)
𝑝𝑝

The ideal efficiency of 100% was unreachable,
because of the unpredictable load distribution be-
tween threads, depending on randomly shuffled
data samples and different times of convergence
according to the parameters. It is important to
notice the data access time – the more threads
try to access data, the larger overhead with com-
parison to the sequential algorithm. Speed-up and
efficiency for shorter times of executions of se-
quential algorithms (OCR14x14, gauss2D) were
worse than the others because of the synchroni-

Fig. 1. Parallel computations of perceptrons

Advances in Science and Technology Research Journal Vol. 12(4), 2018

86

sation time of the threads which exposes itself
more for shorter executions. For other example
data sets, the results are more satisfying. Taking
into account all of the above, the results achieved
in the experiments can be interpreted as positive.

In Fig. 2 the normalized execution times of
perceptron for different data sets are presented. It
can be noticed that improvement in the time of
execution appears when the number of iterations
is divisible by the number of threads. In such situ-
ations, all of the threads were active. In the case
of 4 and 5 threads, there is no possible distribu-
tion of 6 iterations among them without some of
them remaining idle for some time. This results in
the lack of improvement or even deterioration of
the execution time due to the longer synchroniza-
tion of threads. Perceptron obtained good qual-
ity results for each of the data sets. If the training
samples were linearly separable, perceptron was
converging for some of the executions with dif-

ferent parameters, which would have been chosen
as the best ones. Otherwise, it was not converg-
ing; however, some of the results for each of the
data sets were good for comparison and deciding
which one to choose.

CONCLUSIONS

In this paper it was proven that PC can be
efficiently used for the improvement of reaching
good quality results of supervised learning. The
experiments on image recognition, run on five
sets of empirical data, clearly state a significant
reduction in the calculation time, compared to
classical algorithms. Future investigations can
cover redesigning perceptron for application of
PC with the aid of MPI protocol [10] for distrib-
uted memory systems. Many neural network al-
gorithms are possible to parallelize, and extensive
studies are being carried out in this field. By ap-
plying parallel optimization, better results can be
achieved and new applications of neural networks
for everyday life problems can be reached.

Acknowledgements

The author would like to thank Lecturers from
School of Informatics at Universitat Politecnica
de Valencia for sharing the knowledge and data
sets necessary for writing this article.

REFERENCES

1.	 Abu-Aisheh Z., Raveaux R., Ramel J. -Y., Mar-
tineau P., A parallel graph edit distance algorithm
Expert Systems with Applications, Volume 94, 15
March 2018, 41–57.

Table 1. Results from experiments

OCR14x14 Expressions Gauss2D Gender Videos
Samples (n) 1000 225 4000 2836 7985

Features 197 4096 2 1280 2000
Classes 10 5 2 2 2
t(1) (s) 6.135 25.819 0.070 43.206 657.495
t(2) (s) 5.434 13.923 0.068 22.176 394.441
t(3) (s) 4.534 9.738 0.061 15.335 272.166
t(4) (s) 4.739 9.736 0.060 15.333 277.438
t(5) (s) 4.532 9.676 0.060 14.919 269.351
t(6) (s) 3.007 6.928 0.040 10.740 188.172
S(6) 2.04 3.73 1.75 4.02 3.49

E(6) (%) 34.00 62.11 29.17 67.05 58.24

Fig. 2. Normalized execution times for different
data sets

87

Advances in Science and Technology Research Journal Vol. 12(4), 2018

2.	 Akhter S., Roberts J., OpenMP: A Portable So-
lution for Threading. OpenMP provides an easy
method for threading applications without burden-
ing the programmer, 2010, http://drdobbs.com/
high-performance-computing/225702895 (access:
September 2018).

3.	 Bernstein A. J., Program Analysis for Parallel Pro-
cessing, IEEE Transactions on Electronic Comput-
ers, EC-15, 1996, 757–762.

4.	 Bhugul A. M., International Journal of Computer
Science and Mobile Computing, Vol. 6, Issue2,
February, 2017, 90–94.

5.	 Colombet L., Desbat L., Speedup and efficiency of
large-size applications on heterogeneous networks,
Theoretical Computer Science, Volume 196, Issues
1–2, 6 April 1998, 31–44.

6.	 Devroye, L., Gyorfi, L., Lugosi, G., A probabilistic
theory of pattern recognition. Springer: New York,
1996.

7.	 Duda R. O., Stork D. G., Hart P. E., Pattern Clas-
sification, New York: John Wiley & Sons 2001.

8.	 Freund, Y., Schapire, R. E., Large margin classi-
fication using the perceptron algorithm. Machine
Learning. 37 (3), 1999, 277–296.

9.	 Głowacz A., Pietroń M., Implementation of Digi-
tal Watermarking Algorithms in Parallel Hardware
Accelerators, International Journal of Parallel
Programming, October 2017, Volume 45, Issue 5,
2017, 1108–1127.

10.	Gropp W., Lusk E., Doss N., Skjellum A., A high-
performance, portable implementation of the
MPI message passing interface standard, Parallel
Computing. Volume 22, Issue 6, September, 1996,
789–828.

11.	Grzeszczyk T. A., Neural Networks Usage in the
Evaluation of European Union Cofinanced Proj-

ects, Foundations of Management, Volume 2, Issue
1, 2010, 7–20.

12.	Inderpal S., Review on parallel and distributed
computing. Scholars Journal of Engineering and
Technology, 1(4), 2013, 218–25.

13.	Kang S. J., Lee S. Y., Lee K. M., Performance com-
parison of OpenMP, MPI, and MapReduce in prac-
tical problems, Adv. Multimedia, 2015, 1–9.

14.	Mohri M., Rostamizadeh A., Perceptron Mistake
Bounds, 2013, arXiv preprint, https://arxiv.org/
abs/1305.0208 (access: September 2018).

15.	Moore R. K. Nicolao M., Toward a Needs-Based Ar-
chitecture for ‘Intelligent’ Communicative Agents:
Speaking with Intention, Frontiers in Robotics and
AI, Volume: 4, Article Number: 66, Dec 2017.

16.	Rosenblatt, F., The perceptron: A probabilistic
model for information storage and organization
in the brain. Psychological Review, 65(6), 1958,
386–408.

17.	Russo A., Sabelfeld, A., Securing Interaction be-
tween Threads and the Scheduler in the Presence of
Synchronization, The Journal of Logic and Alge-
braic Programming, Volume 78, Issue 7, August–
September 2009, 593–618.

18.	Sathya, R. and Abraham, A., Comparison of Super-
vised and Unsupervised Learning Algorithms for
Pattern Classification. International Journal of Ad-
vanced Research in Artificial Intelligence, 2, 2013,
34–38.

19.	Stilgoe J., Machine learning, social learning and the
governance of self-driving cars, Social Studies of
Science, February 2018, Volume: 48, Issue: 1, 25–56.

20.	Xian-He Sun, Lionel M. Ni, Another view on par-
allel speedup, Proceedings of the 1990 ACM/IEEE
conference on Supercomputing, October 1990,
New York, USA, 324–333.

