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ABSTRACT 
The paper considers the static pressure of the environment on the parallel pipe. The 
environment is elastic, homogeneous bodies. To determine the ambient pressure, the 
finite element method (FEM) is used. An algorithm (MAS) was developed and a com-
puter program was compiled. Based on the compiled program (C++), numerical re-
sults are obtained. The numerical results obtained for two to five parallel pipes are 
compared with known theoretical and experimental results.

Keywords: pipe, finite element method, static pressure, environment, possible dis-
placements, calculation area.

INTRODUCTION

At present, and in the coming decades, ensur-
ing the operational reliability of the linear part 
of multi-thread underground pipelines is and 
will continue to be a complex scientific and en-
gineering problem. In the modern design, vari-
ous software packages of automated design are 
widely used, allowing to carry out the engineer-
ing analysis of computer models without resort-
ing to real experiments. The most common and 
efficient calculation method is the finite element 
method (FEM). When determining the pres-
sure of the soil on the pipes, it is necessary to 
take into account such factors as: the number of 
threads, the topography of the embankment, the 
conditions of supporting the pipes and other fac-
tors encountered in design practice.  Accounting 
for other factors in analytical solutions is either 
extremely complex; or in general is impossible 
because of the difficulties that arise in this case of 
a mathematical nature. Various factors encoun-
tered in project practice can be accounted for us-
ing numerical methods. Recently, when solving 
various kinds of applied problems, the finite ele-
ment method (FEM) is widely used.  A number 

of works are known in which domestic [1, 2, 3, 
4] and foreign authors [5, 6] successfully apply 
FEM to determine the soil pressure on a single 
laid extended pipe, under various conditions of 
its support, taking into account the heterogeneity 
of the soil composing the body mounds of con-
stant height (flat deformation).

STATEMENT OF THE PROBLEM BY THE 
FINITE ELEMENT METHOD

The most common method for calculating 
complex structures is the finite element method 
(FEM). Its peculiarity consists in the fact that a 
design representing a continuous medium is re-
placed by its analog, composed both of cubes and 
of a finite number of element blocks, the behavior 
of each of which can be determined in advance. 
The interaction of the elements makes it possible 
to present an overall picture of the deformation 
of the system. In Figure 1. The cylindrical bodies 
in the deformed space are depicted. The stiffness 
characteristics of each of these elements is deter-
mined in advance. The stress-strain state of such 
a complex structure can be determined with the 
help of FEM. The advantage of the method in its 
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universality: the possibility of using elements of 
different types, the arbitrariness of the region un-
der consideration, simple methods for construct-
ing elements of high accuracy. In the variant of 
the method considered below, the method of dis-
placements, when joining elements, the require-
ment of satisfying natural boundary conditions is 
not necessary. This most famous version of the 
FEM uses the formulation of the principle of pos-
sible displacements:

δА = δА1 + δА2 = 0
In matrix form for a three-dimensional body, 

it can be represented as follows:
∫∫∫{σ}T{δε}dxdydz = ∫∫∫{q}Tdxdydz + ∫∫{p}T{δu}dS

The same state can have the form:
∫∫∫{σ}T{δε}dxdydz = ∫∫∫{δu}Tdxdydz + ∫∫{p}T{δu}dS

Vectors of volume forces, surface forces and 
mixing of points of the body are as follows:
{q}={x, y, z}T,  {p}={px py pz}

T, {u}={u1 v1 w1}
T (1)

The equilibrium conditions (1) do not de-
pend on which material properties and are valid 
for both linear and nonlinear systems. For a lin-
early elastic body having initial deformations, the 
physical relationships take the form:

{σ}=[D]{ε}-[D]{ε0} (2)
where [D] - is the matrix of elastic constants, 

{e0} is the vector of initial deformations. 
Moves are given in the form of polynomi-
als in powers of х, у, z:

{u}=[А]{α} (3)
where [A] is the matrix depending on the coor-

dinates of the element, {α} - is the vec-
tor of the coefficients of the polynomial 
expansion of the displacement functions. 
The number of coefficients corresponds 
to the number of degrees of freedom of 
the element, and the coefficients them-
selves are associated with nodal displace-
ments. If we denote the vector of node 
nodal displacements through {un}, then 
the displacement field is divided by the 
dependence:

{u}=[ϕ]{un} (4)
We use the relations between deformations 

and displacements, then we get:
{ε}=[В]{un} (5)

The matrix [B], which connects deformations 
with nodal displacements, is important in the fur-
ther calculation (Figure 1). The stress vector is 
defined by equations (2), and taking into account 
(5) it will look like:

{σ}=[D][В]{un}-[D]{ε0} (6)

Let us consider separately the left and right 
sides of the equilibrium condition (1). After sub-
stituting the deformation vector into the left side 
of the equation (1), it will be expressed in terms 
of nodal displacements and some integral indi-
cated by the symbol [К]:

∫∫∫{δε}т[D]{ε}dxdydz = δ{un}т ∫∫∫[B]Т[D][В]dxdydz{un} = δ{un}
т[К]{un}

Here [K] is a matrix containing the basic information on the behavior of a small region of a 
deformed system. It is called the element stiffness matrix and is the main characteristic of the 
system in the FEM.

On the right-hand side of equation (1), the integrals over the volume and over the surface can be 
represented as follows:
∫∫∫([δε]Т[D]{ε0}+{δu}Т{q})dxdydz+∫∫{u}Т{р}dS=δ{un}Т∫∫∫[В]Т[D]{ε0}dxdydz+δ{un}

Т∫∫∫[ϕ]Т{q}dxdydz+δ{un}Т∫∫[ϕ]Т{p}dS

These relations determine the vector (P) of external forces, reduced to the nodes of external forces.
Thus, considering the matrix [ф] connecting the displacements at any point of the element with 

nodal displacements and the matrix [B] corresponding to the relations between the deformations and 
displacements of the nodes of the element according to the formula (6), the stiffness matrix [K] and the 
vector of external nodal forces (F):

[К]=∫∫∫[В]Т[D][B] dxdydz

{F}=∫∫∫[B]T[D]{ε0} dxdydz+∫∫∫[ϕ]T{q} dxdydz+∫∫[ϕ]{p}dS

For each element, the equilibrium conditions take the form:
[К]{un}={F}
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METHODOLOGY FOR CALCULATING THE 
STATIC PRESSURE OF SOIL ON PIPES

As a computational model, by analogy with 
[7, 8], a weighty elastic medium (Figure 1) is 
used that contains holes and other inclusions sup-
ported by circular cylinders and other inclusions 
(foundation, heterogeneity of the ground, etc.). 
For pipes according to [9], we assume that the 
cylinder is welded to the medium (there is no slip-
page of the soil along the surface of the pipe). On 
the external contour of the medium, the boundary 
conditions have the following form [9] (Figure 1):
• on vertical boundaries, shear stresses and 

horizontal displacements are either zero or 
these boundaries are free;

• on the lower horizontal boundary adjacent to 
the base of the embankment there are no ver-
tical and horizontal movements;

• the upper surface is either free from external 
influences, or loaded with a surface load.         
The dimensions of the chosen area for the cal-

culation should be optimal, because this affects 
the time spent on the calculation of the FEC and, 
consequently, the efficiency of the program based 
on it. If the soil is an isotropic material or the 
system of the pipe-soil in question has an axis of 
symmetry (both in geometry and in material), it is 
possible to reduce the design area by taking only a 
symmetrical half of it. The breakdown of the cho-
sen calculation area is carried out in the form of 
tetrahedral finite elements. In this case, the center 
mesh should thicken as it approaches the pipes; 
it is around the pipes that the greatest concentra-

tion of soil pressure occurs. To estimate the con-
vergence of the resulting approximate solution 
corresponding to this breakdown, it is necessary 
to make a finer division of the computational do-
main into an exact solution. Then a comparison of 
the solutions corresponding to both breakdowns 
should be made. If they differ from each other by 
an amount greater than the predetermined accu-
racy of the computations, it is necessary to make 
an even smaller third partition of the domain and 
the corresponding solution compare with the so-
lution for the second breakdown, etc. It should 
be noted that with a dense arrangement of pipes 
in the places of their contact, “singular points” 
arise, in a small neighborhood of which it is im-
possible to achieve the necessary accuracy of cal-
culations for any smallest breakdown (elasticity 
theory is inapplicable at these points). The same 
points arise in the places where the pipes rest on 
a flat base. When determining the soil pressure on 
rigid round pipes, such as ferroconcrete pipes in 
particular [10, 11], this difficulty is easily over-
come by the following method: with the help of 
FEM, the vertical and horizontal soil pressure at 
all points of the pipe, except for the special one, 
is determined; a concentrated force is applied at a 
particular point, directed vertically at the point of 
support of the pipes or horizontally at their point 
of contact, equal in magnitude to the area of the 
diagram of the vertical and horizontal pressure of 
the soil acting on the pipes, respectively.

We distribute the proper weight of the soil 
of the embankment according to [3, 4] along the 
breaking points as follows: at each node of this 

 
Fig. 1. The calculation scheme of the FEM
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triangular finite element, we apply a downward 
concentrated force equal in weight to the part of 
the soil bounded by this element divided by the 
number of nodes. The surface load is distribut-
ed along the nodes of the upper boundary in the 
form of concentrated forces. If it is necessary to 
obtain the influence matrices (Green’s function), 
then it is necessary to calculate the unit concen-
trated force, applying it consistently at each node 
of the upper boundary. Modeling of materials of 
soil, pipes and other inclusions is carried out with 
the help of the corresponding values of elastic 
constants (E, ν) and specific gravity. This makes 
it possible to take into account the conditions of 
supporting the pipes, the heterogeneity and ver-
bosity of the soil of the embankment and the base, 
and the multitude of laying.

PARAMETRIC ANALYSIS OF STRESS-
STRAIN STATE OF REINFORCED 
CONCRETE UNDERGROUND ROUND 
TUBES

Using the program MSK-1, the influence of 
the following factors on the pressure distribution 
of the soil of the embankment around the round 
reinforced concrete underground pipes was inves-
tigated: the number of threads, the distance be-
tween the pipes, the location of the pipe (extreme, 
middle), the Poisson coefficient of the embank-
ment soil, the type of pipe support, the change 
of the relief of the embankment along the pipes, 
length of pipes.

The influence of the number of threads. In 
Fig. 2, 3, 4 shows the dependence of the maxi-

mum soil pressure on the pipes on the number 
of threads and the Poisson’s ratio of the soil. At 
the same time, the support was firmly supported 
on a flat solid base. From Figure 2, 3, 4 it fol-
lows that the value of σmax for pipes laid in sev-
eral strings is 10-30% less than the corresponding 
value for a single laid pipe, which is determined 
by SNiP2.05.03.-84. In this case, the maximum 
soil pressure depends on location of the pipe, i. 
on an average pipe it is 15-25% less than on an 
extreme one.).

The fact that the outer tube is unloaded is less 
due to the fact that only one nearby middle pipe 
exerts a significant influence on its unloading, and 
the other is the outer tube, first, far from it (1.0D), 
and secondly, between the two outer tubes lies the 
middle tube, which is a kind of “screen”, reduc-
ing the mutual unloading effect of the two out-
er tubes. Therefore, in particular, the maximum 
pressure of the soil on the edge pipe is practically 
independent of the number of threads (in Figure 
4, the value of σmax for pipes of two yarn stacking 
and the outer tubes of multi-threading is shown in 
one curve. two pipes are located on both sides of 
it, and not one, as in the case of an extreme tube. 

From Figures 3 and 4 it follows that for a num-
ber of threads greater than three, the value of σmax 
on the middle tubes is practically independent of 
the number of threads. with the concept of a “pe-
riod” of pipes and explained in [12]. Figure 2 It 
is clear that as the Poisson’s ratio rises (y = 0.1 ... 
0.4), the maximum ground pressure on the middle 
tube decreases, and with a decrease in the number 
of threads this decrease is stronger and amounts 
to, for example, 7% for three-laying pipes and 1 
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Fig. 2. Graph of the dependence of the maximum soil 
pressure on the pipes () on the number of threads and 
the Poisson’s ratio (ν) ( D = 4 м, Н = 12 м ,d = 0, γ = 

16.7 kg/m3)

 

ν 

σmax/γ H  

 

 

 

 

1,6 

 

 

1,5 

 0                    0,1              0,2                      0,3                0.4 

 
Fig. 3. Graphs of the dependence of the maximum 
soil pressure on the five-laying pipes (σmax) on the 

position of the pipe and Poisson’s ratio (v) (D = 3 м, 
Н = 12 м, d = 0, γ = 16.7 kg/m3 , n = 4)
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This is explained by the fact that the greater the 
value of the coefficient ν, the greater the distribu-
tion capacity of the ground environment.

Consequently, we can assume that for a num-
ber of threads four or more, the value of σmax on 
the average is practically independent of the coef-
ficient ν. An explanation of this phenomenon is 
given in [12, 13].

As can be seen from Figure 3, as the coef-
ficient ν increases, the difference in the values 
of σmax for pipelines with different number of 
threads decreases.

Thus, the maximum ground pressure on the 
pipes of multi-thread stacking is less than the sin-
gle one. At the same time, the maximum ground 
pressure on the outer tubes is greater than the av-
erage pressure. The pressure of σmax on the edge 
pipe is practically independent of the number of 
threads. The maximum soil pressure decreases 
with increasing number of threads and with a 
number of threads greater than three, this de-
crease becomes insignificant.

Hence it follows that the difference between 
the maximum soil pressure on the outer and mid-
dle pipes of multiline stacking (n ≥ 3) is practical-
ly independent of the number of threads and for 
densely laid pipes is 15-20%. In addition, with an 
increase in the Poisson’s ratio of soil, the value of 
σmax  on the edge pipe is reduced. With the number 
of threads n > 4, the value of σmax on the middle 
tube is practically not from the coefficient ν.

Effect of the distance between the pipes. The 
results of the analysis of the maximum ground 
pressure on two and three-stranded laying pipes 
(a) between them are shown in Figure 5.

The graphs in Figure 5 show that as the dis-
tance between the pipes increases, the value of 
σmax increases. At 0 ≤ d/D ≤ 0.5, the increase in 
σmax is insignificant (3%), and at 0.5 < d/D ≤ 2.0 a 
significant increase in the maximum ground pres-
sure is observed, decaying at d/D > 2. At d/D ≥ 
3, the maximum ground pressure per pipe laid 
in several strands corresponds to the maximum 
pressure per single laid pipe and coincides with 
the value determined by SNiP 2.05.03-84 (90).

Thus, the mutual influence of multifilament 
stacking pipes takes place at a distance between us d 
< 3D and leads to a decrease in the maximum ground 
pressure on them compared to a single stacked pipe. 
The pressure of σmax on the middle and outer tube 
reaches a minimum value when the d = 0 pipes are 
laid closely and are respectively 0.74 and 0.85 of the 
maximum pressure on a single stacked pipe.

On the basis of the obtained dependences of 
the magnitude of the distance between the pipes, 
the following formulas are derived for determin-
ing the soil pressure coefficients for pipes of mul-
tiline stacking: for 0 < d/D ≤ 2.5.

KC
M = 0.1 (d/D) + 0.75; 

KK
M = 0.01 (d/D)2 + 0.02 (d/D) + 0.9

(7)

where:  КCМ and КKМ - are the coefficients that 
take into account the reduction of the 
maximum soil pressure, respectively, on 
the edge and middle multiline stack as 
compared to a single stacked pipe.

Analysis of the influence of the distance be-
tween the pipes on the horizontal pressure of the 
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soil (σs) at the horizontal diameter was carried 
out by double-laying pipes, the theoretical and 
experimental studies carried out have shown that 
the quantity σs does not depend on the number of 
threads. In this case, it is necessary to distinguish 
the horizontal pressure of the soil on the pipe 
from the side of the adjacent pipe (σs) and from 
the opposite (pipe-free side) (σs).

From Figure 6 that the horizontal pressure 
σr for d/D > 3 is a constant value and coincides 
with the corresponding σ = 0. At 0 ≤ d/D ≤ 2, it 
increases intensively and at d/D = 0 tends to infin-
ity. This is due to the appearance of a “singular” 
point, in which the theory of elasticity is not ap-
plicable. The sharp increase in d with decreasing 
distance d is explained by the convergence of the 
two stress concentrates, which are the pipes.

The influence of the Poisson’s ratio on the 
horizontal pressure of the soil is shown in Fig-
ure 7. It follows from the graphs that the values 
of σs and σr increase with increasing coefficient 
ν, and the horizontal pressure on the side of 
the adjacent tube increases more intensively, 
i.e increases the coefficient σs by a factor 2.8, 
and σr in 2.3 times.
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Fig. 6. Graphs of the dependence of the maximum 
ground pressure (νmax) on the pipes from the distance 
in the light (d) between the strands (Н = 6 м ,D = 2 м 

γ = 16.7 kg/m3, ν = 0.3)
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Stress state of the soil around the pipes

For a more complete analysis of the soil pres-
sure on the pipes of multi-stranding, the diagrams 
of radial (σr) and tangential (σs) ground pressures 
are considered for various parameters of laying 
multi-thread pipes on a flat solid base.

In Figure 8-10 shows the diagrams (σr) for 
pipes laid in one and two strands at a distance of 
d of 0, 0.5D, 1.0D, 2.0D, 3.0D. All the diagrams 
of the same sign correspond to the compression 
pressure. It is seen from the diagrams that for d 
< 3.0D they are asymmetric, and for d = 3, D are 
symmetric. The presence of the asymmetry of the 
diagram a is due to the mutual influence of the 
multiline stacking tubes on the pressure distribu-
tion of the soil around each pipe. With an increase 
in distance 6. this effect gradually weakens and 
does not affect when d ≤ 3.0D, i.е. in this case the 
tube of multi-strand folding of the diagram σs is 
practically symmetrical. Therefore, in the design 
of pipes, the deviation of the ordinate σmax from 
the vertical diameter can be ignored for d > 2.0D. 
The ordinate of the maximum radial pressure de-
viates from the pipe lock in the opposite direction 
to the location of the adjacent pipe. The analysis 
shows that this effect is manifested especially in 
multiline stacking at d < 2.0D. This is due to the 
fact that on one side of the end pipe is located 
next to it a pipe that unloads the first. The op-
posite side is free and there is no unloading effect 
from this side the outer tube receives.

Due to this “unbalanced unloading” of the 
outer tube, the value of σmax is shifted. In Figure 
11 is a graph of the dependence of the deviation 
of the ordinate σmax (angle β) on the parameter d. 
This biconvex curve whose ordinates decrease 
with increasing d. At 0 < d < 0.5D and d > 2.0D, 
the angle β varies insignificantly (actually from 
15° to 14°30' and from 2° to 0°). The main change 
in angle β occurs at 0.5 < d < 2, D. The maximal 
value of the ordinate σmax reaches at d = 0 (tubes 
laid close), minimal (00) at d < 3.0D, when each 
pipe works as a single stacked one.

The analysis in Figures 8-10 shows that the 
diagrams of σmax on the half of the pipe opposite 
the location of the adjacent pipe (in the Figure the 
left half of the diagrams to the ordinate σmax) in all 
cases the effect of two pipes at d/D < 3.0 on the 
pressure distribution of the soil around of them is 
local and extends to a section up to 15°< and < 
180° (in the figure, the right half of the diagrams)

In Figures 8, 12, 13 shows the diagrams of the 
radial pressure of the soil σr on a single laid pipe 
and on pipes laid closely in two, three, four and 
five threads. In all cases, the pressure diagrams on 
the outer tubes are asymmetric, and the average 
tubes (for n > 3) are explained by symmetrical 
unloading by two adjacent pipes.
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Fig. 10. Diagrams of radial soil pressure on pipes of a 

two-wire styling

 
Fig. 11. Change of parameter β from d/D
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Fig. 13. Diagrams of radial ground pressure on a five-pipe stacking
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Fig. 14. Diagrams of radial soil pressure σr on a single (a), gutter (b) and three-stranded pipe (D = 4 m, H = 8 m, 

ν = 0,3,d = 1 m, γ = 16,7 kH/m3)

a) n =1 b) n = 2

c) n = 3

The upper part of the diagrams of the multi-
line stacking is slightly flattened in comparison 
with the diagram for a single laid pipe (Figure 8). 
This oblateness is greater for medium pipes than 
for extreme tubes, which indicates a more uni-
form distribution of pressures, their greater load. 

It should also be noted that the diagrams σs for 
the outer tubes of multiline stacking practically 
do not differ from the σs diagram for double-lay-
ing pipes. Thus, when constructing the diagram σs  
for the end pipe of multiline stacking, we can use 
the results of calculation of double-laying pipes.
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It follows from Figure 13, b (n = 5), the dia-
grams for the central and neighboring middle 
tubes practically coincide. The diagrams for the 
medium pipes for n = 4 (Figure 13, a) and for n 
= 5 are also small from each other. Thus, when 
determining the pressure of the soil on the pipes 
of pipes of four-stranding. The concept of “pipe 
period” was also introduced there. It means a 
minimum number of pipes, in which the addition 
of another pipe from the edge practically has no 
effect on the stress-strain state  of the soil around 
the central pipe.

Consequently, the value of the period for the 
sleeves is four. Analogously, the value of the pe-
riod (T) of the pipes laid at some distance from 
each other was analyzed. The results of this anal-
ysis are presented in Table 1.

From Table 1 it can be seen that the value of T 
decreases with increasing distance between the pipes. 
This is due to a decrease in the mutual influence of 
the pipes as the distance between them increases.

In order to present the general picture of the 
distribution of the radial pressure of the embank-
ment on the pipes in Figure 13 shows the lines 
of equal radial pressures for pipes laid in one, 
two and three threads respectively. Symmetrical 
arrangement lrr. is typical for a single laid pipe 
(Figure 13). In addition, lr.d. are also symmetric 

for central tubes for odd multicultural packing in 
the vicinity of 1.5D from the center of the pipe in 
both directions (for example, for n = 3 Figure 12).

For the outermost tubes, asymmetry and dis-
placement of the vertices are observed. in the op-
posite direction from the adjacent pipes (Figure 
12). In addition, σr at n = 2 and n = 3 have less 
ordinates and are more flattened than for a single 
laid pipe (n = 1).

This flattening indicates a more uniform 
ground pressure on multi-threaded pipes compared 
to a single-laid σr for double-laying pipes and the 
three-threaded outer tubes are almost identical.

Figure 15 shows the diagrams of m for a sin-
gle pipe and double-laying pipes with a distance 
in the light d = 0 ... 3. It is characteristic that on 
the half of the pipe free from the influence of the 
adjacent one (in the figure, the left half) τ does 
not depend on the parameter d and the diagram τ 
is the same as for the single pipe. The ordinates 
of the right half of the diagram τ for 0 < d < 3.0D 
are smaller than the left one due to the unloading 
effect of the neighboring pipe. For d > 3.0D, the 
effect is no longer affected and the diagram τ is 
similar to the diagram for a single pipe.

The maximum of the tangential pressures for 
any half of the diagram is achieved at θ = 60° 
from the vertical axis in both directions. The larg-
est value of τmax in all cases for the outer tubes 
occurs on the left-hand half of the tube (free from 
the influence of the neighboring pipe) and ex-
ceeds the small tangent pressures on the right half 
of the tube by a factor of 2.2 d = 0; by 1.55 times 
at d = 0.5D and by 1.1 times at d = 1.0D.

Table 1. Dependence of the pipe period on the distance 
in the light between them

D/D 0 … 0.5 0.5 1.0…2.0 2.0
T 4 3 2 1
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Fig. 15. Diagrams of radial soil pressure on pipes of a 

two-thread styling
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Fig. 16. Graphs of the dependence of the maximum 
ground pressure (νmax) on the pipes from the distance 
in the light (d) between the strands (Н = 6 м , D = 2 

м, γ = 16,7 кг/m3, ν = 0.2)
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Influence of the type of support of pipes

 In Figure 11 are graphs of the dependence of 
the value of σmax on the support of pipes and the 
Pausson coefficient ν. In the calculation, the fol-
lowing conditions for supporting the pipes were 
used at the suggestion of the hydropower plant:
• base with angle of capture 2α0 = 90°; base 

with an angle of coverage 2α0 =120°; 
• a foundation with an angle of coverage 2α0 = 

120°, while the height of the foundation from 
the ground to the bottom point of the pipe was 
assumed to be 0.2D. In addition, support was 
considered on a flat base.
As can be seen from Figure 16, the largest val-

ue of σmax corresponds to support on the founda-
tion, and the smallest on the base with a coverage 
angle of 2α0 = 120°. For example, at ν = 0.1, the 
value of σmax for pipes supporting the foundation is 
larger than the corresponding values for pipes that 
support a flat solid base by 3%. solid base with an 
angle of coverage 2α0 = 90° by 6%, the base with 
an angle of coverage 2α0 = 120° by 8%. This phe-
nomenon is explained by the fact that the larger 
the I pipe protrudes above the surface of the base 
(together with the foundation), the more the pres-
sure of the soil acting on this pipe is concentrated. 
We also note that, regardless of the type of sup-
port, the quantity σmax decreases with increasing 
coefficient ν. With an increase in the coefficient ν 
by a factor of 4, σmax  decreases depending on the 
type of support of the pipe in 1.17 - 1.21 times. 
Given the slight change in σmax, depending on 
the method of support (2-8%) in designing pipes 
based on a solid base, this factor can be ignored.

  In Table 2 shows the dependence of the coef-
ficient of maximum vertical soil pressure (Кmax = 
σzzmax/γhmax; hmax - maximum embankment height) 
on reinforced concrete pipes from the number of 

threads and the profile of the embankment. The 
pipes are supported by a reinforced concrete 
foundation with an angle of coverage up to 120°. 
The wall thickness of the pipes is 0.1D

The distance in the light between the pipes is 
0.5D. Pipes are made of concrete of class B 25; 
ν = 0.15; E = 30000MPa; soil of the mound with 
elastic constants ν = 0.3; E = 30MPa.

In the first row of Table 2 shows the results for 
long pipes laid over a bulk of constant height (flat 
deformation). In the second row of Table. 6.2 shows 
the results for long pipes laid under the mound with 
the applied length of pipes laid under the mound 
with a variable longitudinal profile in the form of a 
triangle with an angle slope β = up to 30°.

From Table 2 it follows that the coefficient 
Kmax decreases with the number of threads. And 
this fact is true both for a flat problem (the first 
line) and for a volume one (second line).

For example, the value of Kmax for an aver-
age three-threaded pipe (n = 3) is 35% smaller 
than the corresponding value for a single pipe (n 
= 1) in the case of a flat problem ((β = 0°), and by 
37%, in the case of spatial problem (30°) .

To analyze the influence of the longitudinal 
relief of the embankment on the soil pressure on 
the pipes and compare the results of the planar 
and spatial problems, the maximum height of the 
embankment (β = 30°) was assumed equal to the 
height of the mound of constant height (β = 0°). 
From Table 2 that the values in the first line dif-
fer from the corresponding values of the second 
row by an average of 30%. From this it follows 
that taking into account the variable length of the 
embankment height along the length of the pipe 
reduces the estimated ground pressure as com-
pared with the calculation performed on the flat-
deformed scheme. This effect was obtained for 
the first time.

In this case, as follows from Table 1 this ef-
fect is slightly less pronounced for a single pipe 
(29%) and slightly stronger for two-thread (32%) 
and three-thread (30%) stacking pipes.

Influence of length of pipes. In Table 3 shows 
the dependence of the coefficient Kmax for rein-
forced concrete pipes of two-strand packing from 
their length l (β° = 0).

From Table 3 it follows that with a decrease 
in pipe length the coefficient Kmax kills. In this 
case, when the length l = 10.0D, its effect on 
Kmax is insignificant. Thus, the length l = 10.0D 
is that boundary of applicability of the plane the-
ory of elasticity (plane deformation) for extended 

Table 2. Dependence of the coefficient Kmax on the 
number of threads and the angle of the longitudinal 
profile of the mound

n 1 2 3

β 1.75 1.36 1.13

β = 30° 1.24 0.92 0.79

Table 3. Dependence of the coefficient Kmax on the 
length of the pipes l

u0 4.0 6.0 10.0 15.0

Kmax 0.64 0.85 1.36 1.37
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pipelines at a constant height of the embankment. 
In the work [1] the concept of the “core”, which 
in our case is equal to 10.0 D , is derived, and 
is the boundary between the “short” and “length” 
pipes, i.e. at l = 10.0 D, the plane-deformed 
scheme gives an overestimate of the Kmax coef-
ficient even at a constant height of the embank-
ment. This overestimate is 38% at l = 6.00 and 
55% at l = 4.00.

Thus, taking into account the length of the 
pipes reduces the design ground pressure in com-
parison with the calculation using a flat-deformed 
scheme, if l = 10.0D.

CONCLUSIONS

1.  The maximum static pressure of the soil (σmax)   
per pipe is somewhat less than that of a single 
pipe, an average of 10% for the outer pipe 
and 20% for the middle pipe. In this case, the 
quantity c σmax  increases with increasing pa-
rameter d, having a minimum at d = 0 (tubes 
stacked closely) and a maximum at d = 3.0, 
which coincides with the corresponding value 
for a single tube.

2. The pressure σmax decreases with increasing 
Poisson’s ratio ν of the soil. The greatest value 
of σmax corresponds to supporting on the foun-
dation, the smallest - to a profiled base with a 
large angle of coverage. Pressure σmax on the 
outer tube and on the middle pipe is practical-
ly independent of the number of threads.

3. The horizontal static pressure (σs) of the soil 
located between the pipes decreases with in-
creasing parameter d, reaching a minimum at 
d = 3.0D, equal to the corresponding value for 
a single pipe. The horizontal pressure of the 
soil (σr) on the outermost pipe from the op-
posite side of the adjacent pipe is equal to the 
horizontal pressure on a single pipe and does 
not depend on the parameter d. With a pipe 
spacing of 0.5D < d < 3.0D, the value of σr 
28% more than σs.  The values of σr and σs 
increase directly in proportion to the height of 
the embankment and decrease with decreasing 
Poisson’s ratio of the soil.

4. Diagrams of the radial and tangential static 
pressure of the soil for the outer tubes of mul-
tiline stacking (n > 3) and double-laying pipes 
practically coincide. The diagrams of the ra-
dial soil pressure are asymmetric for the outer 
tubes, are practically symmetrical for the mid-

dle ones. The angle of this deviation depends 
on the parameter d and at 0 ≤ d ≤ 3,0D varies 
respectively from 15° to 0°.

5. The values of the maximum radial and horizon-
tal pressure of the soil on a single pipe, obtained 
in accordance with the SNiP and the FEM for 
an extended embankment, having a constant 
height (flat deformation) are in good agree-
ment. This gives grounds for using FEM to cal-
culate multicell pipes in the design practice.

6. The account of the variable along the length 
of the pipe of the height of the embankment 
reduces the design ground pressure as com-
pared with the calculation performed on the 
flat-deformed scheme. This effect is more pro-
nounced for multi-threaded pipes and weaker 
for a single pipe.

7. Allowance for the length of the pipes reduces 
the estimated ground pressure as compared 
with the calculation using a flat-deformed 
scheme, if their length is l  < 10.0D.
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