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ABSTRACT
A difficulty of freeform surfaces evaluations lies in a setup of a coordinate measuring 
system in general, when it is not possible to use the standard system of alignment 
by a point, a line, and a surface. An algorithm for the measurement adjustment using 
a small workpiece coordinate system movement and rotation to achieve a smaller 
least square error of the produced surface for a given freeform surface defined by 
the function of two variables is considered. The algorithm uses the Newton method 
for calculation of the orthogonal distance of a measured point to a given surface and 
also for minimization of the sum of the distance squares. Numerical results for an 
example are given. 
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INTRODUCTION

Implementation of CAx systems into the 
process of design, production, and measurement 
in the mechanical engineering had a consider-
able impact on the product design, mainly in the 
consumer goods and automotive industries. CAx 
systems development is still ongoing and allows 
creating freeform surfaces as well as precise 
surfaces that are empirically described by math-
ematical equations. The form surface defined by 
mathematical expression enables us to obtain the 
exact shape, which is subsequently produced on 
a CNC machine. This whole process affects the 
quality of machined surfaces.

Freeform surfaces are still considered to be 
artists‘ not engineers‘ work. The paradox is that 
mass production of freeform surfaces were en-
abled mainly by engineering. In spite of these, the 
freeform surfaces are around us more and more. 

The freeform surfaces have become the reality 
of series production in aviation, automotive and 
consumer goods industry at the time when mod-
ern optoelectronic scanning devices and CAD 
systems entered the re-engineering process. This 
issue was elaborated by Ohara and Higashi al-
ready in 1983 [1], Mehrad, Xue, and Gu in [2], 
Sitnik and Blaszczyk in [3], Garbacz et. al. in [21] 
or Molnár et. al. in [19]. Modern scanners can de-
liver numerical information of the product geom-
etry in a form of x, y, z coordinates – so-called 
clouds of points.

These can be then loaded into CAD systems, tri-
angulated and after making cross cuts of this trian-
gulated data we can identify the cross section curves. 
This allows us to define smooth shape surfaces.

Reverse engineering process is a subject of 
interest to engineers and scientists and is being 
constantly improved. Oe, Shizuki, and Tanaka 
discuss this topic in [4] and Kruth and Kersten 
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in [5]. The process is completed when perfectly 
smooth surfaces are created and subsequently for-
warded to a toolroom. Wu, Yang, and Guo deal 
with it in [6]. Ochiai and Sekiya discussed about 
generation of freeform surface in CAD for dies 
in 1995 in [7]. About CNC machining freeform 
surfaces discuss Lo in [8], Wei and Lin in [9], and 
Sacharow et. al. in [10]. 

The accuracy of workpieces of complex free-
form surfaces is achieved by tolerancing, produc-
ing, and metrology of workpieces. The tolerance 
zone is defined by form tolerances, their orienta-
tion, and location on the workpieces. Tolerances 
for complex form surfaces are specified by line 
profile tolerance or surface profile tolerance. 
These tolerances control form or combination of 
size, form, orientation, and location. This issue 
was elaborated by Kráľ and Kráľ [22]. In a ma-
chining process, the impact of machining param-
eter settings on the final surface quality will be 
studied. For geometry verification of the complex 
form surfaces the coordinate measurements will 
be used. The measurement area will in CATIA V5 
be modeled by equations. The data of machined 
surface will be obtained through 3D measurement.

The issue of measurement and obtaining the 
shape will be solved by the contact measure-
ment using contact scanners or without contact 
via optoelectronic scanners. This issue is ad-
dressed by Fanf and Zhang Qiu in [11] and Deb-
ski et. al. in [20]. Lee and Shiou [12] and Kale 
and Gurumoorthy [13], Fedorko et. al [23] and 
Kulka et. al [24] deal with the issue of freeform 
surface measurement.

WORKPIECE MANUFACTURING AND 
QUALITY CONTROL

This work discusses the creation of surface 
defined by limiting curves that are set by sine 
profile of limiting curves on one side and cosine 
profile of limiting curve on other. This shape sim-
ulated freeform surface defined by mathematical 
functions (sine and cosine) in CATIA. This mod-
el was applied when producing the gauge called 
SC01 that was consequently measured. Accord-
ingly, second model was designed. Its basic shape 
was defined by cloud of points generated in MAT-
LAB. Such cloud was approximated by surface 
that was produced and named MR02. This model 
was measured, too.

Mathematical definition of surfaces in CATIA V5 

For this research, it was necessary to produce 
two artifacts. As it was already mentioned, the 
first artifact was defined by two limits defined by 
mathematical function on which the surface is put 
using Multisection surface command in CATIA 
V5. Firstly, it was necessary to input parameters 

 
Fig. 1. Sine (above) and cosine (below) function

in the CATIA Law Editor

 
Fig. 2. Definition of sine (above) and cosine (below) 

curves in CATIA V5
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and equations. Equations were defined in CATIA 
Law Editor (Fig. 1). 

Curves defined by sine in Eq. (1) and cosine 
functions in Eq. (2) created limits to create the 
surface of sample SC01 (Fig. 2).

The inserted functions are of the form:

(1)

(2)

The final virtual freeform surface is shown 
in Figure 3. Furthermore, it was used to gener-
ate CNC program for production of artifact on 3D 
milling machine EMCO Concept Mill 155.

Surface defined by cloud of points in CATIA V5

The second surface model was designed us-
ing cloud of points generated in MATLAB  ac-
cording to Eq. (16). This cloud was then imported 
in the environment Digitized Shape Editor in 
CATIA  V5. Final form of the surface was cre-

ated by putting the surface onto the cloud using 
command Power Fit (Fig. 4). As such, the surface 
MR02 was created. The second artifact was also 
produced using 3D CNC Milling Machine.

Artifact manufacturing

On the basis of the surface model, CNC data 
were generated for production samples that were 
afterward subjected to measurements. The arti-
facts were milled into aluminum and machined 
by ball end tool on EMCO Concept Mill 155 
milling machine. Machining strategy is in trans-
versal direction when the main movement of the 
tool is in the width direction of the workpiece (y-
axis) (Fig. 5 a) using the isoparametric machin-
ing strategy (Fig. 5 b). At first we rough the stock 
of material and after that make finishing opera-
tion (Fig. 6). The distance between two succes-
sive toolpaths was recalculated on the basis of a 
height inequality value setting (Scallop Height), 
(see Fig. 7). The maximum Scallop Height value 
was set to 0.001 mm.

 
Fig. 3. Final surface defined by the sine and cosine functions (left) and part produced by a milling machine (right)

 
Fig. 4. Cloud of points (left) import to CATIA and surface based on this cloud of points (right)
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Measurement system

In the area of 3D measurement of ma-
chine parts, the 3D imaging devices are used 
thanks to their advantageous speed and accu-
racy. Portable coordinate measuring machine 
(CMM) FARO Arm was applied to measure 
two physical parts of freeform modeled in the 

CATIA environment. 3D non-contact mea-
surement was used. Repeatability, based on 
working volume, was in the interval from 
0.024 mm to 0.064 mm. In this case, the re-
peatability equaled to 0.034 mm. Measured 
clouds of points were saved in two separate 
files. The first file sc01.dat (containing 3 707 
474 points) and the second one mr02.dat (con-
taining 3 774 502 points). Loading these files 
into the Octave took about 23  seconds. After 
the transformation to the binary format, load-
ing time has been reduced to about 0.5 second 
or even less.

WORKPIECE MANUFACTURING AND 
QUALITY CONTROL

In this section an algorithm for a measure-
ment adjustment using a small workpiece coordi-
nate system movement and rotation to achieve a 

 
Fig. 5. Definition of machining strategy - movement of the tool (left) and parameters of isoparametric machining 

strategy (right)

 
Fig. 6 Roughing (left) and finishing (right) operation

 
Fig. 7. SH (Scallop Height) - height inequality para-

meter setting
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smaller least squares error of the produced surface for a given freeform surface defined by a function of 
two variables is considered.

Orthogonal distance 

 Let us consider a function

(3)
where: 	R denotes a rectangle [0,lx]×[0,ly] (lx>0 and ly>0 are the corresponding rectangle‘s sides lengths). 

Here we suppose that the function f(x,y) has continuous derivatives of the second order with 
respect to both variables.

Let us consider a “measured” point P = (x̂p; ŷp; zp) close to the surface S given as a graph of the func-
tion f(x,y), e.g.,

(4)

Our goal is to determine a projection PS of the point P onto the surface S and the distance between the 
points P and PS. So we are led to the minimization of the problem

(5)

where || PS - P ||2 denotes the Euclidean distance. Instead of the minimization of Eq. (5) we have minimized 
a square of the distance, hence we were looking for the minimum of the function

(6)
We numerically solved a set of nonlinear equations for the stationary point (x*, y*) corresponding to the zero 
gradient of the function D2:

(7)

using the Newton method [14]. This is equivalent to the minimization of D2 by the Newton method [15]. In 
this case the Jacobian matrix for the system of nonlinear equations is equal to the Hessian matrix. Because 
the point (xp, yP) is supposed to be close to the point (x*, y*), two Newton iterations provided sufficient preci-
sion for approximation of the point (x*, y*). For approximation of projection, point P2 has been used:

(8)

where (x0, y0) = (x̂p; ŷp) has been used as an initial approximation for the Newton method.

Afterwards the orthogonal distance of the point P to the surface S has been approximated by

(9)

Minimization of the sum of squares of distances 

 Let set of measured points

(10)

of size N be given. If coordinates xPi, yPi, zPi, i = 1,2, ..., N correspond to the coordinates x, y, and z of the 
graph above the rectangle R, then we need only to calculate the sum of distances squares to get the mean 
distance dmean:
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(11)

The RSS value is one of the characteristics of the workpiece production quality depending, however, 
on the number of points. Standard deviation dmean can be used for the comparison of the precision for two 
points sets with the different numbers of points.

If we suppose that all points Pi are lying exactly on the surface, then evidently dmean = 0. If, for any 
reason, the workpiece coordinate system will be displaced (moved in some direction and rotated in the 
(x, y) plane), then the measuring device will give us “surface points‘‘ which will not be laying on the 
surface, if we use the same coordinates in the workpiece coordinate system, and the mean distance value 
will be dmean > 0. In that case we are able to recognize the workpiece coordinate system displacement by 
minimizing the value dmean with respect to the possible shift and rotation.

We propose to apply the same idea in the case of a general measurement of the near-surface points. Sup-
pose that the workpiece coordinate system origin Ow is located at the point (xw, yw) and the system is rotated 
by an angle αw (see Fig. 8) with respect to the measuring device coordinate system. Then the “measured 
point” x- and y- coordinates are “tainted”. We are looking for the values xw, yw and αw. We define the optimal 
values xw, yw and αw as the values, for which the RSS value for a given set of measured points is minimal.

We propose to apply the same idea in t αw he case of a general measurement of the near-surface points. 
Suppose that the workpiece coordinate system origin Ow is located at the point (xw, yw) and the system is 
rotated by an angle αw (see Fig. 8) with respect to the measuring device coordinate system.

Then the “measured point” x- and y- coordinates are “tainted”. We are looking for the values xw, yw 
and αw. We define the optimal values xw, yw and αw as the values, for which the RSS value for a given set of 
measured points is minimal.

If we denote by P̃w the local “workpiece” coordinates of the projection P̃ = (xP, yP) of a point P onto the 
x–y plane, then we have

(12)
where R (α) is a rotation matrix for the angle α.

Hence, the true “workpiece” coordinates of the projection P̃ are then given by the following formulas

(13)

and we are indeed to determine the distance of the point (x̂P; yP; zP) to the surface S.
Thus the residual sum of squares depends on the values xD, yD and αD:

(14)

and can be minimized with respect to these values.
For the minimization of the function (14) we were using the inexact Newton method based on the inex-

act gradient and the Hessian matrix [15] defined by the finite difference method. Point O' = (x'w, y'w) (x'w is 
the leftmost x-coordinate and y'w is the smallest y-coordinate of all cloud points – see Fig. 8) for expected 
small angle αw is serving as a good approximation of the origin O.

Further we will use (see Fig. 8)

(15)
One two-dimensional and one three-dimensional Newton step have been sufficient to achieve good precision.

NUMERICAL RESULTS

Let us consider a function

(16)
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where:	 x ∈ [0, 100], y ∈ [0, 80] with units in mm. 
So therectangle R has the size 100 mm × 
80 mm (see Fig. 9).

Below we will compare some results using 
the Nelder-Mead method [16] implemented in 
Octave with the results of the Newton method.

Using the Nelder-Mead method 

Due to the large number of points and rela-
tively slow computations in Octave only thou-
sandth of points (step 1000) has been used for 
optimization. The results are shown in Table 1.

For computations an Octave function 
fminsearch.m written by S.  Pelissier in 2006 
has been used. It used a function fmins.m writ-
ten by A. Adler in 2003 who modified for Octave 
the function nmsmax.m written by N.J. Higham 
[17], [18] in 2002.

During the optimization 111 function evalua-
tions have been performed for sc01.dat and 114 
for mr02.dat.

From experiments it is obvious, that the qual-
ity is much better after the location and rotation of 
the measurement device coordinate system – us-
ing the origin O'w leads to much more pessimistic 
estimation of the mean “error”. All characteristics 
were better for the data mr02.dat.

Using the inexact Newton method

For the inexact Newton method applications 
based on the finite difference approximation of 
partial derivatives different approaches have been 
compared. From the point of view of the computa-
tional time, the best performance has been achieved 
using one two-dimensional Newton step for Δxw 
and yw approximation without the rotation, and 
next one three-dimensional Newton step for (Δxw, 
yw, αw) and approximation. Moreover, the evalua-
tion of the inexact gradient and Hessian matrix has 
been “optimized” using a common function.

The results for (Δxw, yw, αw = 0, 0, 0) given 
in Table 2 are the same as in Table 1, and are not 
shown here. The first part of Table 2 refers to the 
results of the first two-dimensional Newton step 
which uses 11 functional value evaluations, and 
which is approximately two times faster than one 
three-dimensional Newton step which uses 20 
functional value evaluations.

 Here we can see that the first two-dimensional 
step will supply the main improvement of the mea-
surement results interpretation. Therefore, the sec-
ond step can be omitted if we have no time for its re-
alization. The C++ implementation of the program 
is much faster than the Octave implementation. The 
speedup for the smaller problems is about 800, for 
the full set of points the speedup is about 41.

Fig. 8. Measurement device and workpiece 
coordinate systems

Fig. 9. Free-form surface represented by the function (16)
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Table 1. Adjustment using the Nelder-Mead method
sc01.dat sc02.dat

(Δxw, yw, αw)

Mean surface distance [mm]

Max. positive offset [mm]

Max. negative offset [mm]

(0,0,0)

0.2786

0.48074

−0.44981

(0,0,0)

0.30286

0.51429

−0.51977

(Δxw, yw, αw)

Mean surface distance [mm]

Max. positive offset [mm]

Max. negative offset [mm]

(0.7167,0.4973,0.0804)

0.055142

0.17997

−0.15617

(0.7617,0.5299,−0.0314)

0.024572

0.080997

−0.12394

Total computation time [s]

Points number

149.83

3 708

157.31

3 775

Table 2. Adjustment using the inexact Newton method

sc01.dat sc02.dat

(Δxw, yw, αw)

Mean surface distance [mm]

Max. positive offset [mm]

Max. negative offset [mm]

(0.6630,0.5511,0)

0.0565

0.17999

−0.15741

(0,0,0)

0.30223

0.57223

−0.62206

Computation time [s] 1433.76 1438.02

(Δxw, yw, αw)

Mean surface distance [mm]

Max. positive ofset [mm]

Max. negative offset [mm]

(0.7169,0.4973,0.0803)

0.055142

0.17997

−0.15617

(0.7166,0.5300,0.0314)

0.024572

0.080928

−0.12384

Total computation time [s]

C++ computation time [s]

Points number

14.595+27.151=41.746

0.0208+0.0331=0.0539

3 708

14.867+27.434=42.301

0.0194+0.0313=0.0507

3 775

Table 3. Measurement results interpretation for the whole cloud with and without the workpiece coordinate system 
adjustment

sc01.dat sc02.dat

(Δxw, yw, αw)

Mean surface distance [mm]

Max. positive offset [mm]

Max. negative offset [mm]

(0,0,0)

0.27896

0.93423

−0.57223

(0,0,0)

0.30223

0.57223

−0.62206

Computation time [s] 1433.76 1438.02

(Δxw, yw, αw) 

Mean surface distance [mm]

Max. positive ofset [mm]

Max. negative offset [mm]

(0.7169,0.4973,0.0803)

0.055683

0.59395

−0.19518

(0.7616,0.5300,0.0314)

0.024977

0.23678

−0.23627

Computation time [s]

C++ computation time [s]

Points number

1421.13

12.247+22.480=34.727

3 707 474

1457.85

12.453+22.771=35.524

3 774 502
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CONCLUSION

Methods that are used for the evaluation of 
the form of the workpiece apply a best-fit crite-
rion. Its biggest disadvantage is its use in cases of 
more significant form deviations. The proposed 
algorithm deals with this disadvantage and offers 
a way to solve this problem. 

In Table 3 the results for all cloud points with 
the workpiece coordinate system origin placed at 
the point O'w are compared with the results with 
an adjusted workpiece coordinate system.

One can see that the mean surface distance 
after the optimal adjustment for the whole cloud 
is just the same as the value for only thousandth 
of all points. The maximal positive and negative 
displacements for all cloud points are, of course, 
worse than the displacements for only part of the 
points. However, it is evident that the results – 
both the mean and maximal offsets – without the 
coordinate system adjustment are much more 
pessimistic.
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