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ABSTRACT
This article reports a proposed approach to a frictional resistance description in 
sheet metal forming processes that enables the determination of the friction coef-
ficient value under a wide range of friction conditions, without performing time-
consuming experiments. The motivation for this proposal is the fact that there exists 
a considerable amount of factors that affect the friction coefficient value and as a re-
sult building analytical friction model for specified process conditions is practically 
impossible. In this proposed approach, a mathematical model of friction behav-
iour is created using multiple regression analysis and artificial neural networks. The 
regression analysis was performed using a subroutine in MATLAB programming 
code and STATISTICA Neural Networks was utilized to build an artificial neural 
networks model. The effect of different training strategies on the quality of neural 
networks was studied. As input variables for regression model and training of radial 
basis function networks, generalized regression neural networks and multilayer net-
works, the results of strip drawing friction test were utilized. Four kinds of Al-Mg 
alloy sheets were used as a test material.

Keywords: coefficient of friction, friction, GRNN, neural networks, RBF network, 
sheet metal forming.

INTRODUCTION

Regression modelling is one of the most of-
ten used methods to solve problems in engineer-
ing, economics and management science [10, 
17, 18]. For instance, mathematical models are 
utilized to characterize the relationship and to 
predict possible fault patterns based on the pro-
cess conditions in the spot welding process [14] 
and to find an input-output relationship in a tung-
sten inert gas welding process [7]. On the other 
hand, the wide field of application of the regres-

sion analysis proves there exists no unequivocal 
definition of regression term [10]. According to 
Cohen et al. [4] multiple regression analysis is 
highly general and, therefore, it is a very flexible 
data-analytic system that may be used whenever 
a dependent variable is to be studied as a func-
tion of, or in relationship to, any factors of inter-
est expressed as independent variables. In other 
words, an advantage of regression in scientific 
research concerns the possibility of predicting 
the value of a dependent random variable based 
on the values of other independent variables and 
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establishing a functional relation of the statisti-
cal nature. The mathematical complexity of the 
model and the degree to which it is a realistic 
model depends on how much is known about the 
process being studied and on the purpose of the 
modelling task. A causal analysis allows us to 
separate the effect of independent variables on 
the dependent variables so the unique contribu-
tion of each variable can be examined. Alterna-
tive approaches to stochastic analysis are arti-
ficial neural networks (ANNs) which allows us 
to overcome the difficulty arising in the assess-
ment of the complex relationships that is estab-
lished based on empirical analytical models and 
is based on the empirical non-analytical models. 
Many ANN architectures have been developed 
to realize the regression and classification tasks. 
The most widespread ones are Kohonen’s net-
works, Multilayer Perceptron (MLP), Radial Ba-
sis Function (RBF) and Generalized Regression 
Neural Networks (GRNN).

Application of ANNs is widely reported in 
the literature. Aleksendrić et al. [1] used ANN to 
predict the recovery performance of brake fric-
tion materials. The prediction of tribological 
properties of plasma nitride 316L stainless steel 
using ANN has been studied by Yetim et al. [25]. 
Gyurova and Friedrich [8] have also predicted 
sliding friction and wear properties of polyphen-
ylene sulphide composites. ANN are also used 
to model and optimize the surface roughness in 
single point incremental forming [12]. Among 
the widespread usage of regression analysis in tri-
bology, it is necessary to put special emphasis on 
the possibility of the determination of the friction 
co-efficiency [20] and the determination of the 
wear rate for different combinations of load, grit 
size, and sliding distance [5, 13, 24]. To develop a 
contact area ratio expression regarding the nomi-
nal pressure, the friction coefficient and relative 
sliding of the MATLAB programme was utilized 
[15]. Regression equations have led to modelling 
and predicting the film thickness in contact con-
ditions under the elastohydrodynamic lubrication 

[11, 16]. A multiple regression model was applied 
to analyse the influence of different parameters 
on the springback phenomenon in the sheet metal 
forming process [6].

Many authors with a huge success applied 
ANNs to nonlinear regression analysis. For in-
stance, application of ANN allowed them to find 
the relationships between the value of the surface 
roughness parameters and real contact area under 
the different friction conditions [19]. Many re-
searchers applied the ANN models to predict flow 
curves in a single step deformation on several ma-
terials [3]. An ANN may solve problems by learn-
ing rather than by a specific programming based 
on well-defined rules [9]. 

Friction behaviour in sheet metal forming 
processing depends on several parameters such 
as contact pressure, sliding velocity, sheet metal 
and tool surface roughness, tool material and lu-
bricant condition. Furthermore, recent studies of 
authors [13, 14] show that the topography of a 
surface influences the frictional behaviour of a 
contact surface and hence its wear. Hence, there 
is a need to understand better the role of friction 
and to find factors that essentially influence the 
friction coefficient values. In this article, the clas-
sical regression and different architectures of neu-
ral networks are implemented to modelling the 
friction of Al-Mg alloy sheets. To determine the 
friction coefficient value, the simple strip-draw-
ing test is realized and the efficiency of different 
training strategies was studied.

MULTIPLE REGRESSION MODEL

The regression model was built based on the 
results of strip-drawing tests under lubricated 
conditions. The aim of the performed experi-
ments was to find the correlation between the 
value of surface roughness parameters of the 
sheet metal and rolls as well as the load pressure 
on the friction coefficient value. The specimens 
for the friction tests were made of brass sheet 
metal and were prepared as strips measuring 20 

Table 1. Characteristics of tested materials and value of parameters varied during the test

Material Re (MPa) Ra0 (µm) Ra90 (µm) Rar (µm) FC [kN]

AA5251 H14 211.0 0.22 0.28 0.32 0.8

AA5754 H14 211.8 0.29 0.36 0.63 1.2

AA5754 H18 185.4 0.26 0.32 1.25 1.6

AA5754 H24 165.8 0.18 0.24 2.5 2
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mm in width and about 200 mm in length, cut 
along the rolling direction of the sheet. The tests 
were performed using the values of roll surface 
roughness (Rar) and clamping force (FC) given 
in Table 1. 

The mechanical properties of the sheet met-
al are the main parameters influencing the phe-
nomena that exist between asperities of contact 
bodies. The value of yield stress Re (Table 1) is 
determined in the uniaxial tensile test. The given 
clamping force values are approximated. Appli-
cation of different values of clamping force al-
lows us to build a data set with the wide range 
of input signals. The sliding velocity was set to 
2 mm/s. The test conducted in such a way that 
a strip of the sheet was clamped with specified 
force between two cylindrical rolls of equal radii 
(Fig. 1a). The experimental setup is also shown 
in Figure 1b. 

The rolls were made of cold working tool 
steel. Then when the displacement of moving 
crosshead of testing machine was engaged, the 
pulling force and clamping force were recorded 
continuously using a load cell and a computer 
programme. The coefficient of friction µ, defined 
as a ratio of the results of the clamping force Fc 
and pulling force Fp, was determined using the re-
lationship µ = Fp/2Fc [20]. Surface roughness pa-
rameters were measured by using Taylor Hobson 
Surtronic 3+ instrument to determine arithmetic 
average height along the rolling (Ra0) and trans
verse directions (Ra90) of the sheet metal. The 
arithmetic average height parameter of rolls was 
measured along the generating line of the roll. 

Selecting the factors that have influence on 
frictional resistance of a sheet metal is necessary 

to take into consideration the requirements that 
are related with the construction of the regres-
sion model. These requirements boil down to 
the selection of factors that significantly influ-
ence the frictional resistance and are simultane-
ously independent. Significance of requirement 
of particular factors may be verified using elimi-
nation by a posteriori method on the later stage 
of model building. As the independent vari-
ables, the clamping force of the rolls and surface 
roughness parameters of sheet metal and rolls 
were taken into consideration. All tested materi-
als were tested for all combinations of variation 
of surface roughness parameters of the rolls and 
clamping forces. A matrix of independent vari-
ables was built on the basis of 80 observations 
(i.e. n = 80).

The selection of multiple regression model 
by a posteriori method was carried out by sub-
routine in MATLAB+SIMULINK package. MAT-
LAB is a high-level computer language for sci-
entific application based on matrix formulation. 
The advantage of an interactive system is that 
programs can be tested and debugged quickly, 
allowing the user to concentrate more on the 
principles behind the program and less on pro-
gramming itself. Furthermore, MATLAB subrou-
tines can be developed in a much shorter time 
than equivalent FORTRAN or C programs. The 
elementary assumptions and methods creation of 
multiple regression model are introduced below 
(Equation 1). The linear regression model with 
p independent variables X and one dependent 
variable Y was established. In further consid-
erations, it is necessary to determine if the re-
ceived model is a good predictor. So the model 

a) b) 

Fig. 1. a) Schematic of strip drawing friction test; b) View of the testing device mounted in universal testing 
machine: 1 – base, 2 – working rolls, 3 – strain gauges, 4 - specimen
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can be written as [21]:

Y = Xβ + ε (1)

where: Y – vector of observations on the de-
pendent variable Yi (n × 1), X – matrix 
consisting of a column of ones, which is 
labelled 1, followed by the p column vec-
tors of the observations on the independ-
ent variables (n × p), β – vector of param-
eters to be estimated (p × 1),   ɛ – random 
terror vector (n × 1).

The vector of residuals ε reflects the lack of 
agreement between the observed Y and the esti-
mated Ŷ:

ɛi = Yi – Ŷi
(2)

The subscript i denotes the observational unit 
from which the observations on Y and the p inde-
pendent variables were taken. The conventional 
tests of hypotheses and confidence interval esti-
mates of the parameters are based on the assump-
tion that the estimates are normally distributed. 
Thus, the assumption of normality of the εi is 
critical for these purposes. However, normality 
is not required for the least squares estimation. 
The expected value of random error E(ɛ) = 0 and 
variance D2(ɛ ) = Iσ2 = 0, where I is a unit ma-
trix, so the elements ɛ must be non-correlated [2]. 
Because E(ɛ) = 0 the other way of describing the 
model is as follows:

E(Y) = Xβ (3)

Then, the sum of squares is equal to:

E(Y) = Xβ (4)

The value of estimator β obtained by the least 
squares method is equal to b which after substitut-
ing into Equation 2 minimizes to ε’ε.

For the four independent variables, four es-
timators of parameters βi, {i∈N:0<i<5} are 
sought, which are determined by the well-known 
least square estimation. Values of estimators bi, 
{i∈N:0<i<5} are expressed as:

b = (XTX-1XT)Y (5)

If several normal equations depend on other 
equations then a matrix XTX is singular, so (XTX)-

1 does not exist. Then a smaller number of param-
eters need to be taken into account in the model. 
The values of estimators can be obtained by least 
square estimation under the assumption that: 
•• the form of the model is linear,
•• received factors influenced on the friction co-

efficient value are not random and they are in-

dependent from each other,
•• the number of received factors to create the 

regression model are less than the number of 
observations,

•• the determinant of matrix XTX ≠ 0 otherwise 
XTX are non-singular,

•• ɛi is a random variable with the advisable val-
ue equals to 0.
Elements of vector b are the linear func-

tions of observations Yi, i ∈ 〈1, n〉 and provide 
unbiased estimates of the elements of β which 
have the minimum variance irrespective of dis-
tribution properties of the errors.

The vector of estimated means of the depen-
dent variable Y for the values of the independent 
variables in the data set is computed as:

Ŷ =Xb (6)

After determination of b and combination 
with Equation 6, the regression equation gets 
the form:

(7)

Upon relating the center matrix  to the mean 
values, we find j×y square matrix . Determining 
the elements of correlation matrix with factors 
from the interval (0, 1), the correlation matrix be-
comes:

(8)

(9)

 Useful statistics to check is a R2 value of a 
regression fit, which measures the proportion of 
total variation about the mean Yśr explained by 
the regression and it is defined by:

(10)
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Where both summations are over i  = 1, 2,…, 
n. Factor R2 is called the square of the multiple 
correlation coefficient and shall take the values as 
high as 1. 

The larger the value of R2, the better the fitted 
equation can explain the variation in the data. As-
signed regression model has R2 = 0.83371 imply-
ing that 83.371% of the sums of squares can be 
associated with the variation in these four inde-
pendent variables. According to the literature, the 
model with R2 above 80% may be acknowledged 
as a good predictor [23]. Analysis of variation (Ta-
ble 2) can be used to check the fitness of friction 
model and to identify the main effects of design 
variables.

Therefore, the variation allows determina-
tion of uncertainties related with prognosis of 
variable values. Variance as a mean square de-
viation of random variables from their mean 
value is a measure of a dispersion effect of the 
probable variable value and it is an irreplaceable 
testing tool of significance of the whole model. 
Under the significance level of α = 0.05 the to-
tal value of F-test (Fischer – Snedecor’s test) of 
74.2008 that exceeds the value of F = 2.33, as 
read from tables of F-test, confirmed that Equa-
tion 4 is a good predictor. Significance level is 
called a probability of a mistake during the esti-
mation of parameter significance that is its prob-
ability to indicate the incorrect estimate of the 
whole model. Usually the significance level is 
assumed equal to 0.05. 

In the case of lower values, it often occurs 
that after the estimate of significance level of a 
parameter, it appears that the significance does 
not have a sufficiently high level. The higher 
level of probability may cause that a computed 
parameter, despite positive significance test, does 
not fulfil theoretical assumptions of the regres-
sion method. The number of degrees of freedom 
related with each sum of squares exhibits how 
much independent information is included in the 
n independent values Yi, {i∈N:0<i<n} is needed 
to specify a sum of squares.

In order to obtain the best prediction quality of 
the regression equation, as many variables as pos-
sible should be considered. It can be related the with 
building of a database of lots of observations and the 
involved variables in the regression model so that it 
is possible to analyze the number of variables as low 
as possible. The compromise between these contra-
dictory conditions is the selection procedure of the 
best regression equation. The lowest value of partial 
F-test (Table 3) is higher than the value read out from 
the regression table at F = 2.50 under the significance 
level α = 0.05. Because the obtained F-test value for 
variable X1 is higher than the critical value, it can be 
accepted that the equation Ŷ =f(X1, X2, X3, X4, X5) 
is a final regression model. To ensure better predic-
tion, the model may be improved, for example, by 
increasing the input variables or introducing mixed 
components X1*X2, X1*X3 etc. However, taking into 
account high value of square of the multiple correla-
tion coefficient R2 = 83.371% and lower value of the 
standard deviation factor of 0.016 the model was ac-
cepted as adequate.

The results of partial F-test value (Table 3) 
determined after rejection from the regression 
model confirmed the significance of all vari-
ables. However, the highest value of partial F-
test is observed after rejection of Ra0 roughness 
parameter, so this parameter exhibits the small-
est in formativeness.

Table 2. Results of analysis of variance

Source of 
variation

Degrees 
of free-

dom

Sum of 
squares

Mean 
square Total F

Generally 79 0.086175
Regression 5 0.071845 0.014369 74.2008

Residue 74 0.01433 0.000194

Table 3. Results of partial F-test analysis

Source of variation Degrees of freedom Sum of squares Mean square Partial F

Regression 5 0.071845

due to Re | Ra0, Ra90, Rar, FC 1 0.003525 0.003525 18.20079

due to Ra0 | Re, Ra90, Rar, FC 1 0.025912 0.025912 133.8073

due to Ra90 | Re, Ra0, Rar, FC 1 0.013834 0.013834 71.43959

due to Rar | Re, Ra0, Ra90, FC 1 0.00175 0.00175 9.038703

due to FC | Re, Ra0, Ra90, Rar 1 0.016713 0.016713 86.30279

Residual 74 0.01433 0.000194
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Figure 2 shows comparison of the values of 
the friction coefficient for AA5754 H18 sheet  
metal. As shown in the two plots, it compares the 
values determined by experimental work (Figure 
2a) and those predicted by the regression model. 
It is possible to observe that the multiple regres-
sion model has greater smoothing properties of 
data, while the results of experimental study of 
the friction coefficient value for particular sets of 
input variables may possess systematic errors.

NETWORKS MODELS

To build different network models, the Statis-
tica Neural Networks (SNN) were used and di-
verse networks such as MLPs, RBFs and GRNNs 
were employed to analyse the data. Next, the net-
work that shows the best performance for the ana-
lysed types of ANNs was selected. The methodol-
ogy of creating MLP for the prediction of value of 
friction co-efficiency is presented in other works 
of the authors [20, 23]. The input variables cor-
responded to the variables used to calculate the 
classical regression equation (see Section 2). The 
most important parameter from input variables 
is roughness parameter Ra0 (Table 4). The yield 
stress value exhibits the smallest effect on the 

value of friction co-efficiency. A measure of the 
sensitivity of the network is the value of error in-
dicated the quality of the network in the case of 
absence of a given variable. The more important 
input parameter in the learning or validation pro-
cess, the greater the value of the error.

As illustrated in Fig. 3, the RBF networks 
consisted of three layers. The radial activation 
functions are implemented in the hidden layer of 
neurons.

It is most often a Gaussian function:

(11)

where: ||∙|| stands for Euclidean norm and si is a 
parameter determining the shape of radial 
function. 

Radial networks are composed of neurons 
whose activation functions can be realized using the 
representation given in the following equation (12):

(12)

The functions φ(||x - c||) are called the radi-
al basis functions. Their values change radially 
around the center c. RBF networks can model 
any non-linear function with using a single hid-
den layer [22].

a) b) 

Fig. 2. Value of friction coefficient value for AA5754 H18 sheet metal: a) determined experimentally;
b) predicted by regression model

Table 4. The importance of input variables determined for training set

Parameter
Variables

Re Ra0 Ra90 Rar FC

Rank 5 1 2 3 4

Error 0.0155 0.04519 0.0365 0.03361 0.01941

Ratio 1.296299 3.779331 3.052333 2.810585 1.623423
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Furthermore, the linear transformation occur-
ring in the output layer can be optimized using 
traditional linear modelling techniques. Conse-
quently, during the learning process of RBF net-
work no local minima occur. They are basic prob-
lems during the learning of MLP. RBF networks 
can be learnt in a very short time compared with 
that of MLPs.

In the process of training RBF networks, the se-
lection of weights of a hidden layer with an output 
layer comes down to solving the following equation:

G’w = yd (13)

where: w - sought weights matrix, G’- response 
matrix of hidden layer on all training vec-
tors,   yd - a matrix of desired responses 
for all training vectors.

The solution of Equation 13 can be obtained 
by minimizing the square of the norm or absolute 
value ||yd - wG'||.

GRNNs, which is one of a Bayesian type net-
work [1, 17], is used for a generalized regression 
purpose. The network consists of 4 functionally 
different layers: input, radial (for storing centers), 
regression and output layers. GRNNs use the 
method of nuclear approximation in order to real-
ize regression. In GRNNs the Gaussian nuclear 
functions are arranged in each neurons of hidden 
layers in such a way that, for each case of training 
set, there exists one neuron that spans over the 
case and that is an appropriate Gaussian function. 
In the GRRNs the radial neurons represent clus-

ters, not isolated training cases. The algorithm 
tests each case, assigns it to the nearest radial 
neuron, and determines the weights for neurons 
that appear in the third layer. It computes the sum 
of the values of output variables and the counting 
of cases assigned to specific cluster.

In order to scale the data to the suitable range 
minimax procedure [22], which automatically de-
termine the scale factors, were selected. The num-
ber of training samples in the training set (TS) 
was 64. The training set consists of values of in-
put variables and corresponds to the value of the 
friction coefficient. For the purpose of keeping 
an independent check on the progress of the BP 
algorithm, all observations were randomly sepa-
rated from the validation set (VS) which contains 
16 training pairs (20% of all training samples). 

Fig. 3. The architecture of RBF network

Table 5. Regression statistics for MLP 5:5-11-1:1

Parameter

Learning algorithm
Back

Propagation
Conjugate 
Gradients Quasi Newton Levenberg-Marquardt

TS VS TS VS TS VS TS VS
Error Mean -0.0019 0.0011 0.0001 0.0033 0.0033 0.0062 -0.0028 -0.0004
Error S.D. 0.0110 0.0106 0.0198 0.0216 0.0143 0.0139 0.0135 0.0118
ABS Error Mean 0.0086 0.0090 0.0166 0.0185 0.0123 0.0127 0.0107 0.0097
S.D. Ratio 0.3403 0.2919 0.6126 0.5930 0.4411 0.3815 0.4185 0.3241
Correlation 0.9480 0.9623 0.7920 0.8159 0.9077 0.9407 0.9098 0.9506

Table 6. Regression statistics for RBF 5:5-14-1:1

Parameter

Learning algorithm
Back

Propagation
Conjugate
Gradients Quasi Newton Levenberg-Marquardt

TS VS TS VS TS VS TS VS
Error Mean -0.0019 0.0017 6.026E-5 0.0027 -0.0004 0.00324 0.00021 0.00160
Error S.D. 0.0167 0.0201 0.0155 0.0185 0.0167 0.0208 0.0176 0.0209
ABS Error Mean 0.0131 0.0166 0.0119 0.0160 0.0129 0.0173 0.0146 0.0158
S.D. Ratio 0.5157 0.5505 0.4807 0.5090 0.5151 0.5712 0.5446 0.5747
Correlation 0.8573 0.8387 0.8768 0.8678 0.8604 0.8345 0.8408 0.8188
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Different training algorithms were used to 
train the networks, namely Back Propagation 
(BP), Conjugate Gradients (CG), Quasi Newton 
(QN) and Levenberg-Marquardt (LM). In the 
case of GRNNs, only the training of generalized 
regression method is available in SNN. The BP 
algorithm was used with the following settings: 
learning rate value was 0.1 and momentum val-
ue was set to 0.3 [21]. The quick propagation 
algorithm was used with the following settings: 
learning rate value was 0.1 and acceleration value 
was set to 2 [22]. As a criterion to stop the train-
ing process, the value of the Root-Mean-Square 
(RMS) error for validation set was used where the 
error shows no more decreasing trend. The one 
network with the best performance for the anal-
ysed types of ANNs was selected to compare the 
regression statistics (Tables 5 to Table 7). 

Factors necessary to estimate the regression 
model are [22]: data standard deviation ratio (S.D. 
Ratio) and the standard Pearson-R coefficient be-
tween the target and actual outputs values. These 
factors are independently determined for all sets. 
For a very good model the value of S.D. Ratio 
amounts to less than 0.1.

It is observed that the used training algorithms 
has a great impact on the correlation coefficient 
and S.D. ratio. In the case of MLP network (Table 
5), the highest performance is received for the net-
work trained using back propagation algorithm. 
The high efficiency of the learning process is con-
firmed by the value of correlation coefficient for 
verification set that is higher than the training set.

In the case of the RBF network (Table 6), the 
Conjugate Gradients was the most efficient train-
ing method. Generally, correlation coefficient and 
S.D. ratio values for RBF network are very similar 
for all training algorithms. The values of S.D. ratio 
(up to 0.48) represent the ability of RBF network to 
analyse the regression problems. The best regres-
sion results were found for GRNN network (Table 
7). The high value of correlation coefficient (up to 
0.96) and the value of S.D. ratio of about 0.25 tes-
tify to the good regression properties of GRNN.

Table 7. Regression statistics for GRNN 5:5-64-1:1
Parameter TS VS

Error Mean -0.00010 0.00043
Error S.D. 0.0083 0.0096
ABS Error Mean 0.0051 0.0069
S.D. Ratio 0.2578 0.2650
Correlation 0.9678 0.9698

Fig. 4. Response surfaces presented the effect of different combinations of input parameters
on the friction coefficient value
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Evaluation of neural network model should 
take into account both the ability to approxima-
tion and generalization. Taking into account only 
the errors obtained for the training set usually 
prefers complex models, matching to the training 
data, but not having the skills to generalize the 
knowledge. Observation and closer analysis of 
response surfaces indicate that:
•• for the Ra0 parameter in the range of 0.32–1.25 

µm, an increase of the parameter value causes 
the friction coefficient value to increase (Fig. 
4a). After exceeding the value of 1.25 µm, the 
friction coefficient starts to decrease,

•• a decrease of clamping force value and simul-
taneously the yield stress causes a decrease of 
the coefficient of friction value (Fig. 4b),

•• there is no evident effect of Ra0 parameter val-
ue on the friction coefficient value (Fig. 4c),

•• a decrease of clamping force value and simul-
taneously the Ra0 roughness parameter causes 
a  decrease of the coefficient of friction value 
(Fig. 4d),

•• the maximum value of friction coefficient is 
observed for Rar = 1.25 µm, in the case of 
higher and lower values of Rar the friction co-
efficients start to decrease (Fig. 4e).

The high value of Pearson’s correlation co-
efficient R and simultaneously low value of S.D. 
ratio for training set testify good approximation 
properties of the neural network. Comparison of 
regression and neural models (Fig. 5a and Fig. 
5b) illustrates a better fitting of neural network 
models to experimental data that are nonlinear. 
The best fit of ANN and experimental data is ob-
served for GRNN.

CONCLUSIONS

Although the ANN model better fits the 
experimental data than the regression model it 
does not mean the resignation of an applica-
tion of classical multiple regression. It should 
be pointed out that the predicted values have to 
be situated for the range of used values in the 
building procedure of the regression model. In 
case of possibly making a choice between the 
simple and the complex model the simple model 
should be preferred unless the other approxi-
mate data is much better. Based on the results of 
experiments and neural analyses the main con-
clusions are as follows:
•• in the case of MLP network the highest per-

formance is received for the network trained 
using BP algorithm,

•• in the case of the RBF network the Conjugate 
Gradients algorithm was the most efficient 
training method,

•• the best performance of the neural model is 
observed for GRNN,

•• a  decrease of clamping force value and simul-
taneously the yield stress causes a  decrease of 
the coefficient of friction value,

•• an increase of Ra0 roughness parameter of 
sheet metal leads to an increase of the friction 
coefficient value.
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