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ABSTRACT
Site response spectrum is one of the key factors to determine the maximum accel-
eration and displacement, as well as structure behavior analysis during earthquake 
vibrations. The main objective of this paper is to develop an optimized model based 
on artificial neural network (ANN) using five different training algorithms to predict 
nonlinear site response spectrum subjected to Silakhor earthquake vibrations is. The 
model output was tested for a specified area in west of Iran. The performance and 
quality of optimized model under all training algorithms have been examined by 
various statistical, analytical and graph analyses criteria as well as a comparison 
with numerical methods. The observed adaptabilities in results indicate a feasible 
and satisfactory engineering alternative method for predicting the analysis of non-
linear site response.

Keywords: nonlinear, site response spectrum, optimized ANN model, Iran, analyses 
criteria.

INTRODUCTION

Site (ground) response spectrum is a nonlin-
ear plot of the peak value of a response quantity 
(e.g. acceleration) in the earth surface as a func-
tion of the vibration period of the system and 
depends on the damping ratio and the selected 
ground motion. Significant seismic damage may 
occur if the building response is in resonance 
with components of the ground motion, which 
may be identified from the response spectrum. 
The impedance ratio between surface strata and 
the underlying bedrock as well as surface topog-
raphy can affect the site response during a severe 
earthquake. However, nonlinear site response 
describes a situation when a site responds dif-
ferently depending upon the strength of shaking 
[1-7]. The nonlinear site response during earth-
quake vibrations can be influenced by geological 

deposits and local soil conditions [7-12]. Large 
earthquakes with particularly strong vibrations 
and a characterized compliant medium are neces-
sary conditions for a nonlinear site response [1]. 
However, obtaining site response spectra due to 
soil nonlinearity, the unavoidable uncertainties 
as well as adopted simplifications during the de-
sign process can be an imprecise scientific field 
[13]. Moreover, the available conventional com-
puter programs have an inherent limitation due 
to their sequential and algorithmic approach. To 
overcome this problem, relatively accurate pre-
dictions using advanced soft computing and, in 
particular, the artificial neural network (ANNs) 
approach in geo-engineering applications and in 
particular to site response characterization can be 
tolerated rather than solving a problem conven-
tionally [14-24]. The efficient handling of highly 
nonlinear relationships in data, even in unknown 
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exact nature of such relationship is one of the ma-
jor advantages of ANNs. Therefore, the ANNs 
can easily form models for complex problems as 
well as successfully application in learning relat-
ed classification, generalization, characterization 
and optimization functions.

In this paper a Matlab computer code based 
on several different training algorithms as well 
as various activation transfer functions have been 
developed to find an optimized ANN model to 
predict the site response spectra for a specified 
high risk seismic zone under Silakhor earthquake 
vibrations (Ms6.1, 2006, Iran). Among the tested 
ANN training algorithms, the conjugate gradient 
descent showed better performance based on the 
employed criteria. In the introduced model, the 
importance of the adequate soil behavior using the 
in-situ and laboratory tests as well as geophysical 
servying have been considered to simulate earth-
quake site response spectra. The conducted com-
parison between the ANN results with a previous 
study [25] and time domain nonlinear method 
highlighted an attractive economical engineering 
based alternative method that can cover and solve 
some limitations of the conventional methods.

TARGET SITE AND USED DATASETS

The Hamedan province (Fig. 1B) is situated in 
Zagros mountain fold-and-thrust belt with NW-SE 
strike (Fig. 1A) as the most seismically active belts 
in west of Iran with frequently recorded medium 
to large magnitude earthquakes [26, 27]. The tar-
get area in this paper (Fig. 1B and C) is the Korzan 
earth dam site with 43 m height from the river bed 
and 1,428m crest line length with 2 Km distance 
from Korzan village and 10 Km from Tuyserkan 
city (Fig. 1B). The site of the dam is located at 
34° 34’20″ to 34°35’ north latitude and 48°20’ to 
48°23’10″ east longitude and has been subjected 
to earthquake geotechnical analysis [25]. 

Considering the importance of accuracy, 
completeness, consistency and quality of data 
on ANNs output [28], data collection plays an 
important and significant role. Therefore, in this 
paper, the previous databases [25] have been up-
dated using geo-mechanical data and geophysi-
cal surveying form field tests and other relevant 
sources and were categorized into four main 
subcategories by the authors, as drilled borelog 
data (e.g. soil layers, soil types, layer thickness, 
depth to bedrock level), field and laboratory test 
data (e.g. standard penetration test (SPT), sieve 

analysis, unit weight, shear wave velocity (VS), 
shear modulus, plasticity, permeability, degree of 
saturation, cohesion of the soil, ground water ta-
ble, pore pressure), computed data (e.g. total and 
effective vertical stress (σv, σ’v), damping, and 
stress reduction factor (rd)) and recorded data of 
Silakhor earthquake (Ms6.1, 2006, Iran) at Tuy-
serkan station as input motion. 

The epicenter of event and recorded peak 
ground acceleration (PGA) respected to studied 
area is presented in Figure 1C. The depths of drilled 
borehole vary between 30 to 80 m and ground wa-
ter table found between 1.3 to 2 0m respectively. 

The complexity of geological soil deposit 
structures causes a highly nonlinear behavior in 
site response analysis which is contributed to 
quantitative physical parameters, such as VS and 
damping factors [29, 30]. Therefore, it is neces-
sary to know the soil related properties and the 
variability in VS with change in soil properties.

ANN AND BACK PROPAGATION 
LEARNING ALGORITHM

The ANNs are novel developed computation-
al models of the information processing system 
based on the biological nervous system. They are 

Fig. 1. (A) Location of Hamedan province respect 
to Zagros main recent fault in Iran, (B) Situation of 
target area and other available earth dams, (C) PGA 
contour line and epicenter of Silakhor earthquake 
(Ms6.1, 2006, Iran) respected to the studied area
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composed of a large number of highly intercon-
nected processing elements (neurons) to solve 
specific problems [31]. The learning system of 
ANNs is one of the major differences compared 
to traditional statistical or rule-based systems 
[32]. In ANNs, the neurons are interconnected via 
a set of weights and suitable activation functions 
which play a major role in processing inputs and 
outputs. The way of interconnection among the 
processing elements determines the network ar-
chitecture. The input layer projects the data to the 
intermediate (hidden) layers while the final hid-
den layer projects the information to the output 
neurons (Fig. 2). The final weights and thresholds 
of activation for decreasing the error between the 
observed and computed outputs subject to a suffi-
cient level defined by the user are set in the train-
ing phase of the ANN algorithm.

As presented in Figure 2, the Xi as the signal 
from the ith input is connected to another neuron j 
with associated weight wij between the Xi and Xj. 
Eq. 1 is a result of multiplication and summation 
of the output of each neuron i by wi,j by an asso-
ciated bias (θi) to each connection link between 
input layer i and hidden layer j.

(1)

The output of a neuron (y) as an activation 
function (f) of the weighted sum of n+1 inputs 
can be defined as Eq.2. These n+1 correspond to 
the n incoming signals. The threshold is incorpo-
rated into Eq.3 and the output of kth neuron can be 
obtained by Eq.4.

(2)

(3)

(4)

Using Eq.5, the mean square error (MSE) 
is used as a network error function to calculate 
the error at each iteration during the learning 
process. 

(5)

where tk is the target output at layer k and Ok is the 
final output at the output layer.

To decrease the error value, the derivative of 
MSE using the chain rule with respect to weight 
is computed and back-propagated to the layers to 
compute the new weight value [32] (Eq.6). 

(6)

where wij, ai and neti are weight from neuron j to 
neuron i, activation value and weighted sum of 
the inputs of neuron I respectively.

This algorithm which uses the gradient de-
scent method is known as the delta rule (Eq.7) 
[32]. Then the new weight value at (t+1)th itera-
tion between output layer to hidden layer j can be 
calculated by Eq. 8.

(7)

(8)

where η and β are the learning and momentum 
parameters and t is the number of iteration respec-
tively.

PROCEDURE TO INTRODUCE THE 
OPTIMIZED ANN MODEL STRUCTURE

In the current paper, the depth, soil type, SPT, 
σv, σ’v, rd and VS due to their proved effect on 
site response spectrum were selected as model in-
puts. The procedure to find the optimized ANN 
structure to predict the nonlinear seismic site re-
sponse spectrum was found through the trial and 
error method using a developed Matlab computer 
code. The optimized model is introduced by high-
est value of network correlations and minimum 
root mean square error (RMSE). By application 
of five training algorithms (quick propagation 
(QP), conjugate gradient descent (CGD), limited 
memory quasi Newton (LMQN), quasi Newton 
(QN) and Levenberg-Marquardt (L-M)) as well 
as various activation transfer functions, more 
than 560 topologies were tested, trained and de-
veloped and their performance was controlled us-
ing several statistical, analytical and graph analy-
ses criteria.

The result of tested models showed that a four 
layers model with 7-7-5-5-3-3-1structure con-
taining 23 neurons under CGD training algorithm 
and hyperbolic tangent activation function satisfy 
the minimum RMSE and highest network corre-
lation (Figs 3, 4 and Tabs.1 ,2). In order to have a 
better view, for 23 neurons many structures such 
as 7-7-5-6-3-1, 7-6-7-5-3-1, 7-6-5-7-3-1, 7-4-
6-6-7-1 were tested. For example, the structure 
of 7-7-5-6-3-1 was separately controlled for all 
training algorithms using hyperbolic tangent and 
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then logistic function. Then the operation was 
repeated and tested for the same structure using 
both logistic and hyperbolic tangent in different 
hidden layers. This operation process is repeated 
again for the same number of neurons but another 
topology and has been executed for all the num-
ber of neurons and then optimized ANN structure 
model was selected. The percentage of data for 
training, testing and validation with randomized 
selection were considered as 55%, 25% and 20% 
respectively. The performance results of the opti-
mized network for 3 runs and variation of MSE 
and standard deviations of both training and vali-
dation processes for 1000 epochs are given in 
Figure 5A, B and C respectively. 

RESULTS AND DISCUSSION

The performance of the optimized ANN 
model can be controlled by mean absolute per-
centage error (MAPE), RMSE, variance account 
for (VAF), median absolute error (MEDAE), 
variance absolute relative error (VARE) statisti-
cal indices criteria as well as absolute error (AE) 
and absolute relative error (ARE). The formula-

Table 1. Characteristics of optimized ANN structure in this study based on tested algorithms

ANN training 
algorithm Network error Number of iteration

Activation function
Hidden layer activation Output activation

QP 0.00257 81 logistic logistic
CGD 0.0024 139 hyperbolic tangent hyperbolic tangent
QN 0.00296 79 hyperbolic tangent logistic

LMQN 0.0032 114 logistic hyperbolic tangent
L-M 0.0026 65 hyperbolic tangent hyperbolic tangent

Table 2. Network results of applied algorithms using the introduced optimized model in this paper

Algorithm
Train data Test data Validate data All data

correlation R2 correlation R2 correlation R2 correlation R2

QP 0.861 0.812 0.863 0.833 0.868 0.841 0.871 0.834
CGD 0.918 0.869 0. 922 0.851 0.889 0.860 0.912 0.882
QN 0.910 0.847 0.915 0.839 0.914 0.840 0.918 0.841

LMQN 0.871 0.833 0.884 0.856 0.900 0.860 0.893 0.871
L-M 0.912 0.841 0.921 0.843 0.920 0.842 0.919 0.845

Fig. 2. Substituting the human brain with ANN com-
putational model scheme and learning procedure

Table 3. Range of used database in this paper

Input Min Max Input Min Max
Soil 
type 1 (CL) 5 (SW-SM) σv 13.55 451.34 

rd 0.566 0.983 σ’v 4.53 331.53 
SPT-N 
value 5 50 VS 217.49 358.262 

Depth 0 80 

Fig. 3. Variation of RMSE for applied algorithms vs. 
number of neurons (the number of neurons 23 corre-
spond to 7-7-5-5-3-3-1 showed the minimum RMSE)
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tion of these indices can be found in statistical 
handbooks.

A model with higher coefficient of determi-
nation and VAF as well as lower RMSE, MAPE, 
VARE, MEDAE, AE and ARE will show better 
performance (Table 4 and Fig.6). The AE and 
ARE values define the deviation of the predicted 
output from the desired values. The AE is the dif-
ference between the actual and predicted values 
whereas the ARE is calculated by dividing the 
difference between actual and desired output val-
ues by the module of the desired output value. 
Both of AE and ARE correspond to model quality 

and hence a smaller error indicates better perfor-
mance in training. 

Sensitivity analysis is a method to calculate 
the effectiveness of each input parameters on out-
put. In the current paper two methods known as 
the Cosine Amplitude (Jong and Lee, 2004) and 
PaD (Gevrey et al., 2003) were used that both of 
them showed similar results but with different 
values (Table 5). 

The site response analysis can be executed in 
one, two or three dimensional (1, 2 or 3D). The 
1D nonlinear site response analysis is mainly per-
formed using time-domain employing nonlinear 
hysteretic soil models. However, this analysis 
requires a quantitative knowledge of actual non-
linear material behavior which can be obtained 
by sophisticated laboratory tests. Moreover, this 
approach needs deep understanding of analyti-
cal models and numerical methods. In compari-
son with 1D site response analysis, which needs 

Fig. 4. Proposed ANN structure based model to pre-
dict the nonlinear site response spectrum in this study

Table 4. Results of statistical criteria for tested ANN 
algorithms

Criteria QP CGD QN LMQN L-M
 MAPE 7.383 2.237(X) 5.90 2.620 2.762
RMSE 0.324 0.135 (X) 0.290 0.225 0.176
VARE 16.30 6.54 11.83 5.28(X) 6.64

MEDAE 0.039 0.029 (X) 0.042 0.089 0.031
VAF 95.88 98.28 (X) 96.73 96.97 97.80
R2 0.834 0.882 (X) 0.841 0.871 0.845

Fig. 5. Performance of introduced optimized ANN model in training and validation processes
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geotechnical properties of the soil site (thickness, 
VS, unit weight), damping ratio, depth to bed-
rock, strong ground motion data, viscose damp-
ing formulation, soil model and backbone curves, 
the optimized ANN model in this study uses few-
er types of input data. Furthermore, the used input 
parameters in the proposed ANN model can be 
obtained from routine in-situ or laboratory tests 
and or exact available formulation. Therefore, to 
evaluate the feasibility and applicability of ANN 
in site response prediction and also verify the ob-
tained results from optimized ANN model, a com-
parison between ANN’s outputs using different 
training algorithms regarding those obtained by 
numerical time domain, nonlinear analyses [25] 
were conducted (Figure 7A and B) and good com-

patibilities were observed. In both Figure 7A and 
B, the Y-axis indicates a pseudo spectral accelera-
tion (PSA) while in Figure 7A and B the X-axis 
refers to the number of total dataset presented to 
ANN model and the period, respectively.

The PSA response spectrum provides a con-
venient and practical way to summarize the fre-
quency content of a given acceleration, velocity 
or displacement time history. It provides a practi-
cal way to apply the knowledge of structural dy-
namics to design structures and the development 
of lateral force requirements in building codes. 
The PSA also provides a physically meaningful 
quantity, which is useful in understanding the 
nature of an earthquake and its influence on the 
design. 

Fig. 6. Calculated AE and ARE (%) of optimized ANN model for applied algorithms 

Table 5. Influence of input parameters on output of optimized ANN model in this study

Input
parameter

Importance (%)

VS Soil type rd σ'v depth SPT-N value σv

Cosine
Amplitude 34.81 33.12 31.12 28.10 27.86 26.77 12.87

PaD 37.98 35.73 30.67 29.36 25.89 23.11 14.35

Fig. 7. Comparison of obtained results from tested ANN algorithms with numerical analysis result in the study 
area based on (A) and (B) period
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CONCLUSIONS

Estimating the soil site response spectrum, 
which is only applicable for characterized strong 
ground motion is costly and time consuming. In 
this study an alternative optimized and developed 
model using the ANN approach and application 
of different training algorithms was introduced 
to predict the 1D nonlinear seismic site response 
spectra. The proposed model was tested for a 
specified area in the west of Iran and its perfor-
mance and quality evaluated by various criteria 
as well as comparison with numerical analyses. 
Moreover, the two applied different sensitivity 
analysis methods revealed similar results for the 
most and least effective factors on site response. 
Utilizing and using fewer input data, which can 
be obtained from routine in-situ or laboratory 
tests, as well as available exact formulation is the 
main advantage of presented ANN model respect 
to numerical analyses methods. In the input pa-
rameters, the soil types were coded in developed 
algorithm, what had not been done before.

The results highlighted a simpler, more effective 
and economical model, in comparison to the avail-
able complicated earthquake geotechnical proce-
dures, which may require special software and data.

With the presented model in this study, there 
is a suitable and economic potential condition to 
reanalyze the used site response spectra of most 
early constructed dams in Iran, which suffer from 
the lack of information. 
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