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ABSTRACT

This research deals with the buckling analysis of nanocomposite polymeric tempera-
ture-dependent plates reinforced by single-walled carbon nanotubes (SWCNTs). For
the carbon-nanotube reinforced composite (CNTRC) plate, uniform distribution (UD)
and three types of functionally graded (FQG) distribution patterns of SWCNT rein-
forcements are assumed. The material properties of FG-CNTRC plate are graded in
the thickness direction and estimated based on the rule of mixture. The CNTRC is
located in a elastic medium which is simulated with temperature-dependent Pasternak
medium. Based on orthotropic Mindlin plate theory, the governing equations are de-
rived using Hamilton’s principle and solved by Navier method. The influences of the
volume fractions of carbon nanotubes, elastic medium, temperature and distribution
type of CNTs are considered on the buckling of the plate. Results indicate that CNT
distribution close to top and bottom are more efficient than those distributed nearby
the mid-plane for increasing the stiffness of plates.

Keywords: buckling; temperature-dependent mindling plates; temperature-dependent
elastic medium; FG materials.

INTRODUCTION

Recently, due to the advantage mechanical,
physical and electronic properties of CNTs [Sal-
vetat-Delmotte and Rubio, 2002], these advanced
materials are considered to be excellent candi-
dates for the reinforcement of polymer compos-
ites [Esawi and Farag, 2007; Fiedler et al. 2006].
In actual structural applications, CNTRC, as a
type of advanced material, have a wide variety of
applications in microelectromechanical systems
(MEMS) and nanoelectromechanical systems
(NEMS). Hence, knowledge of the bending char-
acteristics of these structures is important.

The problem of bending of thick plates has
attracted considerable attention in recent years.
The effect of transverse shear deformation on
the bending of elastic plates was studied by
Reissner [1945]. Zenkour [2003] proposed an
exact mixed-classical solution for the bending
analysis of shear deformable rectangular plates.
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Buczkowski and Torbacki [2001] used finite ele-
ment for modelling of thick plates on two-pa-
rameter elastic foundation. Based on the bound-
ary element method, the analysis of plates on
two-parameter elastic foundations with nonlin-
ear boundary conditions was studied by Chuch-
eepsakul and Chinnaboon [2003]. Sladek et al.
[2002] investigated meshless local boundary
integral equation method for simply supported
and clamped plates resting on elastic founda-
tion. Akhavan et al. [2009a, 2009b] introduced
exact solutions for buckling analysis of rectan-
gular Mindlin plates subjected to uniformly and
linearly distributed in-plane loading on two op-
posite edges, simply supported resting on elastic
foundation. Postbuckling, nonlinear bending and
nonlinear vibration analyses for SWCNTSs rest-
ing on a two-parameter elastomeric foundation
in thermal environments were presented by Shen
and Zhang [2011]. Heydari et al. [2014] studied
an analytical approach for transverse bending
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analysis of an embedded symmetric laminated
rectangular plate using Mindlin plate theory and
the surrounding elastic medium simulated us-
ing Pasternak foundation. They indicated that
the maximum deflection of the laminated plate
decreases when considering an elastic medium.

None of the above researchers have con-
sidered nanocomposite structures. Reddy et al.
[1984] studied the effect of transverse shear de-
formation on deflection and stresses of laminated
composite plates subjected to uniformly distrib-
uted load using finite element analyses. The anal-
ysis of composite plates using higher-order shear
deformation theory and a finite point formulation
based on the multiquadric radial basis function
method was presented by Ferreira et al. [2003].
Swaminathan and Ragounadin [2004] applied an
analytical solution for static analyzing of antisym-
metric angle-ply composite and sandwich plates.
An investigation on the nonlinear bending of sim-
ply supported, functionally graded nanocompos-
ite plates reinforced by SWCNTs subjected to a
transverse uniform or sinusoidal load in thermal
environments was investigated by Shen [2009].
Baltacioglu et al. [2011] presented the nonlinear
static analysis of a rectangular, laminated com-
posite thick plate resting on nonlinear two-pa-
rameter elastic foundation with cubic nonlinear-
ity. They used the first-order shear deformation
theory for plate formulation and investigated the
effects of foundation and geometric parameters of
plates on nonlinear deflections. Bending and free
vibration analyses of thin-to-moderately thick
composite plates reinforced by SWCNTs using
the finite element method based on the first order
shear deformation plate theory were presented by
Zhu et al. [2011].

In the present study, the orthotropic Mind-
lin plate theory is used for buckling behavior
of polymeric temperature-dependent plates re-
inforced by SWCNTs resting on temperature-
dependent elastic medium. For CNTRC plate,
both cases of uniform and FG distribution pat-
terns of SWCNT reinforcements are considered.
The rule of mixture is used in order to obtain the
equivalent material properties of FG-CNTRC
plate. The nonlinear governing equations are
obtained based on Hamilton’s principal along
with von Karman geometric nonlinearity. Ex-
act solution is applied for buckling load of the
FG-CNTRC polymeric plate. The effects of the
volume fractions of carbon nanotubes, elastic
medium, temperature, and distribution type of

CNTs on the buckling load of the FG-CNTRC
polymeric plate are disused in detail.

FORMULATION

As shown in Figure 1, a CNTRC plate with
length L, width b and thickness /4 is considered.
The CNTRC plate is surrounded by an orthotropic
elastomeric  temperature-dependent medium
which is simulated by k, G§ and Gn correspond
Winkler foundation parameter, shear foundation
parameters in & and n directions, respectively.
Four types of CNTRC plates namely as uniform
distribution (UD) along with three types of FG
distributions (FGA, FGO, FGX) of CNTs along
the thickness direction of a CNTRC plate is con-
sidered. In order to obtain the equivalent material
properties two-phase Nanocomposites (i.e. poly-
mer as matrix and CNT as reinforcer), the rule of
mixture [Esawi and Farag, 2007] is applied. Ac-
cording to mixture rule, the effective Young and
shear moduli of CNTRC plate can be written as:

E =nVorE, + (A=Venr)E,, (1)

& — VCNT + (1 — VCNT)
Ezz Er22 E

m

) 2

/- Venr n (1=Vear) 3)
G, G, G,

m

where: £, E_ and G — indicate the Young’s
moduli and shear modulus of SWCNTs,
E , G — represent the corresponding

properties of the isotropic matrix.

The scale-dependent material properties, 1, (G
=1, 2, 3), can be calculated by matching the ef-
fective properties of CNTRC obtained from the
MD simulations with those from the rule of mix-
ture. V., and V are the volume fractions of the
CNTs and matrix, respectively, whose sum equals
one. The uniform and three types of FG distribu-
tions of the CNTs along the thickness direction of

the CNTRC plates take the following forms:

*

UD: Veyr =Vears “4)

2
FGV: VCNT(Z):[I—TZJVCNT, (5)

2z ). .
FGO: Vo (2)= 2(1 - %JVCNT, (6)

2t

FGX : Ve (2) = 2[7j

*

Venr> Q)
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Fig. 1. Configurations of the SWCNT distribution in a CNTRC plates: (a) UD CNTRC plate;
(b) FG-A CNTRC plate; (c) FG-O CNTRC plate; (d) FG-X CNTRC plate

where:
* Wenr

Venr = >
Wenr (pCNT ! P ) - (pCNT /P )WCNT( "
where: w_., p ~and p . are the mass fraction of

the CNT, the densities of the matrix and
CNT, respectively.

Similarly, the thermal expansion coefficients
in the longitudinal and transverse directions re-
spectively (a,, and a.,,), Poisson’s ratio (v, ) and
the density (p) of the CNTRC plates can be de-
termined as:

Vi, = gNTVrIZ + Vm,vm’ )
p = VgNTpr + Vm,pm,’ (10)
ay, = Vo, + V@ > (1D

Q) = (1 + VrlZ)VCNTarZZ + (1 TV, VoG —Vial s
(12)

where: v and v are Poisson’s ratios of the CNT
and matrix, respectively. In addition, a ,
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@, and o are the thermal expansion co-
efficients of the CNT and matrix, respec-
tively.

It should be noted that v , is assumed as con-
stant over the thickness of the FG-CNTRC plates.

ORTHOTROPIC STRESS-STRAIN
RELATIONS

The constitutive equation for stresses ¢ and
strains € matrix in thermal environment may be
written as follows:

0. [C(zT) CylzT) 0 0 0 |[ea—@AT
o, [CyzT) CplzT) 0 0 0 ||, — AT
o.1=| 0 0 Cuz1) 0 0 [7. ,
o, 0 0 0 Cyzl) 0 |y
o, 0 0 0 0 CylzT)]ly,

| (13)

where: G, denotes temperature-dependent elastic
coefficients which can be expressed as:
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G, = Ell/(l_V12V21)> C,= V12E12/(1 _V12V21)9
G, =E22/(1_V12V21)a (14)

C’44 = G23 > Css = G13 > Css = G12~

Noted that C,.j and a |, o, may be obtained us-
ing the rule of mixture (i.e. Egs. (1-7)).

NONLINEAR MINDLIN PLATE THEORY

Based on Mindlin plate theory, the displace-
ment field can be expressed as (Reddy, 1984):

ux(x,y,z,t) =u (x’yat)+Z'//x(xay’t)a
u, (x,y,2,0) =v(x, y,0) +zy (x, y,1), (15)

uz(x7y’Z’t) = W(x7y7t)7

where: (u, U, u_) denote the displacement com-
ponents at an arbitrary point (x, y, z) in the
plate, and (u, v, w) are the displacement of
a material point at (x, y) on the mid-plane
(i.e. z=0) of the plate along the x-, y-, and
z-directions, respectively;
w.(x,y)and v (x,y)are the rotations of
the normal to the mid-plane about x- and
y-directions, respectively.

The von Karman strains associated with the
above displacement field can be expressed in the
following form:

e = ou 2(6w) +Za% (16)

ax Ox Ox
2
0
. 8v 1 8w s v, a7
? 5y 2oy Oy
ow
7’yz=g+l//y (18)
ow
Ve =71V, (19)
ox
0
14 :@+6_u+8_w8_w+z(%+ﬁ)’ (20)
Y 9y ox ox oy oy  Ox

where: (¢, €, ) are the normal strain components
and (y‘z, Ve ) are the shear strain com-
ponents.

ENERGY METHOD

The total potential energy V' of the CNTRC
plate is the sum of strain energy U and the work

done by the elastomeric medium J. The strain
energy can be written as:
1 /2
U ZEIQO ‘[m(an £,10,6,+0, 7, +0.7.+0.7, )dV
21
Combining Egs. (8)—(15) yields:

2
U:—I N, % l(@w) +N, av+1 o +N, %w +N, [aw“ ""j
2% ox 2\ ox "oy 2\oy oy 0ox

0 0
+N, il %4’@@ +M, o, —4M Yy —+ M, a.,/ sl dxdy
oy o ox oy G S 6y ox

(22)
where the stress resultant-displacement relations
can be written as:

NX)C M}OC O-)CX

h/2
N, M, |=["lo,|02)dz:  (23)
N, M, o,

NXZ hi2 GXZ
=K dz, (24)
N -h/2| o
yz yz
In which K is shear correction coefficient. The
external work due to orthotropic temperature-de-
pendent elastomeric medium and a uniform load

on upper surface of the CNTRC plate can be writ-
ten as:

= —j (q)wx, (25)

where: ¢ is related to elastic medium.

Elastic foundation force can be expressed as
(Ghorbanpour Arani et al. 2011):

P=KW -GV*W, (26)
where: K and G are spring and shear constants.

GOVERNING EQUATIONS

The governing equations can be derived by
Hamilton’s principal as follows:

5 jo (~U +W)dt =0=> jo (=8U + SW)dt =0. (27)

Substituting Eqgs. (22) and (25) into Eq. (27)
yields the following governing equations:

Su,=0—>(N,  +N _)=0
&, =0>(N, +N )=0

ow ow
w,=0-((N,, —O)J +(N,, ﬁ)’ﬁ(Nx} o -,

=0

+(NW . 0) +N,. +N . —KW +GVW)
5p, =0> (M, + yy—Nxz)=0
8o, =0>M, +M  ~N _)=0 (28)
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Substituting Eqgs. (23) and (24) into Eq. (28),
the stress resultant-displacement relations can be
obtained as follows:

o, dz—i’[cg +C8,, )d

~h

9 2
) 09,
: 6uﬂ 1( j+ 0p, ‘e ()8vﬂ+1 o, +z£ 1
Ox ox ox o 2\ oy oy
u, 1w, Y| 0 v, 1w, Y| 0
N, =4, Du“+ il +B, L +4, AT I i +B, b
i ox ox ox o 2\ oy S oy

N,

|
b

(29)

h

h
N W J.nydz = f(cnﬁx tCpé,, Pz
-h -h
2 A\ b
,(2) 6uﬂ+1(6‘w j +z %, +¢,(2) %+1 Doty %y
Sl ox ox ox | 7 o 2\ oy oy

2
N, =4 8u0 l(ﬁw 4B 6(0‘+A 1 ow,
?lox ox o P 6x 2 oy

0p,
+Bﬂ

Zlay

(30)

t 0
N, = JCB(Z) Gy Oq Oy O, 00, 00
M oy Ox Ox Oy oy ox

Ou, Ov, Ow, Ow, op. 09,
N, =4, —2+—L+ —%1+B xy ) 1
» 33[8}/ o ox oy ] 33(8}/ ox j G

12%xx

b, L, 0p,
,(2) Z%JrlZ (%J +z“’a¢"' +e,(2) zav—'“rl vy +z° jo' /2
s ov 2 \ox ox o 2\ oy oy

) g,
M, =8, 1 (awuj 0,0 pp | D0 L0
’ o 2\ ox S Ox o 2 oy Sy

Mv,=j'aw‘zdz:j(c & TCnt,, )zdz
h

(33)

h

M, = jaﬂ.zdz = J.(CB}{W )zdz

~h ~h

h 09,
Mr,:j c;(2) z%+z%+z.%.%+zz%+zzﬂ z
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M, = ].O'yzzdz = J.(c447/yZ )zdz

—h —h
t ow
M_ =1||c (Z)(@v +—2L | Wz
Y :[l |: 44 ) ay
ow
Myz =B, ((py + ayoJ (35)
A h

<
Il

- IU zdz = J.(CSSyxz Ydz
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where:

(A“):jlcn(z‘))dz (5)=] e (D)= ]G0

(4,)= Iczxz )z (B,) = jcn(z )z (D) = jczz(z )dz

—h

(4,) = j Cy(")dz (B,,) = j Cp()dz (D) = Jc,z(z )dz

~h

(4,)= j%(z )dz (B,,) = jc ()dz (D) = jc44(z )dz

—h

(4s5) = j Cs(2°)dz (Bys) = j Ces(z")dz (Dgg) = j Cys(2%)dz

(4gs) = jC%(z )dz (Byg) = jc“(z )dz (D) = jc“(z )dz

—-h

(37)

Furthermore, (N_ fx,NyTy) and (M ;,M;) are
thermal force and thermal moment resultants, re-
spectively, and are given by:

{N; }_ Im {C“(z, T)a,, +C (2, T)aty,

AT dz, (38
N, ~hi2 CZl(z,T)a”+C22(z,T)a22} (38)

{Mxrx }_J-h/z {C”(Z,T)(ZH +C,(z,Ta,,

. }AT zdz (39)
M, 121Gz, Dy + G2, Ty,

Substituting Egs. (29) to (36) into Eq. (28),
the governing equations can be written as follows:
Sy =0 (N, +N_ )=0

) 2
A R (6W°] 15 00 g [P0 W) ] g 29,
a | 20 e o TPlax 20 oy Py
oo,
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2
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0
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ox d oOx Ox Oy oy o

(40)

(41)
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EXACT SOLUTION

Steady state solutions to the governing equa-
tions of the plate which relate to the simply sup-
ported boundary conditions can be assumed as
[Ghorbanpour Arani et al. 2012]:

u(x,0,t) =u, COS(T) sm( i )e""’ (45)

X 'y

v(x,0,t)=v, sm(—) cos(L—)e“”’ (46)
X y

w(x, 0,1) = w, sin(C)sin(Z22)e™,  (47)
L L

$.(x.0.0) =y, COS(i)Sm( Zye,  (48)

‘( y

8,(0.0.0) =, sin(" ) cos (P, (49)

x y

Substituting above rations into the governing
equations turns it into a algebraic equation ex-
pressed as:

K, K, K; K, K; Kg|u

K, K, Ky Ky Ky Ky | v

Ky Ky Ky Ky Ky Ky |w =0, (50)
Ky Ky Ky Ky Kis Ky |V

K51 K5, Ky Ksy Kss Kso | Wy

| Ke Key Ko Ko Kgs Ke| @y |

Solving the above equation, yields the buck-
ling load of system.

NUMERICAL RESULTS AND DISCUSSION

A computer program is prepared for the numer-
ical solution of buckling of CNTRC plates resting
on an elastic temperature-dependent foundation.
Here, Poly methyl methacrylate (PMMA) is se-
lected for the matrixes which have constant Pois-
son’s ratios of v = 0.34, temperature-dependent
thermal coefficient of v = (1 +0.0005AT)*x109/K,
and temperature-dependent Young moduli of £
=(3.52-0.00347) GPa in which T'= T +AT and
T,= 300 K (room temperature). In addition, (10,
10) SWCNTs are selected as reinforcements with
material properties listed in Table 1. The elasto-
meric medium is made of Poly dimethylsiloxane
(PDMS) whose temperature-dependent material
properties of which are assumed to be v = 0.48
and £ = (3.22-0.00347) GPa in which T'= T +AT
and T 300 K (room temperature) [Shen, 2009]

It should be noted that the mass fraction
(W) of the UD and FG distribution of CNTs in
the polymer are considered equal for the purpose
of comparisons. As can be seen, the buckling
load of FGA- and FGO-CNTRC plates are lower
than buckling load of UD-CNTRC plates while
the FGX-CNTRC plate have higher buckling
load with respect to three other cases. It is due
to the fact that the stiffness of CNTRC plates
changes with the form of CNT distribution in the
matrix. However, it can be concluded that CNT
distribution close to top and bottom are more
efficient than those distributed nearby the mid-
plane for increasing the stiffness of plates. In
addition, increasing the thickness can decrease
the buckling load of the CNTRC plate. This is
because with increasing the thickness, the stabil-
ity of plate decreases.

The effect of the CNT volume fraction on the
buckling load of the CNTRC plate with respect
to thickness is shown in Figure 3. It can be found
that thickener plate can decrease the buckling
load of the CNTRC plate. It is also observed that
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Table 1. Temperature-dependent material properties of (10, 10) SWCNT (L= 9.26 nm, R= 0.68 nm, /= 0.067 nm,

v =0.175)

Temperature (K) ESN(TPa) EOY(TPa) G (TPa) al"(107°/K) " (107°/K)
300 5.6466 7.0800 1.9445 3.4584 5.1682
500 5.5308 6.9348 1.9643 4.5361 5.0189
700 5.4744 6.8641 1.9644 4.6677 4.8943
1 v 1.4 v
—+—FGO —#— Vo0
= —p— FGA A 1.2 N 1
< 0.8% —up < 1 =V =011
g g ——V . =0.14 ]
= —e— FGX = 1 CNT
£ 0.6 £ —e—VCNT=0.17
=Y =208
= =
= =
£ 04 g0
= =
2 2
§ g 0.
£ 02 ' £
=] 4 a 0.
0 - L L L o 0 i L " o
0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03

Thickness, h(m)

Fig. 2. Effects of CNT distribution on the buckling
behavior of CNTRC plates

0.8 - v v

0.7 —p— Without elastic medium
’ —6— With Winkler medium

0.64 —6— With Pasternak medium

0.5F

Dimensionless buckling load, P
o o
[*S) b

(=]
—_

0.2F
%M>
0 . : . .

0.005 0.01 0.015 0.02 0.025 0.03

Thickness, h(m)

Fig. 4. Effects of elastic medium on the buckling
behavior of CNTRC plates

increasing the CNT volume fraction increases the
buckling load of the CNTRC plate. This is due to
the fact that the increase of CNT volume fraction
leads to a harder structure. Meanwhile, the effect
of CNT volume fraction becomes more consider-
able at lower thickness.

The effect of the elastic temperature-depen-
dent medium on the buckling load of the CNTRC
plate with respect to thickness is illustrated in
Figure 4. In this figure three cases are considered
which are without elastic medium, Winkler medi-
um and Pasternak medium. As can be seen, con-
sidering elastic medium increases buckling load
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Thickness, h(m)

Fig. 3. Effects of CNT volume fraction on
the buckling behavior of CNTRC plates
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Fig. 5. Effects of temperature on the buckling
behavior of CNTRC plates

of the CNTRC plate. It is due to the fact that con-
sidering elastic medium leads to stiffer structure.
Furthermore, the effect of the Pasternak-type is
higher than the Winkler-type on the buckling load
of the CNTRC plate. It is perhaps due to the fact
that the Winkler-type is capable to describe just
normal load of the elastic medium while the Pas-
ternak-type describes both transverse shear and
normal loads of the elastomeric medium.

The effect of temperature on the buckling load
of the CNTRC plate, with respect to the thick-
ness, is demonstrated in Figure 5. The same as
other figures, increasing the thickness decreases
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the buckling load of the CNTRC plate. It can be
also found that the buckling load of the CNTRC
plate decreases with increasing temperature
which is due to higher stiffness of CNTRC plate
with lower temperature.

CONCLUSIONS

Based on orthotropic temperature-dependent
Mindlin polymeric plate theory, buckling analysis
of an embedded CNTRC plate was studied in this
paper. CNT distributions in polymer were con-
sidered as UD, FGA, FGX and FGO. The rule of
mixture was used for obtaining the material prop-
erties of FG-CNTRC plate. The nanocomposite
system was surrounded in a temperature-depen-
dent elastic medium. Using strain-displacement
relation, energy method and Hamilton’s principle,
the governing equations were derived. In order to
obtain the buckling load of the FG-CNTRC plate,
Navier method was performed. The effects of the
volume fractions of carbon nanotubes, elastic
medium, temperature, thickness and distribution
type of CNTs were considered. The results indi-
cate that considering elastic medium increases,
buckling load of the FG-CNTRC plate decreases
with increasing temperature. It was also con-
cluded that buckling load gets larger as the CNT
volume fraction increases. Furthermore, the low-
est and highest buckling load were respectively
obtained for FGO- and FGX-CNTRC plates.
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