
50

Advances in Science and Technology
Research Journal
Volume 9, No. 27, Sept. 2015, pages 50–57
DOI: 10.12913/22998624/59084

Original Article

Received: 	 2015.05.31
Accepted: 	 2015.08.05
Published: 	 2015.09.01

QAM: PROPOSED MODEL FOR QUALITY ASSURANCE IN CBSS

Latika Kharb1

1	 Jagan Institute of Management Studies (JIMS), Rohini, Delhi, India, e-mail: latika.kharb@jimsindia.org

ABSTRACT
Component-based software engineering (CBSE) / Component-Based Development
(CBD) lays emphasis on decomposition of the engineered systems into functional or
logical components with well-defined interfaces used for communication across the
components. Component-based software development approach is based on the idea
to develop software systems by selecting appropriate off-the-shelf components and
then to assemble them with a well-defined software architecture. Because the new
software development paradigm is much different from the traditional approach, qual-
ity assurance for component-based software development is a new topic in the soft-
ware engineering research community. Because component-based software systems
are developed on an underlying process different from that of the traditional software,
their quality assurance model should address both the process of components and
the process of the overall system. Quality assurance for component-based software
systems during the life cycle is used to analyze the components for achievement of
high quality component-based software systems. Although some Quality assurance
techniques and component based approach to software engineering have been studied,
there is still no clear and well-defined standard or guidelines for component-based
software systems. Therefore, identification of the quality assurance characteristics,
quality assurance models, quality assurance tools and quality assurance metrics, are
under urgent need. As a major contribution in this paper, I have proposed QAM:
Quality Assurance Model for component-based software development, which covers
component requirement analysis, component development, component certification,
component architecture design, integration, testing, and maintenance.

Keywords: component-based software systems (CBSS), QAM, software architec-
ture, components, quality assurance.

INTRODUCTION

The life cycle of component-based software
systems

Component-based software development
(CBSD) has become one of the preferred streams
for developing large and complex systems by in-
tegrating prefabricated software components that
not only facilitates the process of software devel-
opment but is also changing the ways for software
professionals to develop software applications
[1]. In recent future, software component based
systems will become the most preferred indus-
try approach towards development of improved
software. In general, the architecture of software

defines a system in terms of computational com-
ponents and interactions among the components.
The emphasis is on composing and assembling
components that have been developed separately
and/or independently. Component-based software
systems (CBSS) are developed by selecting and
assembling various components together rather
than programming overall system from scratch:
this is the differentiation between the life cycle of
component-based software systems and life cycle
of traditional software systems.

The life cycle of component-based software
systems consists of phases like: requirements
analysis; software architecture selection, con-
struction, analysis, and evaluation; component

51

Advances in Science and Technology Research Journal Vol. 9 (27) 2015

identification and customization; system integra-
tion; system testing; and software maintenance.
Typically, the development of component-based
systems starts with a collection of existing com-
ponents [2]. In component based software systems
(CBSS), software components are assembled so
that they interact with each other and satisfy the
predefined functions, so that each component
has to provide a pre-specified service with other
components and thus interface is an important
concern to be discussed before proposing metrics
for measurement of integration complexity [3].
Integration helps to decide upon how to provide
communication and coordination among various
components of a target software system. The life
cycle of component-based systems includes two
main parts:
•• In order to assess a component; evaluation of

each candidate COTS component is done on
functional and quality requirements; and

•• Before integration, each candidate COTS
component is customized/ modified.

Quality assurance for component-based
software systems

Quality assurance for component-based soft-
ware systems during the life cycle is used to ana-
lyze the components for achievement of high qual-
ity component-based software systems. As quality
assurance technologies for component-based soft-
ware systems are currently premature, due to the
difference between some specific characteristics of
component systems and traditional systems.

Although some quality assurance techniques
[4] and component based approach to software
engineering [5] have been studied, there is still
no a clear and well-defined standard or guidelines
for component-based software systems. There-
fore, identification of the quality assurance char-
acteristics, quality assurance models, quality as-
surance tools and quality assurance metrics, are
under urgent need.

PROPOSED QAM: A QUALITY ASSURANCE
MODEL FOR COMPONENT-BASED
SOFTWARE SYSTEMS

In this paper, we have tried to stress upon the
above said urgent needs. As much work is yet to
be done for component-based software develop-
ment; so in context of component-based software

systems (CBSS), quality assurance technologies
have to address the two inseparable parts namely:
•• How to certify quality of a component?
•• How to certify quality of software systems

based on components?

Firstly, to answer the above said questions re-
lated to quality assurance; it seems necessary that
some quality assurance models should be proposed
to define the overall quality of components in soft-
ware systems; secondly in order to evaluate a com-
ponent, we must determine how to certify the qual-
ity of the component. The quality characteristics of
components help us to guarantee the quality of the
components, and thus guarantee the quality of the
whole component-based software systems.

Because component-based software systems
are developed on an underlying process different
from that of the traditional software, their qual-
ity assurance (QA) model should not only address
the process of components but also the process
of the overall system. In this section: keeping in
mind the thought that Quality cannot be achieved
by assessing an already completed product, I have
proposed a QA framework model for the compo-
nent-based software development paradigm. The
aim of proposing a QA model is to prevent qual-
ity defects or deficiencies in the first place, and
to make the products with complete quality as-
surance measures. The main practices related to
components and systems in this model contain
the following phases:
•• Component Requirement Analysis Phase,
•• Component Development Phase,
•• Component Certification Phase,
•• Component Architecture Design Phase,
•• Component Integration Phase,
•• Component Testing Phase,
•• Component Maintenance Phase.

Details of these phases and their activities are
described as follows.

Component Requirement Analysis Phase

Component Requirement Analysis Phase is
the first stage in the software development pro-
cess. It encompasses those tasks that go into
determining the needs or conditions to develop/
modify a software product, taking account of all
the conflicting requirements of the various stake-
holders/ users. For development of effective and
quality software, requirements must be measur-
able, testable, related to identified business needs

Advances in Science and Technology Research Journal Vol. 9 (27) 2015

52

or opportunities, and defined in detail for suffi-
cient fulfilment of requirements in design phase.

Conceptually, requirements analysis includes
three types of activity:
•• Eliciting requirements: the task of communi-

cating with customers and users to determine
what their requirements are. This is sometimes
also called requirements gathering.

•• Analyzing requirements: determining whether
the stated requirements are unclear/ incomplete/
ambiguous and then resolving these issues.

•• Recording requirements: Requirements might
be documented in various forms, such as use
cases or process specifications.

In CBSD, component requirement analysis is
the process of discovering, understanding, docu-
menting, validating and managing the require-
ments for each candidate component. The objec-
tives of component requirement analysis include
production of complete, consistent and relevant
requirements that a component should realize,
inclusive of constraints with respect to program-
ming language, operating platform and interfaces.

Our proposed component requirement analy-
sis process overview diagram is as shown in Fig-
ure 1. Initiated by the request of users or custom-
ers for new development or changes on old sys-
tem, component requirement analysis consists of
four main steps:
•• Requirements gathering and definition: From

first stage of requirement gathering and defini-
tion to second stage of component requirement
analysis, a format or structure of URD (user re-
quirement documentation) is produced as output
of requirement gathering and definition stage.

•• Requirement analysis: In second stage of
requirement analysis, draft of URD is made
through component requirement analysis stage.

•• Component modelling: In this phase, updat-
ed version of CRD (current-user requirement
documentation) along with model is provided
by component modelling stage to next stage of
requirement validation stage.

•• Requirement validation: In this phase, cur-
rent CRD (current-user requirement documen-
tation) is validated through requirement vali-
dation and once its validated, it’s followed till
component maintenance phase; else changes
are made iteratively starting with requirement
gathering and definition stage.

The output of this phase is the current-user
requirement documentation (CRD), which is
transferred to the next phase: Component Devel-
opment Phase and in case of changes in user re-
quirement; requirement gathering and definition
stage is done else it progresses smoothly till com-
ponent maintenance phase.

Component development phase

Component development phase is the process
of implementing the requirements for a well-
functional and high quality component having
multiple interfaces. The objectives of component
development are the final component products
satisfying requirements with correct/expected
results, the flexible interfaces, and unambiguous
development documents.

The proposed component development process
overview diagram is as shown in Figure 2. Compo-
nent development consists of four procedures:
•• Implementation: In this phase, input is the

component requirement document on the ba-
sis of which the draft structure of component
is devised and submitted to next procedure of
function testing.

Fig. 1. Component requirement analysis phase

53

Advances in Science and Technology Research Journal Vol. 9 (27) 2015

•• Function testing: This phase gets the draft
structure of component as input and a well
functional component is provided to next pro-
cedure.

•• Reliability testing: The updated Reliable
Quality Component (RQC) is the output from
self-testing procedure and given as input to
development document.

•• Development document: The development
document contains RQC details and is submit-
ted to next phase for certification after reliabil-
ity checks.

The input to this phase is the component re-
quirement (CRD) along with its development
document and output should be developed com-
ponent and its documents ready for later phases of
certification and system maintenance.

Component certification phase

A component should be able to be developed,
acquired and incorporated into the system and
composed with other components independently
of time and space [6]. Certification certifies that
it will do precisely this (for all contexts where

its dependencies are satisfied). It will therefore
provide a basis for component certification. The
objectives of component certification phase are to
outsource, select and test the candidate compo-
nents and check whether they satisfy the system
requirement with high quality and reliability [7].
The governing policies in component certifica-
tion are:
•• Component outsourcing should be charged by

a software manager;
•• All candidate components should be tested to

be free from all known defects;
•• Testing should be in the target environment.

The component certification process over-
view diagram is as shown in Figure 3. The input
to this phase should be component development
document, and the output should be testing docu-
mentation for system maintenance. Component
certification phase involves four procedures:
•• Component outsourcing: It includes defin-

ing component functions and release of the
candidate component to next stage. This stage
involves managing a component outsourcing.

•• Component testing: This procedure confirms
that a candidate component satisfies the re-

Fig. 2. Component development phase

Fig. 3. Component certification phase

Advances in Science and Technology Research Journal Vol. 9 (27) 2015

54

quirement with required quality and reliabil-
ity. It either accepts and/or rejects the compo-
nent when released.

•• Component selection: This procedure is used
for selecting the right components in accor-
dance to the requirement for both functionality
and reliability.

•• Component acceptance: This procedure con-
firms the acceptance of submitted component
and forwards the same to component out-
sourcing stage. If a component is found unfit,
it is sent to the first phase of iterative cycle of
component certification phase.

Component architecture design phase

In general, a system architecture or systems
architecture is the conceptual model that defines
the structure, behaviour, and more views of a
system [8]. Technically speaking, an architecture
description is a formal description and represen-
tation of a system that is organized in a way that
supports reasoning about the structures and be-
haviours of the system.

Software architecture can be explained
through three principles [9]:
•• Principle 1: Software architecture should be

defined in terms of elements that are coarse
enough to allow for human intellectual control
and specific enough to allow for meaningful
reasoning.

•• Principle 2: Business (and/or mission) goals
determine quality-attribute requirements.

•• Principle 3: Quality-attribute requirements
guide the design and analysis of software ar-
chitectures.

Component architecture design phase is the
process of evaluating, selecting and creating
software architecture of a component-based

system. The software architecture of a program
or computing system is that structure/ struc-
tures of the system which comprises of soft-
ware components and their relationships. Doc-
umenting software architecture not only facili-
tates communication between stakeholders but
also helps in documentation about high-level
design and allows reuse of design components
and patterns between projects. Software de-
sign is a process of problem-solving and plan-
ning for a software solution. After the purpose
and specifications of software are determined,
software developers will design or employ de-
signers to develop a plan for the solution. The
objectives of our component architecture de-
sign phase include:
•• collection of user’s requirement,
•• identification of system specification,
•• selection of appropriate system architecture,
•• selection of implementation details such as

platform, programming languages, etc.

Component architecture design should ad-
dress the advantage for selecting a particular ar-
chitecture from other architectures.

The process overview diagram is as shown
in Figure 4. Component Architecture Design
Phase starts with a structured requirement docu-
ment template that includes a draft component
requirement document. After the analysis of the
component requirement document, component
certification document is created that is integrat-
ed with component architecture to finally create
a testable component specification document.
This phase consists of:
•• Requirement gathering: The input to require-

ment gathering stage is the format/structure of
requirement document template. A draft com-
ponent requirement document is submitted to
next stage of analysis.

Fig. 4. Component architecture design phase

55

Advances in Science and Technology Research Journal Vol. 9 (27) 2015

•• Analysis: The draft component requirement
document is analyzed in this stage and submit-
ted to next stage of specification.

•• Specification: Component specification docu-
ment after analysis is submitted to component
architecture for integration.

•• Integration: In integration stage, candidate
component are integrated to create a testable
component.

The output of this phase should be the system
specification document for integration, and sys-
tem requirement for the system testing phase and
system maintenance phase.

Component integration phase

Typically, the development of component
based systems starts with a collection of exist-
ing components [10]. Component integration is
the process of assembling components selected
into a whole system under the designed system
architecture. A software component is a unit of
composition that can be deployed independently
by third parties and contains only the contractu-
ally specified interfaces and the explicit context
dependencies [3].

The process overview diagram is as shown
in Figure 5. The input is the system requirement
documentation and the specific architecture.
There are four steps in this phase:
•• Integration: Input of this step is component

requirement document and component archi-
tecture design that provides a draft component
to next stage of testing.

•• Testing: In this step, we test component for
faults. If faults are found, we go to next stage
of component change.

•• Component change: During this step, new
component is selected; component integra-

tion document is generated and provided to
next step.

•• Reintegration (if necessary): If faulty com-
ponent is found and has to be changed, then
component is re-integrated in this stage with
current component and all later stages go it-
eratively.

After exiting this phase, we will get the final
system ready for the system testing phase and the
document for the system maintenance phase.

Component testing phase

Software testing is an important technique
for validating and checking the correctness of
any kind of software [11]. In other words, we
can say that the goal of the testing activity is to
find as many errors as possible before the user
of the software finds them. We can use testing to
determine whether a program component meets
its requirements. To accomplish its primary goal
(finding errors) or any of its secondary purposes
(meeting requirements), software testing must be
applied in a systematic fashion [12].

We perform testing for evaluating a system to:
•• confirm that the system satisfies the specified

requirements;
•• identify and correct defects in the system im-

plementation.

Software testing, depending on the testing
method employed, can be implemented at any
time in the development process. However, most
of the test effort occurs after the requirements
have been defined and the coding process has
been completed.

The process overview diagram is as shown in
Figure 6. This phase consists of selecting testing
strategy, component testing, user acceptance test-

Fig. 5. Component integration phase

Advances in Science and Technology Research Journal Vol. 9 (27) 2015

56

ing, and completion activities. The activities of
each stage are:
•• Selecting test strategy: The input to this stage

is pre-integrated components and on the basis
of their nature test strategy is selected and test
cases are managed accordingly.

•• Component testing: In this stage, we check
integrated components for design and develop-
ment. The ready to deliver component is now de-
livered to next stage of user acceptance testing.

•• User acceptance testing: User acceptance test-
ing of final product/components before deliv-
ery is essential for quality assurance. This stage
could provide results in two ways: user accept-
able or user rejected/ to be modified product.

•• Completion activities: A complete test-
able user accepted product is delivered to
stakeholder. This product is future ready for
maintenance. If user acceptance testing initi-
ates some kind of rejections, then this stage
is skipped and integrated components goes to
stage one for modifications.

The input should be the documents from
component development and system integration
phases. And the output should be the testing doc-
umentation for system maintenance.

Fig. 6. Component testing phase

Component maintenance phase

Maintenance commonly uses the majority
of a software project’s development resources.
Around 75% of maintenance work is responding
to changing requirements and operating environ-
ment. Most of the rest is bug-fixing. Only 1 in
5 development groups surveyed made a point of
checking maintainability during QA, and just 3%
of maintenance time is spent improving main-
tainability. Important technical factors affecting
maintainability include:
•• readability
•• preservation of knowledge
•• modifiability
•• testability.

To improve productivity and quality during
maintenance, and to avoid moving to servicing
prematurely, it is important to support all four of
these areas. The software will have to be modi-
fied to cater for the addition of the new func-
tionality. Software maintenance is the process
of providing service and maintenance activities
needed to use the software effectively after it has
been delivered. The objectives of system main-
tenance are to provide an effective product or

Fig. 7. Component maintenance phase

57

Advances in Science and Technology Research Journal Vol. 9 (27) 2015

service to the end-users while correcting faults,
improving software performance or other at-
tributes, and adapting the system to a changed
environment. There shall be a maintenance orga-
nization for every software product in the opera-
tional use. All changes for the delivered system
should be reflected in the related documents.

The process overview diagram is as shown
in Figure 7. According to the outputs from all
previous phases as well as request and problem
reports from users, system maintenance should
be held for determining support strategy and
problem management (e.g., identification and
approval). As the output of this phase, a new ver-
sion can be produced for system testing phase
for a new life cycle.

CONCLUSION

In this paper, we conclude that COSD is a
promising discipline to be considered as one of
the alternatives to promote software evolution
and also to improve the software development
process of currently complex systems with the
help of our proposed QAM: Proposed Model for
Quality Assurance in CBSS. Research and prac-
tice in the areas of component technology, and
software architecture to date has been conducted
largely in isolation and has only touched on a few
core issues. In this paper, we survey current com-
ponent-based software technologies and the fea-
tures they inherit. We propose a QAM model for
component-based software development, which
covers both the component quality assurance as
well as their interactions. As our future work we
will apply the QAM model to real world projects
so that it can actually guide the practices of com-
ponent based software development.

REFERENCES

1.	 Kharb L.: Complexity metrics for component-ori-
ented software systems. ACM SIGSOFT Software
Engineering Notes, 33(2), 2008, Article No. 4.

2.	 McInnis: Component-based development: The
concepts, technology and methodology. Castek
Software Factory Inc., www.CBD~HQ.com.

3.	 Kharb L., Rathore V.S.: Software component com-
plexity measurement through proposed integration
metrics. Journal of Global Research in Computer
Science, 2(6), 2011.

4.	 Yacoub S.M., Cukic B., Ammar H.H.: A compo-
nent-based approach to reliability analysis of dis-
tributed systems. Proceedings of the 18th IEEE
Symposium on Reliable Distributed Systems,
1999, 158–167.

5.	 Yacoub S.M., Cukic B., Ammar H.H.: A scenario-
based reliability analysis of component-based soft-
ware. Proceedings 10th International Symposium
on Software Reliability Engineering, 1999, 22–31.

6.	 Ning J.Q., Miriyala K., Kozaczynski W.: An
architecture-driven, business-specific, and com-
ponent-based approach to software engineering.
Proceedings Third International Conference on
Software Reuse: Advances in Software Reusabil-
ity, 1994, 84–93.

7.	 Szyperski C.: Component software: Beyond
object-oriented programming. Addison-Wesley,
1998, 213.

8.	 Kharb L.: CCTF: Component Certification &
Trust Framework. International Journal of Scien-
tific Research in Computer Science and Engineer-
ing, 1(6), 2013.

9.	 Jaakkola H. and Thalheim B.: Architecture-driven
modelling methodologies. In: Anneli Heimbürger
et al. (Eds) Proceedings of the XXII Conference on
Information Modelling and Knowledge Bases. IOS
Press. 2011, p. 98.

10.	Bass L., Kazman R., Klein M.H.: The compo-
nents of software architecture design and analysis.
Published in News at SEI on April 1, 2005: http://
www.sei.cmu.edu/library/abstracts/news-at-sei/ar-
chitect20054.cfm.

11.	Kharb L.: Proposed C.E.M (Cost Estimation Met-
rics): estimation of cost of quality in software test-
ing. International Journal of Computer Science and
Telecommunications, 6(2), 2015.

12.	Kharb L.: Assessment of component criticality
with proposed metrics. INDIACom-2008: Com-
puting for Nation Development, by AICTE, IETE,
and CSI, 2008, 453–455.

