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ABSTRACT

The article presents how Wolfram Demonstrations Project platform can support teach-
ing of a great variety of subjects from very basic up to university level. The Wolfram

Demonstrations Project is part of the family of free online services from Wolfram
Research. General overview of the platform will be presented as well as a particular
usage. The application concerns presenting to students certain numerical methods,
namely one-step methods for Cauchy problem for ordinary differential equations.
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INTRODUCTION

“A picture is worth a thousand words”. This
adage formulated at the beginning of 20th cen-
tury [1] is now as up-to-date as never before.
Nowadays, the young generation is brought up
on pictures everywhere in everyday life. There-
fore, visualization plays a great role in teaching,
especially if some complicated notions and for-
mulas are involved. Preparing such presentations
requires some effort and time from the teacher.
On the other hand, using the web resources one
can bring together these two, apparently oppo-
site, sides. Moreover it can encourage students
to study on their own. Wolfram Demonstrations
Project is one of the answers for such needs.

The Wolfram Demonstrations Project is part
of the family of free online services from Wol-
fram Research created by Stephen Wolfram, a
scientist and the author of MATHEMATICA,
a system for modern technical computing. It
started in 2007 and the idea was to bring com-
putational exploration to the widest possible
audience. It is an open-code resource that uses
dynamic computation to illuminate concepts in
science, technology, mathematics, art, finance,
and a remarkable range of other fields. While
writing this article there were 9926 interac-

tive Demonstrations available. All of them are
run for free on any standard Windows, Mac,
or Linux computer. One does not even need
MATHEMATICA. Any Demonstration can be
interacted with using the free Wolfram CDF
Player — for most platforms it can be used right
in the web browser. One can also install CDF
Player on the computer, download the Dem-
onstration and use it offline. Those who have
MATHEMATICA can also experiment and
modify the code themselves [2].

SHORT PRESENTATION OF WOLFRAM
DEMONSTRATIONS PROJECT WEB PAGE

The web page is available at the URL address
http://demonstrations.wolfram.com/. Entering the
page one have the access to all Demonstrations.
Some of them are featured, and after pointing
them the description is visible. As an example
“Spiral Formations from Iterated Exponentia-
tion” is presented in Figure 1.

Just above featured demonstrations on right-
hand side there is a link to the new and updated
demonstrations (Figs. 2 and 3).

At the bottom of the homepage one has the
possibility to browse Demonstrations by topic.
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The main topics are:

e Mathematics,

e Computation,

e Physical Sciences,

e Life Sciences,

e Business and Social Systems,
e Systems, Models and Methods,
e Engineering and Technology,

Our World,
Creative Arts,
Kids and Fun,

MATHEMATICA Functionality.

Apart from that featured contributors are pre-
sented. At the very bottom of the page there are
links to other services from Wolfram Research
(see Fig. 4).
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On the top of main page and each subpage
there is a toolbar which allows to browse Dem-
onstrations according to a chosen expression. In
Figure 5 there is an example for Demonstrations
available for “Runge-Kutta” question.

EXAMPLE OF USAGE

One of the topics which are presented to stu-
dents are the numerical methods for solving dif-

ferential equations. Let us consider the example
of a Cauchy problem for ordinary differential
equations, i.e. determining the function y = y(x),
a < x < b, such that y" = fix, ), y(a) = y,. It is
known that this problem has an unique solution
while the function ffulfills specified assumptions.
There is a variety of numerical methods which
can be used for solving this problem. Among
them there are such one-step methods as explicit
and implicit Euler’s methods of order 1, modi-
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fied Euler’s or Heun’s method of order 2 or Run-
ge-Kutta methods of different orders. They have
various accuracy and complexity (cf. eg. [3]). It
is very useful that apart from presenting formulas
one can compare these methods by visualizing the
solutions obtained by different methods. Using the
demonstration “Numerical Methods for Differen-
tial Equations” contributed by Edda Eich-Soellner
it is possible to compare explicit and implicit Eul-
er’s methods, Heun’s method and classical Runge-
Kutta method of order 4. There are seven functions
f that can be chosen. For each of them an exact
solution is shown and it is possible to change dy-
namically the initial condition, a range <a, b> and
the number of steps. It allows to show the students
how the methods work in a very easy way.

In Figure 6 it is presented the comparison of
numerical solutions with explicit Euler and clas-
sical Runge-Kutta methods of the initial Cauchy
problem y’ = 3? (x*x), (0) = 1 on the interval
<0, 2> with 6 steps. A blue line denotes the exact
solution and the purple dots are values obtained
by particular methods.

Moreover, it is very easy to ilustrate the be-
haviour of explicit and implicit methods on a stiff
equation. In Figure 7 it is presented the compari-
sion of explicit Euler’s methods for the problem
v’ =-=20y + 20x + 21, y(0) = 5/4 on the interval
<0, 2> with 17, 19 and 21 steps with implicit one
with 17 steps. In that way it is very easy to con-
firm the theoretical comparison of these methods,
explain why the step size is so important in ex-
plicit method while implicit one gives good re-
sults with relatively long step.

Moreover, each subpage provides the link to
basic theory connected with the demonstration as

well as to related demonstrations, for instance to
“Global and Local Errors in Runge-Kutta Meth-
ods” as related to presented demonstration. Addi-
tionally, other demonstrations by the same author
can be found.

CONCLUSIONS

The benefits of introduction dynamic math-
ematics demonstrations into the teaching and
learning process are presented. The aim of each
teacher is to be as clear as possible. It is shown
that Wolfram Demonstrations Project platform al-
lows to enrich the lecture to achieve this aim with
very little effort. For instance, it is hard to imag-
ine teaching numerical methods without comput-
er tests nowadays. That is why the example from
this branch of knowledge was chosen. It occurs
that even complete lack of programming skills is
not an impediment for the teachers to confirm the
theory presented during the lecture by a computer
presentation.
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