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ABSTRACT
The determination of effective mechanical properties of multi-layer composite is 
presented in this paper. Computations based on finite element method predicting 
properties of inhomogeneous materials require solving huge tasks. More effective is 
Mori-Tanaka approach, typical for micromechanics problems. For regularly distrib-
uted fibers closed-forms for effective composite material properties are possible to 
derive. The results of homogenization are used in strength analysis of the composite 
pressure vessel.
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INTRODUCTION

Composite materials are increasingly used in 
structural engineering. The composites consist of 
two or more phases, such as a matrix and rein-
forcement of much better mechanical properties. 
The most commonly used are matrix polymers, 
though it may also be a metal e.g. Mg, Al, or ce-
ramics. Reinforcement in the form of powder or 
fibers improves mechanical properties of the com-
posite such as strength, abrasion resistance, or re-
sistance to high temperatures. Most composites 
exhibit anisotropy. Their properties are not the sum 
or average of properties of the individual compo-
nents. Effective analysis of mechanical properties 
of the composite can be carried out using the finite 
element method. Figure 1 shows the FEM model 
of three-layer composite of regularly spaced fibers. 
The application of mechanical or kinematical load 
to the opposite surfaces of the model allows to find 
the effective Young’s modulus, shear moduli and 
Poisson’s ratios for various directions. Reliable 
results require solving very large problems of mil-
lions degrees of freedom. Computations become 
very sophisticated when elasto-plastic properties 
of the components and delamination of the com-

posite are taken into account. In such cases, ho-
mogenization methods used in micromechanics 
are more efficient. Effective anisotropic material 
properties of the composite are based on the prop-
erties of the individual components, their volume 
fractions and spatial arrangement (directions). 
Among the homogenization approaches the Mori- 
Tanaka method is standard.

In the presented research the parallel fiber rein-
forced laminate is analyzed, for which the closed-
form formulas to its effective linear elastic proper-
ties are derived. The goal of the study is to deter-
mine the anisotropic material properties of the com-
posite material using micromechanics formulas and 
use them in the analysis of the thin-walled vessel 
under internal pressure. In the future research the 
composite materials with non-linear properties and 
complex structures will be investigated.

HOMOGENIZATION – ESHELBY AND 
MORI-TANAKA SOLUTIONS

Homogenization is the process of determina-
tion of the macroscopic properties of the material 
consisting of several phases i.e. the matrix and in-
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clusions or inhomogeneities (fibers, microcracks, 
voids). As a result, there is no need to analyze 
the responses of the structure on micro or nano 
level which would require the time-consuming 
calculations. In micromechanics the concept of 
the representative volume element (RVE) is in-
troduced. Its size depends on the scale level for 
which the response of the material to the external 
load is considered. For the three-layer compos-
ite shown in Figure 1, depending on the assumed 
scale the RVE can include: the volume compris-
ing all three layers of the laminate, a single layer, 
or only the neighborhood of the single layer. Fig-
ure 2 shows the body D of the elastic modulus 
C0 which contains an ellipsoidal heterogeneity 
W of elastic modulus C1. In the homogenization 
process the effective stiffness C of the homoge-
neous body under identical boundary conditions 
is determined. Depending on the mutual ratio be-
tween the semi-axes of the ellipsoid, the follow-
ing shapes of inclusions are possible to obtain: a 
sphere, a disk, or long fibers. Eshelby [1] was first 
to solve the problem with a single ellipsoidal in-
clusion (C0= C1). He assumed that the inclusion 
is initially cut out of the infinite body D, next 
subjected to deformations causes the occurrence 
of a uniform strain ε*, and finally inserted back 
into the volume D. Strains occurring within inclu-

sions depend on ε* and so-called Eshelby tensor 
which for ellipsoidal inclusions is the function of 
the Poisson’s ratio. Mori-Tanaka [2] extended Es-
helby’s solution into inhomogeneities (C0 ≠ C1). 
In the case of inhomogeneities, the eigenstrain ε* 
is selected in such a way that the problem with 
the inclusion provides the same stress field as the 
problem with inhomogeneity. The problem of 
determining the properties of non-homogeneous 
materials has been extended by other researchers 
on the issues of multiple heterogeneity – cases 
when interactions between inhomogeneities are 
considered or neglected, the problems of inhomo-
geneity covered with additional layers, or struc-
tures composed almost exclusively of heteroge-
neities such as grains, etc. Their description is 
beyond the scope of this study.

DETERMINATION OF EFFECTIVE 
PROPERTIES OF THE FIBER-REINFORCED 
LAMINATES

Figure 3 shows the fiber-reinforced compos-
ite analyzed in this research. The volume fraction 
of the fiber is cf and the volume fraction of the 
matrix is cm:
 1=+ mf cc . (1)

Young’s moduli of composite fibers and 
matrix are Ef i Em, and Poisson’s rations are nf i 
nm, respectively. The effective Young’s modulus 
and Poisson’s ratio may be estimated [3] by the 
Reuss lower bounds ( RRE ν, ) or Voigt upper 
bounds ( VVE ν, ). Assuming that the Poisson’s 
ratios of the fibers and the matrix are the same 
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Fig. 1. FEM mesh for multi-layered composite

Fig. 2. Heterogeneous material (left) and equivalent 
homogeneous material (right)

Fig. 3. Model of unidirectional fiber-reinforced 
composite
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It can be noticed that the upper Voigt estimate 
gives a better approximation in the fibers direc-
tion, while the lower Reuss estimate gives a better 
approximation in a direction perpendicular to the 
fibers. Because of simplicity, equations (2) and 
(3) are widely used in engineering practice to de-
termine the effective longitudinal and transverse 
Young’s modules of the composite. More precise 
estimates can be obtained using methods typical 
for micromechanics based on the Eshelby and 
Mori-Tanaka solutions. For long fibers of circular 
cross-sections it is possible to derive the Eshelby 
tensor analytically, which leads to the following 
formulas for the longitudinal EL and transverse ET 
effective Young’s moduli:

Due to the complex expression for ET the ap-
proximation (5) is often used, which is a very 
good estimate for most real materials. The ex-
pressions for effective shear moduli of the com-
posite can be found in [3].

BENCHMARK TEST – COMPOSITE VESSEL 
UNDER INTERNAL PRESSURE

Equations (3) – (5) allow for the calculation 
of effective material data of the composite. These 
expressions were used to determine the input 
(material) data for the test problem. The pressure 
vessel made of the composite material (Figure 4) 

Fig. 4. Model of cylindrical vessel under internal 
pressure

Fig. 5. Composite layers and thicknesses [mm]

Fig. 6. Maximum effective stress [Pa] in pressure vessel
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is considered as a benchmark test. Due to multi-
ple symmetry only 1/8 of the vessel is analyzed. 
On the planes of symmetry appropriate bound-
ary conditions are applied. It is assumed that the 
tank is made of a composite including the base 
(Nomex material) and two layers of glass fiber 
reinforcements. Figure 5 shows the individual 
composite layers: the core of 0.5 mm thick-
ness and a glass fiber layers of 0.3 mm thick-
nesses (fiber directions are 90 and 45 degrees). 
It is assumed that the applied internal pressure 
is 0.05 MPa. Dense FEM mesh is generated at 
the connections between the cylindrical part of 
the tank and its bottoms, where very large stress 
gradients occur. Numerical calculations are per-
formed by the commercial ABAQUS program. 
ABAQUS enables to display the stress distribu-
tions separately for each of the composite lay-
ers, the stress in the outer layers only, or the 
extreme stress in all layers of the composite 
(option envelope). Figure 6 presents the distri-
butions of maximum Huber-Mises stress in the 
tank (the envelope option). As one can see due 
to the anisotropy of the composite the stress dis-
tribution is not axisymmetric.

FINAL REMARKS

The calculation of the effective material prop-
erties of the composite with a regular pattern of 
parallel fibers is presented in this paper. Effec-
tive material data are determined analytically by 

the use of classical micromechanics approaches. 
In the case of irregular composite structures they 
should be derived numerically – for this purpose 
the commercial software Digimat can be used. As 
a benchmark test the thin-walled tank under inter-
nal pressure is analyzed. Obtained stress distribu-
tion varies in the subsequent layers of the com-
posite, and stress contours are not axisymmetric. 

Formulas for the longitudinal and transverse 
Young’s modulus can be also used for solving 
reverse engineering problems in which for as-
sumed material properties the thickness of com-
posite layers as well as the volume fractions 
of the matrix and fibers should be determined. 
Methodology presented in this paper can be also 
successfully applied to the analysis of metal 
composites.
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