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INTRODUCTION

For a long time, Timoshenko (TM) beam 
theory has been widely used [1–5] for the static 
and dynamic analysis of elastic structures, such 
as beams, concrete bridges, railway bridges, 
and more. Unlike EulerBernoulli (EB) beam 
theory [6], which ignores shear deformation 
and rotational inertia, TM beam theory includes 
both factors. Therefore, it is not possible to es-
tablish an analytic relationship between shear 
force and moment in the TM beam. TM beams 
are also known as thick beam theory or second-
order beam theory.

If the transverse bending vibration of the 
EB beam is described by a partial differential 
equation of deflection, then the vibrational equa-
tions of the TM beam are two partial differential 
equations corresponding to two unknowns that 

need to be determined: the transverse displace-
ment and the rotation angle due to pure bending 
[7–9]. To analyze the natural frequencies and 
mode functions, the equations of free vibration 
are used (with the right-hand sides set to ze-
ros). To analyze forced vibration, the right-hand 
side equations are often used. There are various 
methods for studying these problems, such as 
the Ritz method, finite element method (FEM) 
[10–12], finite difference method (FDM), and 
modal analysis method (MAM).

In the problems of structural verification 
and evaluation, the natural frequencies are 
characteristics that need to be determined. 
Studies have used piezoelectric accelerometers 
[13] and experimental investigations [14] to
check the natural frequency and deflection of
reinforced concrete beams when the reinforce-
ment was corroded. The authors concluded that
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changes in natural frequency could determine 
the extent of damage due to corrosion. The 
authors in [15–18] have shown that natural 
frequency and vibration patterns are inherent 
properties of beam structures. They are directly 
proportional to stiffness, inversely proportional 
to mass, and depend on boundary conditions. 
Any change in natural frequency indicates a 
change in structural properties, such as damage 
or enhancement. In [19], it was demonstrated 
that evaluating natural frequency is an easy and 
convenient method with valuable findings for 
assessing the overall structural condition.

Natural frequency and natural form are 
two characteristics of beams that are also used 
to analyze forced vibrations of beams using 
MAM [7–9, 20, 21]. Additionally, in dynamic 
problems, changes in frequencies can influ-
ence oscillation properties, potentially moving 
oscillations from the far-resonant region to the 
near-resonant region, or vice versa. Therefore, 
it is essential to define these characteristics. 
For ordinary beams, these characteristics have 
been studied quite extensively. However, for 
prestressed beams, which are reinforced by ap-
plying pre-tension or pre-compression forces 
to enhance load-bearing capacity, reduce bend-
ing, and decrease deflection, previous studies 
are less complete. 

Prestressed EB beams have been the subject 
of many studies [22–33]. In [24], the impact of 
longitudinal force on the change in natural fre-
quencies and mode shapes of prestressed EB 
beams was investigated using a beam model 
with two supports. In [25], it was shown that 
when a beam is pre-compressed, its frequency 
decreases, leading to a corresponding decrease 
in stiffness. This effect is referred to as “soft-
ening of beams due to pre-compression.” Re-
search in [26] used FEM combined with experi-
ments to evaluate the effect of prestress on the 
natural frequencies of beams with free bound-
aries. In [27], the natural frequency and mode 
shapes of EB beams with cracks and prestress-
ing were determined. Subsequently, reference 
[28] investigated the dynamic response of such 
beams under the action of a moving body. In 
[34], the authors demonstrated how to deter-
mine the natural frequency of simply supported 

prestressed concrete beams using STAAD.Pro, 
employing EB beam theory. The results were 
then compared with analytical solutions for un-
prestressed EB beams. They also showed that 
the frequency change increases as the order of 
oscillation increases.

In [35], the influence of the magnitude of 
the prestressing force on the natural frequency 
of beams (using EB beam theory) was inves-
tigated using mathematical tools. The study in 
[36] examined how prestress forces affect the 
modal characteristics of concrete beams. Re-
search on prestressed TM beams is still limit-
ed. In [29], the authors used the reverberation-
ray matrix approach to study the vibrations 
of prestressed Rayleigh-Timoshenko beams 
subjected to arbitrary forces. Reference [30] 
explored the free vibration of a PTM beam 
placed on a Winkler elastic foundation using 
FEM, but the natural frequencies were not de-
termined in that study.

Prestressed TM beams, subjected to ten-
sion or compression, are very common in 
practice, especially in concrete structures. 
The traditional steel beam is heavier than the 
prestressed steel beam with the same dimen-
sions and load capacity [37]. Furthermore, the 
span and load-carrying capacity of beams can 
be improved through prestressing. Therefore, 
prestressed structures have been applied not 
only to new constructions but also to exist-
ing ones, such as bridges, aircraft, and so on 
[38–40]. Therefore, it is necessary to consider 
changes in the natural frequency law due to 
prestressing factors. However, this issue has 
not yet been thoroughly studied because the 
complexity of the prestressed TM beam model 
makes it a challenging problem. In this study, 
the vibration equations for prestressed TM 
beams are examined using the MAM method, 
and the characteristic equations and general 
mode functions are obtained. By substituting 
the boundary conditions into the general form, 
this study also derives the formula for each 
beam corresponding to each boundary condi-
tion. The Newton-Raphson method can then 
be used to solve the nonlinear algebraic char-
acteristic equations that determine the natural 
frequencies of the beams.
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GENERAL EQUATIONS 
Vibration equations of the prestressed Timoshenko beam 

Considering the PTM beam model as shown in Figure 1. The geometric axis of the beam remains 
straight without deformation. Neglect torsional and axial vibrations. Beams only perform bending 
vibrations under the action of distributed force. Thus, transverse displacement, cross-sectional rotation, 
bending moment, and shear force are functions of the x-coordinate and t-time, they are denoted by 
w(x,t),φ(x,t),M(x,t) and Q(x,t) respectively. 

 

 
Figure 1. Beam subjected to distributed force 

 
For the TM beam, the cross-section's rotation angle (φ) equals the total of the rotation angles brought 

on by the bending strain (ϕ) and the shear strain (γ). For EB beams, the angle component is zero due to 
ignoring the effect of shear strain. 

 tan φ =
∂w
∂x

 ≈ φ = ϕ + γ (1) 

The transverse vibration equations of the beam [7–9, 20, 21] have the form: 

 ρA(x)
∂2w(x,t)

∂t2
 - ∂Q(x,t)

∂x
 = q(x,t) (2) 

 ρI(x) ∂2ϕ(x,t)
∂t2

+
∂M(x,t)

∂x
 - Q(x,t) = τ(x,t) (3) 

where: A(x) and I(x) are the area and inertia moment of cross-sectional respectively, and ρ is the mass 
density.  

 
Figure 2. Normal strain of a beam segment 

 
Considering a beam segment as shown in Fig. 2, the bending moment and shear force are determined 

by the formula [41]: 

 M = ∫zσxxdA
A

; Q = κGA(x)γ = κGA(x) ( ∂w
∂x

 - ϕ) (4) 

where: G is the shear modulus and κ is the correction shear factor. 
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In the case of TM beams. The axial stress is determined by Hook's law in the form: 

 σxx= Eεxx(x,z,t); εxx(x,z,t) = -z
∂ϕ
∂x

 (5) 

where: E is Young’s modulus, εxx is the normal strain of the beam due to bending displacement.  

Substituting expressions (4) and (5) into Equations 2 and 3 we get: 

ρA
∂2w(x,t)

∂t2
 - κGA ( ∂

2w(x,t)
∂2x

 - ∂ϕ(x,t)
∂x )  = q(x,t) (6) 

 ρI
∂2ϕ(x,t)

∂t2
= κGA ( ∂w(x,t)

∂x
- ϕ) +EI

∂2ϕ(x,t)
∂x2  (7) 

Thus, we obtain two partial differential equations of ordinary Timoshenko beams with two unknowns 
w(x, t) and ϕ(x, t).  In the case of PTM beams, the normal strain εxx(x, z, t) in the x-direction:  
 εxx(x,z,t) = ε0(x)+εxx

* (x,z,t) (8) 

where ε0(x) is the initial normal strain caused by prestressing. Considering the position of the cross-
section with x-coordinates, the proportional long strain is: 

 ε0(x,z,0) = ε0(x) (9) 

here εxx
* (x,z,t) is the normal strain added when the beam is deformed. These strains are linear in the 

elastic domain, and the initial strain from prestressing and the strain from bending together make up the 
total normal strain. 

Substituting Equation 5 into Equation 8, ignoring the higher-order infinity, we have: 

 εxx(x, z,t) = ε0(x)-z
∂ϕ
∂x

 (10) 

Substituting Equation 10 into Equation 4 we get: 

 M=Eε0 ∫zdA
A

-E
∂ϕ
∂x

∫z2dA
A

 (11) 

The following equations are used to calculate the zC - coordinate (center of the dx-element) and the 
inertia moment of inertia of the cross-section: 

 AzC= ∫zdA
A

; I(x)= ∫z2dA
A

 (12) 

If the beam is not deformed, zC = 0, and if it is deformed, zC = w. 
Substituting Equation 12 into Equation 11, we get: 

 M(x,t)=EA(x)ε0w-EI(x) ∂ϕ
∂x

 (13) 

Assume that the neutral axis and the axis of symmetry are the same, and by substituting Equation 4 
and Equation 13 into Equation 2 and Equation 3, the cross-section of the beam is constant, and the beam 
is homogeneous, then A, I, and ε0 are constants. 

The motion equations have the form: 

 ρA
∂2w(x,t)

∂t2
- κGA ( ∂

2w
∂x2 -

∂ϕ
∂x) =q(x,t) (14) 

 ρI(x) ∂2ϕ(x,t)
∂t2

-EI
∂2ϕ
∂x2 -κGA (∂w

∂x
-ϕ) +ε0EA

∂w
∂x

=0 (15) 
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Eigenvalues and mode functions 
Free vibration equations of the PTM beam have the form: 

 ρA
∂2w(x,t)
∂t2

- κGA ( ∂
2w
∂x2 -

∂ϕ
∂x) =0 (16) 

 ρI(x) ∂
2ϕ(x,t)
∂t2

-EI
∂2ϕ
∂x2 -κGA (∂w

∂x
-ϕ) +ε0EA

∂w
∂x

=0 (17) 

For normal TM beams, their solutions have the variable dissociation [7, 8], according to the expression: 
 w(x,t)=W(x).T(t) (18) 
 ϕ(x,t)=Φ(x).T(t) (19) 

For PTM beams, we use a lemma to prove the ability to dissociate solutions. Taking the derivative 
of Equation 17 concerning the variable x, and then substituting it into Equation 16, we get: 

 ρI
∂3ϕ(x,t)
∂x∂t2

+ε0EA
∂w2(x,t)
∂x2 -EI

∂ϕ3(x,t)
∂x3 -ρA

∂2w(x,t)
∂t2

=0 (20) 

From Equation 16, we can also derive: 

 ∂ϕ
∂x

=
∂2w
∂x2 -

ρA
κGA

∂2w(x,t)
∂t2

 (21) 

From Equation 21, we can calculate the derivatives: 

 ∂3ϕ
∂x3 =

∂4w
∂x4 -

ρA
κGA

∂4w(x,t)
∂x2∂t2

; 
∂3ϕ
∂x∂t2

=
∂4w
∂x2∂t2

-
ρA
κGA

∂4w(x,t)
∂t4

 (22) 

Substituting Equation 22 into Equation 20 we have: 
 
ρI ( ∂4w

∂x2∂t2
-
ρA
κGA

∂4w(x,t)
∂t4

)  + ε0EA
∂2w(x,t)
∂x2  

-EI ( ∂
4w
∂x4 -

ρA
κGA

∂4w(x,t)
∂x2∂t2

) -ρA
∂2w(x,t)
∂t2

=0 
(23) 

Simplifying we get a partial derivative of the fourth order of w(x,t): 

 
-EI

∂4w
∂x4 +ρI (1+

E
κG

 ) ∂
4w(x,t)
∂x2∂t2

-
ρ2I
κG

∂4w(x,t)
∂t4

+ε0EA
∂w2(x,t)
∂x2  

-ρA
∂2w(x,t)
∂t2

=0 
(24) 

Continuing the first-order derivative of Eq. (17) for the x-variable, we get: 

 ρA
∂3w
∂x∂t2

- κGA ( ∂
3w
∂x3 -

∂2ϕ
∂x2) =0 (25) 

From Equation 15, we derive the components and their derivatives. After that by substituting into 
Equation 25, the same transformation, we have: 

 -EI
∂4ϕ
∂x4 +ρI ( E

κG
+1) ∂4ϕ

∂t2∂x2 -
ρ2I
κG

∂4ϕ
∂t4

+ε0EA
∂2ϕ
∂x2 -ρA

∂2ϕ
∂t2

=0 (26) 

Thus, Equation 24 and 26 are dissociation equations written for each variable. Moreover, these 
equations have the same form. Therefore, the solutions Equation 18 and 19 are still valid for RTM 
beams. Derivative from Equation 18 and 19 and substituting into the Equation 16 and 17, we get:  

 κG
ρ

W″(x)
W(x)

-
κG
ρ
Φ'(x)
W(x)

=
T̈(t)
T(t)

 (27) 

 -
ε0EAW'(x)
ρIΦ(x)

+
EIΦ″(x)
ρIΦ(x)

+
κGAW'(x)
ρIΦ(x)

-
κGA
ρI

=
T̈(t)
T(t)

 (28) 
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Since the right sides of Equation 27 and 28 depend on t and their left sides depend on x, both sides 
must be constants. Hence, we put: 

 
T̈(t)
T(t)

= -ω2 (29) 

Substituting Equation 28 into Equation 26 and 27, we get: 
 κGW″(x)-κGΦ'(x)+ω2ρW(x)=0 (30) 

 EIΦ″(x)+(κGA-ε0EA)W'(x)+(ω2ρI-κGA)Φ(x)=0 (31) 

From Equation 30, we have: 

 Φ'(x)= W″(x)+
ω2ρ
κG

W(x) (32) 

Deriving Equation 31 concerning x and then substituting 31 into that result, we get the Equation: 

 W(4)+ (( 1
κG

+
1
E

) ρω2-
ε0A

I ) W″+ω2ρ (ω2ρ
EκG

-
A
EI) W=0 (33) 

The characteristics of Equation 33 are: 

 λ4+bλ2+c=0 (34) 

with b = ( 1
κG

+
1
E

) ρω2-
ε0A

I
; c=ρω2 (ω2ρ

EκG
-

A
EI) (35) 

Replacing k = λ2, we have the Equation: 
 k2+bk+c=0 (36) 

If c = 0 then: 

 
ω2ρ
EκG

-
A
EI

=0 ⇒ ω=√κGA
ρI

=ωc (37) 

The symbol ωc is called cut-off frequency. This is a mathematical value; practically, no natural 
frequency of a beam will be equal to this value. 
If c ≠ 0 then the delta determinant of Equation 36 is positive definite:  
 

Δ= (( 1
κG

+
1
E

) ρω2-
ε0A

I )
2

- 4ω2ρ (ω2ρ
EκG

-
A
EI) 

⟺ Δ= ( ε0A
I

- ( 1
κG

-
1
E

) ρω2)
2

+
4A
EI

(1-ε0)ρω2 

(38) 

Due to |ε0|≪1, then Δ > 0. The solutions of Eq. (35) are: 

 k1=
-b+√Δ

2
; k2=

-b-√Δ
2

 (39) 

We consider two frequency regions: 
In frequency region ω < ωc: From Equation 35 and Equation 37, deducing c < 0. Since k = λ2, we have: 

 k1=
-b+√Δ

2
>0 ⇒ λ1=β, λ2=-β(β>0) (40) 

and k2=
-b-√Δ

2
<0 ⇒ λ1=iξ, λ2=-iξ (41) 

In frequency region ω > ωc: From Equation 35 and Equation 37, deducing c < 0. We have: 

 k1=
-b+√Δ

2
<0 ⇒ λ1=iη, λ2=-iη  

 k2=
-b-√Δ

2
<0 ⇒ λ3=iξ, λ4=-iξ (42) 
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 β=
√-b+√Δ

√2
; ξ=

√b+√Δ
√2

 ; η=
√b-√Δ
√2

  

The solutions of Equation 30 and 31 are determined according to the four eigenvalues: λ1, λ2, λ3, λ4, 
as follows: 
In frequency region ω < ωc: The form of the solutions: 
 W(x) = C1eλ1x+C2eλ2x+C3eλ3x+C4eλ4x=C1eβx+C2e-βx+C3eiξx+C4e-iξx (43) 
 W(x) = C1eλ1x+C2eλ2x+C3eλ3x+C4eλ4x=C1eβx+C2e-βx+C3eiξx+C4e-iξx (44) 

Using Euler's formulas, we get the trigonometric form: 
  W(x) = a1 sinh β x+a2 cosh β x+a3 sin ξ x+a4 cos ξ x (45) 
  Φ(x)= d1 sinh β x+d2 cosh β x+d3 sin ξ x+d4 cos ξ x (46) 

where: the constants ai and di (i = 1, 2, 3, 4) are determined by the boundary conditions. The constants 
ai and di are also not independent since the functions W(x)and Φ(x) are not independent. 

Substituting Equation 45 and 46 into Equation 30, identifying the trigonometric functions on both sides, 
we get: 

 (κGa1β2-κGd2β+ω2ρ a1)=0 ⇒ d2=a1 (β+
ω2ρ
κGβ

 )= a1hβ (47) 

 (κGa2β2-κGd1β+ω2ρ a2)=0 ⇒ d1=a2 (β+
ω2ρ
κGβ)= a2hβ (48) 

 (-a3ξ2κG+κGd4ξ+ω2ρ a3)=0 ⇒ d4=a3 (ξ-
ω2ρ
κGξ)= a3fξ (49) 

 (-κGa4ξ2-κGd3ξ+ω2ρ a4)=0 ⇒ d3=-a4 (ξ-
ω2ρ
κGξ)= -a4fξ (50) 

where hβ=(β+ω2ρ/(κGβ) ); fξ= (ξ-ω2ρ/(κGξ)) (51) 

Substituting equations from Equation 47 to Equation 50 into Equation 46, we get the mode functions: 
 W(x) = a1 sinh β x+a2 cosh β x+a3 sin ξ x+a4 cos ξ x (52) 
 Φ(x) = a2hβ sinh β x+a1hβ cosh β x-a4fξ sin ξ x+a3fξ cos ξ x (53) 

In frequency region ω > ωc: The form of the solutions: 
 W(x) = C1eiηx+C2e-iηx+C3eiξx+C4e-iξx (54) 
 Φ(x)=C1

' eiηx+C2
' e-iηx+C3

' eiξx+C4
' e-iξx (55) 

Using Euler's formulas to trigonometric form and similar transformations, we get mode functions: 
 W(x) = b1 sin η x+b2 cos η x+b3 sin ξ x+b4 cos ξ x (56) 
 Φ(x) = -b2fη sin η x+b1fη cos η x-b4fξ sin ξ x+b3fξ cos ξ x (57) 

where fη=(η-ω2ρ/(κGη) ) (58) 

Thus, the mode functions of the PTM beam are determined by Equation 52 and Equation 53 in case 
ω < ωc, and by Equation 56 and Equation 57 in case of ω > ωc. 
 

CALCULATION OF NATURAL FREQUENCIES AND MODE SHAPES 
Simply supported PTM beam 

Based on the boundary conditions of each type of beam, the characteristic equation and particular 
mode functions can be derived from the general mode functions, as shown in the system of equations 
from Equation 52 to Equation 57. As illustrated in Figure 1, The simply supported (SS) PTM beam has 
both transverse displacement and bending moment equal zeros at x = 0 and x = l: 
 w(0,t)= 0; M(0,t)=EAε0w(0)-EI ∂ϕ(0)

∂x
=0 (59) 
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 w(l,t)= 0; M(l,t)=EAε0w(l)-EI ∂ϕ(l)
∂x

=0 (60) 
Substituting Equation 18 and Equation 19 into Equation 59 and Equation 60, we obtain: 
 W(0)=0; Φ'(0)=0; W(l)=0; Φ'(l)=0 (61) 

In frequency region ω < ωc: 

The natural frequencies: Substituting Equation 52 and 53 into Equation 61, we get: 
 W(0) = a2+a4=0 (62) 
 Φ'(0) = βa2hβ-ξa4fξ=0 (63) 
 W(l) = a1 sinh β l+a2 cosh β l+a3 sin ξ l+a4 cos ξ l=0 (64) 
 Φ'(l) = βa2hβ cosh β l+βa1hβ sinh β l-ξa4fξ cos ξ l-ξa3fξ sin ξ l=0 (65) 

From Equation 62 and Equation 63, we have: 
 a2=a4=0 (66) 

Substituting Equation 66 into Equation 64 and Equation 65, we get: 
  a1 sinh β l+a3 sin ξ l=0 (67) 
 βa1hβ sinh β l-ξa3fξ sin ξ l=0 (68) 

Since the solutions a1 and a3 are non-zero, then there must be: 

 
 

|
sinh β l sin ξ l

βhβ sinh β l -ξfξ sin ξ l| =0 ⟺ (ξfξ+βhβ) sin ξ l sinh β l=0 (69) 

Equation 69 is the characteristic equation, solving this equation, we obtain the natural frequencies 
ωj < ωc, (j=1, 2,...). Mode shapes – multiplying both sides of the Equation 67 by ξfξ and then adding to 
Equation 68, we get: 
  a1 (ξfξ+βhβ) sinh β l=0 (70) 

From Equation 43 and Equation 51, we have ξfξ+βhβ=2√Δ>0 and sinh β l>0 

We infer that a1=0. Therefore, to have a solution where ai ≠ 0 then a3 ≠ 0. Substituting a1=a2=a4=0; 
a3 ≠ 0 into Equation 52 and Equation 53, we get the mode shapes: 
 W(x) = a3 sin( jπx/l) ; Φ(x) = a3fξ cos( jπx/l) (71) 

In frequency region ω > ωc: 

Natural frequency: Substituting Equation 56 and Equation 57 into Equation 61, using the same 
method as proved above, we get: 
 (ξfξ-ηfη) sin η l sin ξ l=0 (72) 

Substituting Equation 42 into Equation 72 and solving it, we get the natural frequencies: ωk > ωc, 
(k=1, 2,...). Mode shapes – from Equation 56 and Equation 57, using a similar method, we have: 

 W(x) = b1 sin(nπx/l) ; Φ(x) = b1fη cos(nπx/l) (73) 

Numerical results  

In [7], the characteristics of un-prestressed TM beams were investigated using a numerical-analytic 
method, and in [31], these characteristics of the EB beam were determined in analytical forms. 
Consequently, in this study, the results from references [7] and [31] are selected for comparison. 
Numerical calculations are performed with the set of parameters as shown in reference [7]: l = 1 m, A = 
b × h = 0.02 × 0.08 m2, E = 2.1 × 1011 N/m2, G = 8.1 × 1010 N/m2, ρ = 7860 kg/m3, κ = 0.5. According 
to Equation 37, we can determine the cut-off frequency, ωc=98291.71 rad/s (15643.62 Hz), and the 
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number of natural frequencies, NB less than the cut-off frequency, NB = 73. To compare the numerical 
results with EB beam, we use the formula to determine the natural frequencies of EB beams [31]: 

 ωk= (kπ
l

)
2

√EI
ρA

, with k = 1, 2, 3… (74) 

The mode shapes of transverse displacement and cross-sectional rotation of the SS PTM beam are 
depicted in Figures 3 and 4, respectively. Calculation results are indicated in Table 1. 

 

 
Figure 3. Mode shapes of the transverse displacement of the SS PTM beam 

 

 
Figure 4. Mode shapes of the cross-sectional rotation of the SS PTM beam 

 
As shown in Table 1, in the case without prestressing, the results for the TB beam show good 

agreement with those in reference [7]. It can be seen from Table 1 that, as the beam is subjected to pre-
compression (ε0<0), the natural frequencies of the PTM beams are reduced compared to those of the 
normal TM beams. The more compressed the beam, the lower the frequencies. This is called “softening”  

 
Table 1. Natural frequencies of SS PTM beam 

No. EB [31] 
(rad/s) 

TM (rad/s) PTM (rad/s) (b-a)/a 
(%) ε0 = 0 (a) [7] ε0 = -10-4 ε0 = -5.10-4 (b) ε0 = 10-4 

1 1178.141 1159.497 1159.4 1148.428 1103.046 1170.460 4.87 

2 4712.566 4436.759 4436.8 4426.191 4383.668 4447.301 1.20 

3 10603.274 9357.616 9357.6 9347.665 9307.755 9367.558 0.53 

4 18850.265 15409.984 15410.0 15400.680 15363.412 15419.283 0.30 

5 29453.539 22182.504 22183.0 22173.824 22139.071 22191.182 0.20 

6 42413.096 29389.344 - 29381.241 29348.809 29397.446 0.14 

7 57728.937 36845.603 - 36838.026 36807.706 36853.178 0.10 

8 75401.061 44435.880 - 44428.781 44400.375 44442.979 0.08 

9 95429.468 52089.639 - 52082.972 52056.300 52096.305 0.06 

10 117814.15 59764.516 - 59758.242 59733.142 59770.789 0.05 
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in prestressed beams. When the beam is pre-tensioned (ε0>0), its natural frequency increases compared 
to the normal beam. The natural frequencies of PTM beams and TM beams show the greatest difference 
at the first frequency (about 4.9% for ε0 = -5 × 10-4). This discrepancy decreases rapidly as the frequency 
order increases. Under pre-compression (ε0 < 0), the PTM beams deviate more from EB beams 
compared to when they are subjected to pre-tension (ε0 > 0). For the same TM beam, the natural 
frequency under pre-compression is greater than that under pre-tension 

Figures 3 and 4 illustrate four mode shapes of the natural frequency of the simply supported PTM 
beam under pre-compression (ε0 = -0.001). These mode shapes are appropriate for this type of boundary 
condition. 

 
Clamped–free PTM beam 

Boundary conditions of the clamped–free (CF) PTM beam are displayed in Figure 5. At x = 0, the 
displacement and rotation are both zero: 
 w(0,t)=0 ⇒ W(0)=0; ϕ(0,t)=0 ⇒ Φ(0)=0 (75) 
   

 
Figure 5. Clamped-free (CF) beam 

 
At x = l, the torque and shear force are equal to zero, using the same method as indicated in the simply 

supported PTM beam, we have: 

 EAε0w-EIϕ'=0⇒ ε0A
I

W(l)-Φ'(l)=0 

κGA[w'(l,t)-ϕ(l,t)]=0⇒W'(l)-Φ(l)=0 
(76) 

In frequency region ω < ωc: 
Natural frequency: Substituting the Equations 52 and 53 into Equations 75 and 76, we get: 
 a2+a4=0 (77) 
 a1hβ+a3fξ=0 (78) 

 
(ε0A/I-βhβ) a1 sinh β l+ (ε0A/I-βhβ) a2 cosh β l+ (ε0A/I+ξfξ) a3 sin ξ l 

+ (ε0A/I+ξfξ) a4 cos ξ l=0 
(79) 

 a1(β-hβ) cosh β l+a2(β-hβ) sinh β l+a3 (ξ-fξ) cos ξ l-a4 (ξ-fξ) sin ξ l=0 (80) 

From Equation 77 and Equation 78, we get: 
       a4=-a2, a3=-a1hβ/fξ (81) 

Substituting Equation 81 into Equation 79 and Equation 80, we get: 

 
(ε0A/I-βhβ) a1 sinh β l+ (ε0A/I-βhβ) a2 cosh β l-

(ε0A/I+ξfξ) (hβ/fξ) a1 sin ξ l- (ε0A/I+ξfξ) a2 cos ξ l=0 
(82) 

 
a1(β-hβ) cosh β l+a2(β-hβ) sinh β l-a1 (hβ/fξ) (ξ-fξ) cos ξ l 

+a2 (ξ-fξ) sin ξ l=0 
(83) 

For the solutions a1 and a2 to be non-zero, the following condition must hold: 

 |
(ε0A/I-βhβ) sinh β l- (ε0A/I+ξfξ) (hβ/fξ) sin ξ l (ε0A/I-βhβ) cosh β l- (ε0A/I+ξfξ) cos ξ l

(β-hβ) cosh β l- (hβ/fξ) (ξ-fξ) cos ξ l (β-hβ) sinh β l+ (ξ-fξ) sin ξ l
| =0  
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⟺ [(ε0A/I-βhβ) sinh β l- (ε0A/I+ξfξ) (hβ/fξ) sin ξ l] [(β-hβ) sinh β l+ (ξ-fξ) sin ξ l] 

- [(ε0A/I-βhβ) cosh β l- (ε0A/I+ξfξ) cos ξ l] ((β-hβ) cosh β l-
hβ

fξ
(ξ-fξ) cos ξ l) =0 

(84) 

Equation 84 is the characteristic equation that determines the natural frequency, which is a nonlinear 
algebraic equation. We determine the frequencies by solving Equation 84 using the Newton-Raphson 
method, where ωj are the values to be determined: ωj with j=1, 2, …such that ωj<ωc. 
Mode shapes – from the Equation 82 and Equation 83, we deduce the coefficients corresponding to ωj: 

 a2
(j)=-a1

(j)
(βj-hβ

(j)) cosh βj l-
hβ

(j)

fξ
(j) (ξj-fξ

(j)) cos ξj l

(βj-hβ
(j)) sinh βj l+ (ξj-fξ

(j)) sin ξj l
= -a1

(j)gj; 

 

(85) 

 a3
(j)=-a1

(j) hβ
(j)

fξ
(j) ; a4

(j)=-a2
(j)=a1

(j)gj (86) 

in which 
 

               hβ
(j)=hβ(ωj); fξ

(j)=fξ(ωj); ξj=ξ(ωj); βj=β(ωj); 
 

(87) 

 
gj=

(βj-hβ
(j)) cosh βj l-

hβ
(j)

fξ
(j) (ξj-fξ

(j)) cos ξj l

(βj-hβ
(j)) sinh βj l+ (ξj-fξ

(j)) sin ξj l
 

(88) 

Substitute the coefficients in Eq. (52) and Eq. (53), we get mode shapes: 
 Wj(x) =a1

(j) (sinh βj x+gj cosh βj x- (hβ
(j)/fξ

(j)) sin ξj x-gj cos ξj x) (89) 

 Φj(x) =a1
(j) (hβ

(j)gj sinh βj x+hβ
(j) cosh βj x+fξgj sin ξj x-hβ

(j) cos ξj x) (90) 

In frequency region ω > ωc: 
Natural frequency – substituting Equation 56 and Equation 57 into the boundary conditions Equation 75 
and Equation 76, using the same method, we get: 
The characteristic equation to determine the natural frequencies is: 

 

[(ε0A/I+ηfη) sin η l- (ε0A/I+ξfη) (fη/fξ) sin ξ l] [(η-fη) sin η l- (ξ-fξ) sin ξ l] 

+ [(ε0A/I+ηfη) cos η l- (ε0A/I+ξfξ) cos ξ l] ((η-fη) cos η l-
fη
fξ

(ξ-fξ) cos ξ l) =0 
(91) 

Using the numerical method to solve the Equation 91, we will find the frequencies 
ωk with k = 1, 2,... such that ωk > ωc. 
Mode shapes – the mode shapes can be determined from the following equations:  
 Wk(x) = b1

(k) (sin ηk x+zk cos ηk x- (fη
(k)/fξ

(k)) sin ξk x-zk cos ξ x) (92) 

 Φk(x) = b1
(k) (-zkfη

(k) sin ηk x+fη
(k) cos ηk x+zkfξ sin ξk x-fη

(k) cos ξ x) (93) 
where  

 fη
(k)=fη(ωk); fξ

(k)=fξ(ωk); ξk=ξ(ωk); βk=β(ωk); 
 

(94) 

 zk=
(ηk-fη

(k)) cos ηk l- (fη
(k)/fξ

(k)) (ξk-fξ
(k)) cos ξk l

(ηk-fη
(k)) sin ηk l- (ξk-fξ

(k)) sin ξk l
 (95) 
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Numerical results 
The characteristics of the CF beam are as follows: l = 7.62 m, A = 5.90 × 10-3 m2, E = 2.14 × 1011 N/m2, 
G = 8.18 × 1010 N/m2, I = 4.58 × 10-5 m4, mass of beam, m = 350 kg, κ = 5/6. The calculation results are 
compared with the EB beam in [31], where their frequencies are determined by analytical solution: 

  ω =
λ2

l2
√EI

ρA
 (96) 

where λ is the solution of the characteristic Equation: 

 cos λ cosh λ +1=0 (97) 
 

 
Figure 6. Mode shapes of the transverse displacement of the CF PTM beam 

 

 
Figure 7. Mode shapes of the cross-sectional rotation of the CF PTM beam 

 
The outcomes of the computation are indicated in Table 2. The mode shapes of transverse 

displacement and cross-sectional rotation of the CF PTM beam are illustrated in Figures 6 and 7, 
respectively. The findings shown in Table 2 demonstrate that as the frequency order changes, the change 
in the difference of natural frequencies in the CF PTM beam is similar to that of the SS PTM beam. The 
first natural frequency also exhibits the greatest discrepancy (about 6.23% corresponding to 
ε0 = -3×10-4). The difference decreases rapidly as the order of the natural frequency increases. The mode 
shapes of the CF PTM beam under ε0 = -3×10⁻⁴, as shown in Figures 6 and 7, are appropriate for this 
type of boundary condition. 
 
Clamped-support PTM beam 

Boundary conditions of clamped–support (CS) PTM beam are shown in Figure 8. At x=0, both 
displacement and rotation are zero. 
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Table 2. Natural frequencies of CF PTM beam (Hz) 

No. 
PTM (a), (Hz) TM (b), (Hz) 

EB [31], (Hz) (a-b)/b (%) 
ε0 = -10-4 ε0 = -3.10-4 ε0 = 10-4 ε0 = 0 

1 4.356362 4.166201 4.550521 4.443 4.451 6.23 

2 27.34684 26.87677 28.1266 27.651 27.899 2.80 

3 76.12447 75.92555 77.23382 76.507 78.119 0.76 

4 147.1811 146.6947 148.0214 147.417 153.082 0.49 

5 238.5178 237.8973 239.0906 238.661 253.057 0.32 

6 347.8383 347.3198 348.5030 347.981 378.023 0.19 

7 472.9603 472.3832 473.6794 473.0928 527.9831 0.15 

8 611.6868 611.1239 612.3842 611.7969 702.9361 0.11 

9 761.9678 761.3886 762.6613 762.0745 902.8825 0.09 

10 922.1156 921.5734 922.5140 922.1267 1127.822 0.06 

 

 
Figure 8. Clamped–support (CS) beam 

 
 w(0,t)=0⇒W(0)=0; ϕ(0,t)=0⇒Φ(0)=0 (98) 

At x = l, both displacement and moment are zero. Similar to the SS beam, we have: 
 W(l)=0,Φ'(l)=0 (99) 

In frequency region ω < ωc: 
Natural frequency – by substituting Equation 52 and Equation 53 into Equation 98 and Equation 99. The 
characteristic equations to determine frequencies are: 

 
(sinh β l- (hβ/fξ) sin ξ l) (βhβ cosh β l+ξ fξcos ξ l) 

-(cosh β l- cos ξ l) (βhβ sinh β l+ ξhβsin ξ l) =0 
(100) 

 Wj(x) =a1
(j) (sinh βj x+gj cosh βj x-

hβ
(j)

fξ
(j) sin ξj x-gj cos ξj x) (101) 

 Φj(x) =a1
(j) (hβ

(j)gj sinh βj x+hβ
(j) cosh βj x+fξgj sin ξj x-hβ

(j) cos ξj x) (102) 
where 

 hβ
(j)=hβ(ωj); fξ

(j)=fξ(ωj); ξj=ξ(ωj); βj=β(ωj); 
 

(103) 

 gj=
(hβ

(j)/fξ
(j)) sin ξj l- sinh βj l

cosh βj l- cos ξj l
 (104) 

In frequency region ω > ωc: 
Natural frequency – substituting Equation 56 and Equation 57 into the boundary conditions Equation 98 
and Equation 99. The characteristic equation to determine the natural frequencies is: 

 

 
(sin η l- (fη/fξ) sin ξ l) (-ηfη cos η l+ξfξ cos ξ l) 

-(cos η l- cos ξ l) (-ηfη sin η l+ξfη sin ξ l) =0 
(105) 

Mode shape:  
 Wk(x) = b1

(k) (sin ηk x+zk cos ηk x- (fη
(k)/fξ

(k)) sin ξk x-zk cos ξ x) (106) 
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Numerical results

The properties of the CS beam are similar to 
those of the CF beam. The calculation results are 
compared with the EB beam in [31], where the 
solution of the characteristic equation is:
	 tanλ – tanhλ = 0 	 (110)

The results of natural frequency for different 
beams are indicated in Table 3. Mode shapes of 
displacement of the CS PTM beam and the rela-
tive error in natural frequencies between the CS 

PTM beam and CS TM beam are illustrated in 
Figures 9 and 10, respectively. 

According to the findings in Table 3, the change 
in natural frequencies of the CS PTM beam presents 
the same tendency as the SS and CF PTM beams. 
The four mode shapes of the CS PTM beam under 
pre-compression (ε0 = -2·10-4) are shown in Figure 9 
and are consistent with this type of boundary condi-
tion. It can be seen in Figure 10 that the relative dif-
ference increases as the prestress increases and sig-
nificantly decreases as the frequency order increases.

Table 3. Natural frequencies of the CS PTM beam (Hz)

No.
PTM (Hz) TM (Hz)

EB [31] (Hz) (a-b)/b (%)
ε0 = -1·10-4 ε0 = -2·10-4 (a) ε0 = 1·10-4 ε0 = 2·10-4 ε0 = 0 (b)

1 19.042 18.680 19.744 20.086 19.396 19.522 3.69

2 61.770 61.366 62.569 62.964 62.171 63.264 1.29

3 127.273 126.857 128.100 128.511 127.687 131.995 0.65

4 213.626 213.209 214.458 214.873 214.043 225,720 0.39

5 318.628 318.213 319.455 319,867 319.041 344.438 0.26

6 439.987 439.578 440.803 441.211 440.395 488.150 0.19

7 575.474 575.073 576.277 576.677 575.875 656.854 0.14

8 880.780 880.394 881.550 881.935 881.165 850.552 0.09

9 1047.12 1046.74 1047.87 1048.255 1047.50 1069.24 0.07

10 1220.66 1220.29 1221.40 1221.768 1221.03 1312.92 0.06

 Φk(x) = b1
(k) (-zkfη

(k) sin ηk x+fη
(k) cos ηk x+zkfξ sin ξk x-fη

(k) cos ξ x) (107) 
where 

 fη
(k)=fη(ωk); fξ

(k)=fξ(ωk); ξk=ξ(ωk); βk=β(ωk);  
 

(108) 

 zk=
(fη
(k)/fξ

(k)) sin ξk l+ sin ηk l
cos ηk l- cos ξk l

 (109) 

 

Figure 9. Mode shapes of displacement of CS PTM beam
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CONCLUSIONS

This study employs the vibration equations 
developed for the Timoshenko beam and applies 
them to the prestressed Timoshenko beam using the 
modal analysis method. This study also investigates 
characteristic equations to identify the natural fre-
quencies and mode shapes for distinct prestressed 
Timoshenko beam models, namely: simply support-
ed beam, clamped-free beam, and clamped-support 
beam, using the general form of mode functions 
with specific boundary conditions. Other types of 
beams with different boundary conditions at the end 
edge can also be examined using the same method 
as described for the above boundary conditions.

Numerical calculations have been carried out 
for various beam models, and the results have 
been compared with Timoshenko beams and 
Euler-Bernoulli beams. The calculations yield 
similar results for Timoshenko beams when the 
prestress of the prestressed Timoshenko beams is 
zero. Additionally, the results show a good agree-
ment with the Euler-Bernoulli beam.

When the beams are pre-compressed, as the 
prestress increases, the difference in natural fre-
quencies of the prestressed Timoshenko beam in-
creases compared to the Timoshenko beam. The 
natural frequency of the pre-tensioned beam is 
greater than that of the beam without pre-tension-
ing. The difference is most pronounced at the ini-
tial frequency and is considered the most signifi-
cant. However, this difference diminishes rapidly 
as the frequency order increases.

In this study, the natural frequency of the pre-
stressed PTM beam has been examined using the 
modal analysis method. However, it is possible to 
investigate the forced vibration of this beam us-
ing the same applied method. This investigation 
could be considered as a further study. 
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