Nowadays, the immense development of computer technologies has risen to the challenge for cooling electronic devices. Further, downsized heat sink decreases the heat exchange surface area. Under these undesirable conditions, heat flux evacuated by the electronic components causes overheating and threatens the functionality of these systems. Researchers are addressing this challenge and investigating solutions [1, 2]. Thus, pin fins heat sinks (PFHS) are gaining attention of investigators. Meinders et al. [3] studied the flow behavior behind pins and showed its significance for heat transfer and thermal management. Another research group [4] numerically addressed the potential of perforated-PFHS for thermal performance improvement. They highlighted the impact of geometrical parameters. An investigation was performed on a new pin fin shape (pyramid) [5], this shape had an improving effect on the performance of heat sinks, as concluded by the authors. Another numerical study...
Advances in Science and Technology Research Journal 2024, 18(3), 33–44

[6] was devoted to thermal-hydraulic performance of perforated-PFHS which showed higher performance than solid-PFHS. Ismail et al. [7] investigated various perforated-PFHS; they proposed holes in square, circular, triangular and hexagonal shapes. Compared with the other arrangements, perforated-PFHS with circular holes showed the best thermal performance. In this regard, it was confirmed that the perforated pin fin is one of successful techniques for thermal management [8, 9]. Reid and collaborators [10] addressed the design optimization of passive heat sinks by using SIMULIA-Tosca and SIMULIA-Abaqus. The topology optimization method generated in the study was obtained by varying manufacturing and volume constraints. They reported that the best design resulted in lower peak temperature estimated by 24%. Huang et al. [11] investigated optimization of the pin hole size of perforated-PFHS aiming to minimize both AT and Ap. Shi Zeng et al. [12] numerically studied two types of fin configurations for liquid-cooled micro-channel heat sinks. They showed that the proposed new fin pattern thermally outperforms the other investigated designs. Sahel et al. [13] reported also similar findings of the high thermal performance of perforated-PFHS. Pan et al. [14] proposed a staggered pin fin configuration which can considerably improve the heat dissipation rate in heat sinks. In this context, the configuration and size of the pins were able to reduce the recirculation zones and hot spots behind the pins [15, 16] and consequently increased the heat transfer coefficients in the cooling system.

Hybrid nanofluids, which are based on additives of both types i.e. metallics and non-metallics, have gained attention in recent years due to their potential use in heat dissipation applications, particularly in heat sink systems. Heiarshenas et al. [17] showed that using the novel hybrid nanofluid composed of ionic liquid-alumina nanoparticles in a water-based solution can greatly improve the thermal performance of heat sinks. Nanoparticles of 20 and 50 nm resulted in 26% higher thermal performance than that shown in the case of pure water, resulting hence in a significant increase in the heat dissipation rate. Kumar et al. [18] investigated the use of a hybrid nanofluid composed of graphene and Platinum nanoparticles suspended in water for heat dissipation in electronics devices. Addition of graphene nanoparticles significantly increased the thermal conductivity of the cooling fluid. Hybrid nanofluid could potentially lead to more efficient heat dissipation rate in electronic devices. Sriraran et al. [19] experimentally investigated the impact of nanoparticles of hybrid water nanofluid. Higher performance and heat transfer enhancement of up to 54% were obtained with nanofluids, compared to the pure water performance.

The configuration of pin fins plays a key role in the heat sink design and thermal performance. Thus, intensive research investigated this type of heat transfer enhancement [20, 21]. Khetib et al. [22] numerically investigated this enhancing effect, three-pin configurations were investigated alongside their geometrical parameters. A similar study was conducted by Nilpueng et al. [23] where the impact of fin pitch was emphasized. Yakut et al. [24] employed an optimization method for design of efficient fins. They found out the optimal size for hexagon-shaped pin fins. Recently, phase change materials (PCMs) have been one of the most investigated passive methods for thermal management. Several works have been conducted to enhance the passive cooling of pin fins heat sink using PCMs [25-27]. Arshad et al. [28] experimentally studied cooling of electronics. Paraffin wax and aluminum square fins were investigated for fin thicknesses varying from 1 mm to 3 mm for various heat fluxes. It was found that the optimal performance in terms of operating time is achieved for 2 mm of fin thickness. Ali et al. [29] experimentally analyzed three different configurations of PFHS using various PCMs. Triangular fins were found to be the most efficient fin design.

The present study is aimed at improving the thermal performance of a hemispherical pin fins heat sink (HSPFHS) by considering trenches in the hemispherical heat sinks. The influence of the number (1, 3, and 5) and trench thickness (from 1 mm to 5 mm) on the thermo-hydraulic characteristics was examined through seven different configurations. The thermal performance and the fluid flow dynamics were examined. Nusselt number as well as pressure drop were analyzed as function of Reynolds number. The mass reduction was emphasized since the cost can be reduced while increasing the thermal performance.

MODELING

Configuration

The problem investigated in this paper is illustrated in Figure 1 consisting of a heat sink with hemispherical pin fins of radius R = 12 mm (Fig.
2) placed on a plate 100×100 mm. This heat sink is located inside an airflow channel of dimensions 240×100×12 mm. The staggered arranged HSPFs are shown in Figure 1, where the longitudinal spacing is $S_l = 12.5$ mm, and transversal spacing is $S_t = 25$ mm. Several cases were studied by varying the number and thickness of the trench ($e = 1$ mm, 2 mm, 3 mm, 4 mm, 5 mm). A5083P aluminum was used for both plate and fins (Table 1). Using hemispherical pin fins (HSPF) not only augments the occupied volume and mass of heat sinks [13]. Using the trenching technique in the HSPF is aimed for reduction of the hot points behind the pins.

Governing equations

Conservation equations governing heat transfer and fluid flow are used with assuming steady turbulent regime [30, 31], and incompressible flow. The RNG k-epsilon model of turbulence is used in this study because it is largely utilized to predict the turbulent flow and heat transfer inside pin fins heat sinks. It is based on the turbulent kinetic energy k (Eq. 6) and the energy dissipations ε (Eq. 5). In the case of steady-state conditions, the governing equations are:

Continuity equation:

$$\frac{\partial u_i}{\partial x_i} = 0$$ \hspace{1cm} (1)

Momentum equation:

$$\frac{\partial (u_i u_j)}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j^2} + \frac{\partial}{\partial x_j} \left(-\bar{u}_i \bar{u}_j\right)$$ \hspace{1cm} (2)

Energy equation:

$$\frac{\partial (u_i T)}{\partial x_j} = \alpha \frac{\partial^2 T}{\partial x_j^2} + \frac{\partial}{\partial x_j} \left(-\bar{u}_i \bar{\theta}\right)$$ \hspace{1cm} (3)

![Fig. 1. Sketch of the trenched hemispherical pin fins heat sink](image1)

![Fig. 2. Example of a pin with 5 trenches](image2)
Table 1. Material properties [30]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Density (kg/m³)</th>
<th>Thermal expansion (1/K)</th>
<th>Conductivity (W/m K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>2650</td>
<td>23.8</td>
<td>167</td>
</tr>
</tbody>
</table>

Heat conduction equation:

\[\nabla \cdot (\lambda \nabla T) = 0 \quad (4) \]

\[\rho \alpha (\nabla \cdot \mathbf{v}) = \nabla \left[\left(\mu + \frac{\mu T}{\sigma e} \right) \nabla \mathbf{v} \right] + C_n \frac{\epsilon}{k} P_{k} - C_{sp} \rho \frac{\epsilon^2}{k} \quad (5) \]

\[\rho (u \cdot \nabla) k = \nabla \left[\left(\mu + \frac{\mu T}{\sigma e} \right) \nabla k \right] + P_{k} - \rho \epsilon \quad (6) \]

\[P_{k} = \mu_{k} \left[\nabla u \cdot \nabla u + (\nabla u)^2 \right] \quad (7) \]

\[\mu_{T} = \rho C_{p} \frac{k^2}{\epsilon} \quad (8) \]

\[\nabla p = p_{in} - p_{out} \quad (9) \]

where: \(p_{in} \) and \(p_{out} \) stand for pressures while the thermal resistance is:

\[R_{th} = (T_{w} - T_{in})/q' \quad (10) \]

\[\text{Re} = \frac{UD_{h}}{v} \quad (11) \]

where: the \(D_{h} \) formula is written as follows:

\[D_{h} = \frac{4A_{h}}{P} \quad (12) \]

\[Nu = \frac{q'/D_{h}}{\lambda_{in} (T_{w} - (T_{in} + T_{out})/2)} \quad (13) \]

The performance parameter is given by:

\[HTPF = \left(\frac{Nu}{Nu_{CPFS}} \right) \left(\frac{\Delta p}{\Delta p_{CPFS}} \right)^{1/3} \quad (14) \]

RESULTS

Validation

Simulation was based on COMSOL Multiphysics® v. 5.4 software [32]. A numerical check was first performed to examine the mesh independency on the accuracy and reliability of numerical results. The structure and size of mesh (Fig. 3) were scrutinized regarding their crucial impact on the numerical results. To this end, tetrahedral meshes with various numbers of elements were generated and the resulting average Nusselt numbers were compared. To evaluate the grid convergence, cylindrical pin fins (CPFs) were analyzed at Re = 12820. Convergence was set to residuals less than \(10^{-6} \). Several grids were employed: 608112, 1100289, 1538157, 1822298, and 2102516 elements. Notably, Nu exhibited minimal variation (less than 1%) for the grids with a greater number of elements than 1538157, confirming their reliability as shown in Figure 4. As a result, the grid with 1538157 elements was chosen for the ultimate CPFs simulations. A similar approach of grid independency was applied to all configurations. Figure 3 illustrates the mesh structures.

After grid independency analysis, cylindrical pin fin heat sink (CPFS) was validated by comparison with experimental and numerical data [30]. Figure 5a clearly demonstrates that the conducted numerical simulation effectively predicts the Nu variation with deviation less than 14%. This discrepancy can be attributed to the thermocouples used for temperature measurement (three at the inlet and three at the

![Fig. 3. Mesh grid of the heat sink](image-url)
Fig. 4. Test of grid independency

Fig. 5. Validation of results on CPFHs, for (a) Nusselt number and (b) pressure drop

Effect of the trench thickness

Improvement of the performance of the hemispherical heat sink pin fins was investigated by creating trenches in the solid fins. Nu, thermal resistance (R_{th}), and pressure drop are examined for trench thickness (e) varying from 1 to 5 mm. Figs. 6 to 9 depict the variations of Nu, Δp, R_{th}, and the hydrothermal performance factor (HTPF) for different trench configurations and Re values. The impact of the trench thickness on Nu and Re is depicted in Figure 6. As it is shown, an optimal configuration ($e = 1$ mm) exhibits up to 45% enhancement in Nu indicating an improvement of heat dissipation, which can ensure a significant cooling effect for the electronic components.

Figures 7, 8 show the pressure difference and thermal resistance (R_{th}), respectively, for a range of Reynolds numbers. The hemispherical pins in the case of trench thickness $e = 1$ mm lead to an increase in the pressure drop (Δp) up to 50%, this augmentation helps to block the air flow which improves the thermal performance. On the other hand,
the decrease in R_{th} by 42% in the case of $e = 1$ mm results in a temperature decrement. Simulations of the different cases are performed by using the same boundary conditions. Figure 9 shows 30% increase in the HTPF while Figure 10 illustrates the wall temperature variation with Reynolds number for hemispherical pin fins heat sink having different trench thickness. T_w decrement is due to augmentation of the turbulent intensity and inertial shears near the heat sink wall. Likewise, the decreases of the trench thickness contribute to reducing the wall temperature. Additionally, Figures 11 and 12 display the temperature distribution for $e = 1, 2, 3, 4, 5$ mm at $Re = 21367$. Obviously, lower temperature in the lower part of the cooling system is observed which increases with the size of trenches. For this reason, the hemispherical pin fin has been proposed to reduce the volume of the air-cooling channel and greatly increase the contact area near the heat source. The flow structure generally influences the heat transfer performance in heat sinks. As illustrated in Figure 12, the effect of trench thickness by the different flow structures can clearly be noticed. Decreasing recirculations are observed behind the pin fins with increasing the trench thickness.
Effect of the trenches number

This section was focused on the optimization of the configuration identified in the previous section. Different numbers of trenches are considered in the hemispherical pin fins heat sink. Figures 13, to 16 illustrate the variation of Nu, Δp, R_{th} and $HTPF$ versus Re for hemispherical pin fins heat sinks having 3 and 5 trenches, respectively. According to Figure 13, Nu increases by 131% and 144% for three and five trenches, respectively. These augmentations demonstrate that increasing the trench number augments the heat transfer surface areas leading to higher cooling performance. Variation of the pressure drops (Δp) with Re is shown in Figure 14, for HSPFHS having 3 and 5 trenches. Increasing of Re increases Δp due to augmentation of the blockage. At
higher Re, the reduction in the Δp is about 45%. Figure 15 depicts R_{th} versus Re where R_{th} decline is observed by augmenting Re. This is due to incremented turbulent intensity and reduced velocity fluctuations, where, a remarkable reduction around 90% in R_{th} is obtained for the two cases at the highest Re. As a result, the outcomes of various situations are determined using identical boundary conditions. Figure 16 shows a 100% improvement in the hydrothermal performance factor (HTPF) compared to that of cylindrical pin fins heat sink. Furthermore, Figure 17 illustrates the thermal field and velocities at the vicinity of the plate. The case of three trenches is examined.

Fig. 12. Velocities on the sink surface contact for e=1, 2, 3, 4, 5 mm and Re = 21367
Fig. 13. Nusselt number vs Re, for $e=1$ mm

Fig. 14. Pressure difference (Δp) vs Re, for $e=1$ mm

Fig. 15. Variation of the thermal resistance (R_{th}) with Re, for $e=1$ mm

Fig. 16. Variation of the HTPF with Re, for $e=1$ mm

Fig. 17. Illustration of (a) the thermal and (b) hydrodynamical field for the case of three trenches at $Re = 21367$

at $Re = 21367$. Augmenting the cooling-air velocity noticeably reduces system temperatures. The design of a trenched-hemispherical heat sink has been put forward. In addition, it is evident that the outlet air temperatures are higher compared with those at the inlet. This is primarily due to the number and thickness of the trenches in the heat sink.
Mass of HSs

Enhancement of thermal performance is crucial for design of heat sinks. However, the technological quality of heat sinks is influenced by several factors, including the contact surface area, mass, as well as the occupied volume. The present work, proposes an optimization model to not only enhance the heat dissipation in heat sinks but also to effectively decrease their mass and occupied volume. The variation of heat sink mass and HTPF with the trench size (Fig. 18). Obviously, the trench size helps reduce the mass and increase the thermal and dynamic performance by 16.5% and 8.8% respectively. In this study, the new design can improve the thermal management and reduce the mass as well as downsize the system, resulting in cost reduction when compared with the classical cylindrical pin fins heat sink [30]. Figure 19 depicts variation of the heat sink mass (g) and HTPF with the trench number. Higher HTPF is shown for the case of hemispherical heat sink having five trenches, the heat sink mass decreases by 12.5%.

CONCLUSIONS

Various configurations of trenched hemispherical pin fins heat sink are numerically studied. Different trench number and thickness are investigated. Air flow behavior and heat transfer are examined for various Reynold numbers. Conclusions drawn are summarized as follows:

- hemispherical pin fins heat sink fitted with a trench in the middle considerably increases the heat transfer surface rate;

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_i\mu_j$</td>
<td>Reynolds stress [m²/s²]</td>
</tr>
<tr>
<td>$\mu_i\theta$</td>
<td>Turbulent heat flux [m-K/s]</td>
</tr>
<tr>
<td>x</td>
<td>Cartesian coordinate vector [m]</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity [m²/s]</td>
</tr>
<tr>
<td>$\bar{\rho}$</td>
<td>Modified kinematic pressure [m³/s²]</td>
</tr>
<tr>
<td>Δp</td>
<td>Pressure drops [Pa]</td>
</tr>
<tr>
<td>w</td>
<td>Specific dissipation rate [1/s]</td>
</tr>
<tr>
<td>a</td>
<td>Thermal diffusivity [m²/s]</td>
</tr>
<tr>
<td>k</td>
<td>Turbulent kinetic energy [m²/s²]</td>
</tr>
<tr>
<td>i,j</td>
<td>Velocity vector [m/s]</td>
</tr>
<tr>
<td>q''</td>
<td>Thermal diffusivity [W/m²]</td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity [kg/(m·s)]</td>
</tr>
<tr>
<td>A</td>
<td>Total heat transfer surface area [m²]</td>
</tr>
<tr>
<td>c_p</td>
<td>Specific heat [J/(kg·K)]</td>
</tr>
<tr>
<td>d</td>
<td>Height of the hemispherical pin fins [m]</td>
</tr>
<tr>
<td>D_h</td>
<td>Hydraulic diameter [m]</td>
</tr>
<tr>
<td>H</td>
<td>Height of channel inlet [m]</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>R_{th}</td>
<td>Thermal resistance [K·m²/W]</td>
</tr>
<tr>
<td>S_i/H</td>
<td>Pitch length ratio of pin fins</td>
</tr>
<tr>
<td>S_{w}/H</td>
<td>Pitch transverse ratio of pin fins</td>
</tr>
<tr>
<td>T</td>
<td>Temperature [K]</td>
</tr>
<tr>
<td>U</td>
<td>Mean velocity [m/s]</td>
</tr>
<tr>
<td>λ</td>
<td>Thermal conductivity [W/(m²·K)]</td>
</tr>
<tr>
<td>ρ</td>
<td>Density [kg/m³]</td>
</tr>
<tr>
<td>i,j</td>
<td>Tensor index</td>
</tr>
<tr>
<td>in</td>
<td>Inlet</td>
</tr>
<tr>
<td>out</td>
<td>Outlet</td>
</tr>
<tr>
<td>s</td>
<td>Solid</td>
</tr>
<tr>
<td>w</td>
<td>Wall</td>
</tr>
</tbody>
</table>
• trenched fins improve the thermal performance and reduce the material mass and cost;
• trenched fins reduce the fin mass by 12.5% while improving the performance by 100% compared to the non-trenched fins;
• trenches help reducing the wall temperature and augmenting the air velocity around the pin fins;
• trench thickness of $e = 0.1 \text{ mm}$ is shown to ensure the highest heat dissipation rate;
• hemispherical heat sink having a trench thickness of $e = 1 \text{ mm}$ increases the Nusselt number by 45% and decreases the thermal resistance by 42%;
• pressure drop of 50% is observed compared to the conventional heat sink configuration i.e. CPFHS.

For future research, various trench shapes could be investigated for the sake of higher cooling performance.

Acknowledgments

The authors are thankful to the Deanship of Graduate Studies and Scientific Research at University of Bisha for supporting this work through the Fast-Track Research Support Program.

REFERENCES

18. R. Avinash Kumar, M. Kavitha, P. Manoj Kumar, S. Arvind Seshadri, Numerical study of graphene-platinum hybrid nanofluid in microchannel for...

