Modification of Microstructure and Surface Properties of Ti-6Al-4V Alloy by Molybdenum Disilicide Particles Using Micro-Arc Oxidation Process

Nawar Fahem Kadhim1*, Ali Hubi Haleem1, Samir Hamid Awad1

1 College of Materials Engineering, University of Babylon, Iraq
* Corresponding author’s e-mail: aboamna299@gmail.com

ABSTRACT

As an effective surface modification technique, micro-arc oxidation (MAO) is now widely used to improve the hardness and wear resistance of Ti and its alloys by low-cost and thick ceramic coatings. In this study, molybdenum disilicide (MoSi2)–modified ceramic coatings were deposited on Ti–6Al–4V alloy (340 HV) by MAO using an aqueous solution of Na2SiO3, (NaPO3)6 and NaOH and MoSi2 particles. MoSi2 particles (3, 5, and 7 g/l) from wastes of furnaces electrodes were introduced into the electrolyte to improve the microstructure and surface properties of Ti-6Al-4V alloys. A scanning electron microscope (SEM), dispersive spectroscopy (EDS), X-ray diffraction (XRD), and mechanical tests (microhardness and wear) were used to identify the coating properties, morphologies, and phases. The findings showed that the addition of 5 g/l MoSi2 increased the thickness and hardness of MAO coatings from 19.08 µm and 910 HV to 33.12 µm and 1260 HV, respectively. Also, the wear resistance by means of weight losses of uncoated alloys enhanced by 68% and 100% after MAO and 5 g/l MoSi2 modified-MAO coatings, respectively. Results of this work will promote future works in using of industrial wastes in surface engineering of Ti-6Al-4V alloys by MAO technique for wear resistance applications.

Keywords: Ti6Al4V, micro arc oxidation, hardness, wear, molybdenum disilicide.

INTRODUCTION

Titanium and its alloys such as Ti-6Al-4V as lightweight metals of high relative mechanical strength and fatigue limit, unique properties, including superior biocompatibility, superconductivity, and shape memory, are widely employed in the aerospace, medical equipment, and chemical industries, marine applications at moderate costs, and are found in different branches of modern industry [1-5]. However, these alloys can’t be used into mechanical parts that are prone to friction, due to their tribological nature. In actuality, friction between a titanium part and another mechanical part, regardless of the materials in contact, especially for a titanium/titanium contact, intensifies the seizure phenomenon. There are numerous techniques that are frequently used to enhance the surface properties of titanium alloys for wear resistance applications [6], heavy friction condition, including plasma spraying [7], physical vapor deposition (PVD), and chemical vapor deposition (CVD) [8], but their preparation processes are complex, their costs are comparatively high, and their bonding forces are weak. Microarc oxidation (MAO) is a revolutionary surface treatment method that is easy to use, effective, and safe for the environment. Excellent surface properties can be obtained by micro-arc oxidizing alloys with the right process parameters [9-11]. Among reported coatings, MoSi2-based coatings are demonstrated to exhibit it improve surface for heavy engineering applications like military equipment, industrial-technological systems, automotive parts, farming fitting, sporting goods, and biomedical engineering [13, 14], by increasing not just the service life of essential components but also the alloys ability to tolerate harsher conditions.
service environments [15]. As is well known, the electrolytes composition has a significant impact on the MAO coatings performance [16, 17]. Phosphate [18], and silicate-based electrolytes are currently the most widely used electrolyte systems. The performance of the MAO coatings can be improved by using mixed electrolytes (such as phosphoric acid-silicic acid electrolyte), notwithstanding the drawbacks of single electrolyte systems. Recent studies have attempted to improve the surface properties of the coating by adding tungsten trioxide (\(\text{WO}_3\)), magnesium oxide (\(\text{MgO}\)), cerium oxide (\(\text{CeO}_2\)), and sodium stannate (\(\text{Na}_2\text{SnO}_3\)) to the MAO electrolyte [19]. Their research demonstrated that these additives can improve coatings corrosion resistance and wear resistance. Recently, the use of Industrial wastes in surface engineering and composite materials is becoming increasingly required to reduce pollution and production costs, and will contribute to wastes disposal and green engineering [20, 21].

In this work, MoSi\(_2\) particles from wastes of furnaces electrodes were used to modify the MAO coatings on Ti6Al4V alloys. Their effects on hardness and wear resistance were investigated.

EXPERIMENTAL WORK

Materials

Ø 30 rod of Ti6Al4V (Grade 5) alloy was used for preparation of Ø 16×5 mm disc substrates using wire EDM cutting. Its chemical make-up is displayed in Table 1. The substrates were cleaned with ultrasonic agitation in acetone, rinsed with deionized water, and dried in warm air before being successively ground and polished with SiC abrasive sheets ranging from 180 to 3000 grit.

Wastes from furnaces heating elements were used to prepare MoSi\(_2\) particles. Manually kibbling of the elements was performed to get the quasi finished powders. Then, the powder was milled for 10 hours using a ball mill at speed 200 rpm. After that, the particle size distribution of the powder was determined using a (Better size 2000 particle size analyzer), it was with mean diameter of Ø 3.2 \(\mu\)m. The oxides contents and other components in the powder were determined using X-ray fluorescence (XRF) as shown in Table 2.

MAO process

A 500V DC-AC homemade MAO deposition unit shown in Figure 1 was used to deposit the ceramic coatings at current density 3 mA/cm\(^2\) and voltage of 320 V for 50 minutes. In the plastic container, one liters of electrolyte was agitated and cooled using a mechanical Stirrer and cooling system to prevent electrolyte solution heating over to 20 °C. Composition of MAO electrolyte is shown in Table 3. The electrolyte solutions were mixed for 15 min. before MAO process. All sample were rinsed in distilled water, and dried in air after coating.

Characterizations

An X-ray diffractometer system (XRD-Aeris Panaytival Company / Dutch Origin) was used to identify the coatings, where the scan rate was 0.02, and the scanning step was 0.5 degree/min. The microstructure and surface morphology ,and coating thickness was studied using scanning electron microscope SEM (Axia Chemi Sem Thermo Scientifc Company/Dutch Origin) with energy dispersive spectros copy EDS for the analysis of chemical composition of coatings. Atomic force microscopy AFM, model (Core AFM Nanosurf-Switzerland) was used to observe topography and roughness of coatings by means of arithmetic mean height (Sa). With a force of 10 N and a holding period of 15 seconds, the Vickers indenter (HVS-1000, Larsee, Digital Microhardness Tester) was used to measure the microhardness to ASTM E3841,

<table>
<thead>
<tr>
<th>Table 1. Chemical composition of Ti6Al4V (Grade 5) (according to the manufacturers’ certificates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>Weight%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Chemical composition of MoSi(_2) powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>Weight%</td>
</tr>
</tbody>
</table>
the average of 3 measurements was considered as an average value of HV to minimize the standard deviation SD [22].

A ball-on-disk tribometer (TBR Anton Paar) shown in Figure 2 was used to evaluate the friction and wear resistance behavior of coated and uncoated substrate using zirconia pin at room temperature. The circular module was used to operate the tribometer, and the parameters for circular friction are listed in Table 4. The wear resistance was determined by means of weight losses because it gives a clear indication of wear [7, 23]. The sensitive balance type (L2205-D, Germany) was used for measurement of the reliable weight losses.

RESULTS AND DISCUSSION

Initially, it is of great importance to declare that, compared to the results of sample C, samples B and D could not show the promised results in terms of microhardness and wear resistance, which are among the objectives of the research. Therefore, the results of sample C were relied upon and compared to the base sample for the purpose of evaluating the research objectives.

SEM observation, EDS and XRD analysis

Figures 3 and 4 show fracture cross-section micrographs of MAO coating (sample A and C) and (sample B and D), respectively. It can be observed that the coatings are thick [25, 26], and the outer layer is porous for A,B and D samples, however, the inner layer is relatively dense [27], with

Table 3. Composition of MAO electrolyte

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>NaSiO₂ (g/l)</th>
<th>(NaPO₃)₆ (g/l)</th>
<th>NaOH (g/l)</th>
<th>MoSi₂ (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 4. Ball-on-disk testing parameters

<table>
<thead>
<tr>
<th>Friction module</th>
<th>Circular friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>6 N</td>
</tr>
<tr>
<td>Ball diameter</td>
<td>6 mm</td>
</tr>
<tr>
<td>Frequency/ Rotating speed</td>
<td>477 rpm</td>
</tr>
<tr>
<td>Cycle number</td>
<td>5</td>
</tr>
<tr>
<td>Dry conditions</td>
<td>yes</td>
</tr>
<tr>
<td>Sliding distance</td>
<td>0.15 m/s</td>
</tr>
</tbody>
</table>

Fig. 1. The coating unit of MAO

Fig. 2. Schematic diagram for ball-on-disk testing [24]
Fig. 3. SEM micrographs of MAO coating of samples: (a) A, (b) C

Fig. 4. SEM micrographs of MAO coating of samples: (a) B, (b) D

Fig. 5. SEM micrographs and EDS results of uncoated substrates
a good adhesion to the substrate. Also, it can be observed, the regulation of coating density sample C, furthermore, the coating layer is uniform and has a relatively uniform thickness along the sample surface, the interface between the coating and the substrate is also regular and homogeneous almost along the sample surface.

Uncoated and coated substrates surface morphologies and their EDS spectra are shown in Figures (5, 6, and 7) with different magnifications.

The EDS results of uncoated substrate (Fig. 5) indicate the clear presence of elements from the Ti6Al4V composition such as Al, V, and C also, the existence of oxygen element can be attributed to natural thin TiO2 formation on the surface by oxidation [28]. The EDS results of the coated substrates (Figures 6, and 7) show a considerable increase in oxygen content, suggestive the coating should be a combination of titanium oxides and modification elements from the electrolyte such Si, V, O and Ti alloy composition. Most likely, the metallurgical intermixing and interdiffusional bonding generated real by the micro-arcing process creates a high degree of interfacial adhesion.
between coating and substrate. It can observed the appearance of (Si) content in the sample A, which comes from the electrolyte. The increase in the appearance of (Si) content in the sample (C) came from addition of MoSi\textsubscript{2} and the appearance of Mo content was also observed. This can prove the success of current work in depositing MAO layer modified with MoSi\textsubscript{2}.

XRD spectra of MAO coating modified by MoSi\textsubscript{2} addition is shown in Figure 8. It can be concluded that the modified coatings had a structure and composition consisting of a mixture of Antase Ti, Rutile Ti, and MoSi\textsubscript{2}. Also, they prove the deposition of MoSi\textsubscript{2} modified titanium oxides. The deposition of titanium oxide on substrate surfaces was demonstrated by XRD patterns. The standard cards (JCPDS No.010-0425) indicated that the mean peaks were TiO\textsubscript{2} (antase and rutile). TiO\textsubscript{2} dominant peaks were found at 20 values of 37.77°, 44.70°, and 79.10°. The MoSi\textsubscript{2} peaks were identified in accordance with the JCPDS No. 004-0787 standard cards. The positions of these peaks at 2\(\theta\) were 41.29°, 44.67°, and 77.60°. The MoSi\textsubscript{2} peaks observed are attributed to incorporation of MoSi\textsubscript{2} particles in the coating which resulted in thick MAO coating. There were not many deviations between the MoSi\textsubscript{2} diffraction at various 2\(\theta\) obtained in this work and those from standard specifications. This discrepancy is most likely due to variations in the MoSi\textsubscript{2} preparation procedures as well as the precision and conditions of acquiring the diffraction data [29]. Most likely, the big background of amorphous phases observed in the XRD patterns indicated for the deposition of the glassy phases which always leach on the surface of MoSi\textsubscript{2} particles due to the heating of furnaces electrodes during the service. Moreover such glassy phases had their significant effects in immersing the pores in the coating and give it a glassy nature or glassy behaviour.

AFM analysis

Figure 9 and Table 5 show the results of AFM test. The AFM images reveal the form and particle size distribution of the coated layers, which represented the asperities and cusps of the surface. It can be observed from the figures, that the coating were dense with cusps had different mean diameters and distribution in the surface topography. Such cusps and their characterization by Sa 57.60 nm and density 16527052 particles/mm2 are given in Table 5.

In general, results of densities from table are in agreement with observed at the in agreement with those observed at the figures. MAO coating modified by MoSi\textsubscript{2} particles (sample C) recorded the highest density among the others. Also, after MAO coating the surfaces characterized with higher roughnesses and densities in comparison to those uncoated substrates.

Table 5. AFM roughness for uncoated, A and C samples modification of MAO coating with MoSi\textsubscript{2} particles resulted in roughness decreased from 73.30 nm to 57.60 nm

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Roughness nm (Sa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoated</td>
<td>18.73</td>
</tr>
<tr>
<td>A</td>
<td>73.30</td>
</tr>
<tr>
<td>C</td>
<td>57.60</td>
</tr>
</tbody>
</table>

![Fig. 8. XRD pattern of MoSi\textsubscript{2} – modified TiO\textsubscript{2} coatings (sample C)](image-url)
The results indicated that as the thickness of the outer layer and close of porosity, the hardness values increased with adding of MoSi$_2$, which significantly improved the micro hardness value. Most likely, the hardness and wear resistance properties important factors such as coating structure and of coatings are more strongly affected by morphologies, and pores distribution.
than coatings thickness\[30\]. Furthermore, different sizes of pan-like or sphere-like geometric pores, which are the result of the molten liquid that swiftly hardened and left distinct borders around the pores, characterize the morphologies that may be observed in the structure. The quick solidification observed in sample (A) (Fig. 6), due to the constant exposure of molten oxide to cold electrolyte caused the formation of microcracks on the morphology. While in sample C (Fig. 7), because of the extremely high temperatures at the sparking spots sites, the metal from the substrate and its oxide melt and shoot out of the discharge tunnels. As seen in Figure 7 (sample C), it is evident that this melted oxide, represented by the white particles in the SEM data, increases with the addition of MoSi\(_2\). This, in turn, increased the microhardness while decreasing porosity and uneven distribution. Sample structure was generally characterized by a non-uniform distribution of pores. Taking into account the uneven distribution of porosity, sample hardness was 910 HV may be impacted\[31\], in comparison with sample (C). As expected, adding of MoSi\(_2\) contributed to giving hardness of 1260 HV \[32\]. Table 6 shows the results of thickness and microhardness. It can be observed that the MAO coatings with thickness of 19.08–44.31 μm increased the hardness of the substrate, from 340 HV to hardness values in the range 645–1260 HV. In general, such improvement in hardness values can be attributed to the formation of surface oxides by the MAO process which were mainly composed of anatase and rutile modifications of TiO\(_2\) (Fig. 7) \[33, 34\]. It should be noted that, the surface pores number, anatase /rutile phase ratio, and coating thickness can influence the hardness values \[35\].

Also, with the increasing of MoSi\(_2\) addition from 3 g/l to 5 g/l (sample C), the hardness and thickness of MAO coatings increased from 910 HV, and 19.02 μm to 1260 HV, and 33.42 μm, respectively. The significant increase in hardness can be attributed to the addition of modification elements such as Mo and W (refractory elements) characterized by their high hardness and resistance to heat. In addition, on the relevant XRD patterns of sample C (Fig. 7) anatase peaks were weaker when compared to those of rutile, because anatase-dominated oxide layers generally form at voltages as low as 250 V \[33\]. The rutile phases are more effective than those anatase phases in formation of hard surfaces. However, MAO coatings after the addition of 7 g/l MoSi\(_2\) gave a lower hardness (645 HV) compared to other MoSi\(_2\) modified coatings (3 and 5 g/l) due the effects of pores distribution and morphology on their thickest (44.31 μm) coatings.

Dry sliding tests

Results from wear test carried out for different times (30, 60, 90, 120 and 150 min) are shown in Figure 10. The results proved the significant effects of MAO coatings after the addition of MoSi\(_2\) particles in sample (C) in decreasing the weight losses in comparison to the uncoated sample, coated sample (A) and with addition of MoSi\(_2\) particles for (B and D) samples, as shown in Figure 10. In general, the weight losses varied with duration of rubbing and normal load at constant sliding velocity, and there were some „negative weight losses” for coating C. The explanation for this case is that the surface of the sample contained asperities, and at the beginning of the test the frictional thrust increased, which resulted in increased debonding and sub-surface fracture of the asperities, and thereafter, led to a clear loss of weight for ascertain duration of rubbing. After that, the surface was becoming smoother and the loss of weight remained almost non-existent, for

<table>
<thead>
<tr>
<th>Simple No.</th>
<th>Thickness (μm)</th>
<th>Microhardness (HV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoated substrate</td>
<td>-</td>
<td>340 ± 5</td>
</tr>
<tr>
<td>A</td>
<td>19.08</td>
<td>910 ± 3</td>
</tr>
<tr>
<td>B</td>
<td>26.41</td>
<td>930 ± 7</td>
</tr>
<tr>
<td>C</td>
<td>33.12</td>
<td>1260 ± 7</td>
</tr>
<tr>
<td>D</td>
<td>44.31</td>
<td>645 ± 10</td>
</tr>
</tbody>
</table>

Fig. 10. Results of wear test
the rest of the experimental time due to the nature of the improved properties of coatings surfaces, which could give high resistance to wear.

Furthermore, the incorporation of MoSi$_2$ recorded the best improving in wear resistance among the other samples due to the high mechanical properties of MoSi$_2$ particles and their effects in filling the micropores [36], and therefore reducing the surface roughens. Hardness is not the only thing that plays a significant role in wear, but there are other factors such as the uniformity of the surface as well as the adhesion of the coated to the substrate and the absence of voids between them, and this is shown by the cross-sectional images of the SEM in the Fig. 3). The wear resistance of samples B and D low in comparison to that of sample C.

The MAO coating in sample A contained a large number of micropores and microcracks, as seen in Figure 10a. When the coating was applied to zirconia balls, the micropores caused an uneven friction force and a higher surface roughness $S_a = 73.30$ μm. Poor tribological characteristics came from some micro-cracks that were easily ground off the surface and generated debris as the friction increased [37]. This plowed the coated surface, as a result, a significant quantity of debris was seen on the MAO coating deteriorated surface. On the other hand, MoSi$_2$ microparticles were present in the micropores of the MoSi$_2$-modified MAO coating, and so reduced the surface roughness $S_a = 57.60$ μm, as shown in Figure 10b for the sample C [38].

CONCLUSIONS

Based of results obtained the following conclusions can be drown:
1. On Ti6Al4V alloy substrates, hard and thick MoSi$_2$-containing TiO$_2$ ceramic coatings can be deposited using MAO electrolytes modified by MoSi$_2$ additions from industrial wastes.
2. Characterization of the modified coatings by the XRD, SEM and EDS proved the deposition of rutile and anatase phases in TiO$_2$ coatings with microstructures characterized with varying pore sizes and distributions.
3. The addition of MoSi$_2$ enhanced the hardness, reduced the pores in coatings, resulted in thick, compact, and dense coatings, therefore increased the wear resistance by means of weight losses.
4. Unmodified MAO coatings with thickness of 19.08 μm increased the hardness of Ti6Al4V alloy substrates from 340 HV to 910 HV, while the addition of 3 g/l and 5 g/l MoSi$_2$ increased the thickness and hardness of the MAO coatings to 26.4 μm and 930 HV, and 33.12 μm and 1260 HV, respectively.
5. The addition of 3 g/l and 5 g/l MoSi$_2$ showed great improvements 51%, and 100%, respectively in the wear resistance of the Ti6Al4V alloy substrates.
6. The non-uniform distribution of pores and their densities in the significantly affected the hardness differences, and wear resistance property.
REFERENCES

