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INTRODUCTION

When examining the concepts of artificial in-
telligence and machine learning, it is expected to 
draw comparisons to human intellect [1]. The fun-
damental components of human intelligence en-
compass knowledge’s practical application, infor-
mation acquisition and assimilation, and the cogni-
tive and general capabilities involved. Conceptual 
and abstract thinking, interactive abilities, deduc-
tive reasoning, goal orientation, and proficiency 
in analysis and memorization are among the most 
noteworthy facets of the learning process. 

This area of literature encompasses an ar-
ray of models pertaining to intelligent machines, 
as expounded upon by Rutkowski and Slota in 
their respective works [2,3]. Moreover, artificial 

intelligence (AI) utilizes not just human behav-
ioral patterns but also incorporates collective 
intelligence from various species, such as bees, 
ants, wolves, whales, and others, as well as ge-
netic algorithms.

Artificial intelligence (AI) has played a sig-
nificant role in effectively tackling a range of in-
tricate challenges, as shown by its application in 
enhancing road safety. To augment the security 
of mobile vehicles, adaptive safety systems have 
been devised, necessitating prompt anticipation of 
probable hazards to prevent collisions or traffic-
related occurrences. The AI-based method, devel-
oped by Meier et al. [4], introduces an automated 
approach for learning a prediction function. Inte-
grating adaptive safety systems with these models 
has enhanced performance and passenger security.
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Swarm algorithms have made significant ad-
vances in artificial intelligence, drawing inspiration 
from biological processes found in a variety of 
animal groups, such as ant colonies, bee swarms, 
worm clusters, and bird flocks. Hackwood et al. 
in their seminal work [5] introduced the notion of 
intelligent swarming, highlighting the amazing 
adaptability of these algorithms in handling varied 
constraints such as geographical limitations and 
variable independence.

As the world moves towards the era of In-
dustry 4.0, the effective utilization of artificial 
intelligence algorithms has greater significance. 
Karaboga [6] suggested a solution to the difficulty 
of heat conduction with an unidentified heating 
source. The author handled this particular physi-
cal problem by framing it as an optimization task 
and exploring and identifying improved solutions 
using heuristic approaches such as algorithms 
based on genetics. To explore the available solu-
tions, these algorithms use evolutionary mecha-
nisms and natural selection notions.

The cognitive abilities displayed by bees 
have been the basis for the swarming algorithms. 
Karaboga [7] introduced the artificial bee colony 
(ABC) algorithm, a model which were influenced 
by the foraging behavior of honey-producing 
bees. The proposed model has three main com-
ponents: forager bees, food sources, and inac-
tive bees. In addition, bees utilize a sophisticated 
dance procedure to improve their communication 
about food sources with other colony members.

Bee/ant swarm and gradient-driven algo-
rithms are two separate approaches employed 
for optimization purposes. Gradient-driven 
methods are commonly used to tackle optimi-
zation problems in the conventional approach. 
The approaches mentioned above employ the 
function derivative to ascertain the precise 
point at which the function attains its minimum 
value. In contrast, the bee/ant swarm algo-
rithms approach utilizes natural evolution as a 
conceptual framework to choose the most ad-
vantageous solution, deriving insights from the 
known evolutionary mechanisms exhibited by 
organisms in their natural habitats. The utiliza-
tion of gradient calculation is unnecessary in 
both bee and ant algorithms. 

Gradient-driven algorithms are particularly 
effective in solving problems where the target 
function has a regular contour, and the function 
derivatives are known. These algorithms are ad-
vantageous because they can fast and efficiently 

find the local minimum of the cost function. 
According to the cited sources [8,9], it is sug-
gested that bee and ant swarm algorithms exhibit 
greater efficacy in addressing problem scenarios 
characterized by irregular cost function profiles 
or limited knowledge of function values solely 
at the mesh nodes.

The study illustrates that swarm algorithms 
possess more resistance to deviations, such as 
input parameters mistakes and algorithm imple-
mentation issues, in comparison to gradient-driv-
en algorithms. Furthermore, the ant colony opti-
mization (ACO) and artificial bee colony methods 
exhibit better scalability when compared to gradi-
ent-driven techniques. The use of gradient-driven 
algorithms for complicated problems might pose 
challenges due to the necessity of computing gra-
dients for all variables being optimized.

Swarm algorithms exhibit superior efficiency 
compared to gradient methods due to their ability 
to enable simultaneous problem-solving within 
the population. Conversely, gradient-driven algo-
rithms may prove time-consuming when used for 
large-scale problems [10].

The algorithm selection is ultimately contin-
gent upon the specific issue that requires resolu-
tion. When faced with a problem that exhibits 
numerous local minima, bee, and ant swarm al-
gorithms are considered superior to gradient ap-
proaches. Gradient-driven algorithms are a more 
favorable option for dealing with problems that 
possess a smooth profile and are readily solvable. 

The notion of local minimum resilience con-
cerns the ability of an optimization algorithm 
to bypass local minimums that lack optimality 
on a global scale. Because gradient optimiza-
tion techniques rely on tracing the route of the 
steepest fall in the cost function, they are prone 
to encountering local minima. Consequently, 
these algorithms proceed in the direction where 
the cost function exhibits the most rapid drop. 
Suppose the solution space contains numerous 
local minima. In that case, it is possible for the 
gradient optimization process to become trapped 
within one of these local minima, so bypassing 
the global minimum is possible. The ABC and 
ACO algorithms have a reduced susceptibility to 
local minimums due to their independence from 
the differentiation of the cost function.

As a result, these algorithms randomly ex-
plore the space of solutions, increasing the pos-
sibility of identifying a global minimum. How-
ever, resistance to local minimums is only one 
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of numerous factors to take into account when 
selecting an optimization strategy. Additional sig-
nificant elements are the complexity and runtime 
of the algorithm. 

It should be noted that inverse problems ex-
hibit variability, and in certain instances, the uti-
lization of gradient optimization algorithms may 
prove to be a more advantageous alternative [11].

Literature from recent years shows examples 
of the successful use of swarm algorithms. Deter-
mining the most efficient route within an urban 
area connecting two places situated at a speci-
fied distance apart constitutes a distinct compu-
tational challenge. The problem was addressed 
using the ant colony optimization technique. This 
algorithm maximizes the utilization of distrib-
uted and large-scale systems. In a scholarly ar-
ticle by Komar [12], a comparative analysis was 
conducted to evaluate the efficiency of ant colony 
optimization in comparison to typical navigation 
techniques for determining the shortest path be-
tween two given places. The study’s findings in-
dicated that ACO exhibited superior performance 
in terms of efficiency.

Hetmaniok et al. [13,14] carried out re-
search in which they used the algorithms based 
on swarm intelligence to solve the inverse heat 
transfer problems, with a focus on the boundary 
condition of heat exchange with environment. 
The researchers rebuilt the temperature field in-
side the defined region and identified the heat 
transfer coefficient as a crucial stage in the prob-
lem-solving approach. The precision of the esti-
mated solution was determined by minimizing 
the functional in the context of the heat conduc-
tion issue. The researchers highlighted the effec-
tiveness of swarm algorithms in tackling inverse 
issues, with special emphasis on handling input 
errors and parameter selection.

The finite element method (FEM) is extensive-
ly employed in computer simulations for the nu-
merical computation of many phenomena. FEM is 
a robust numerical technique utilized to solve par-
tial differential equations. It is particularly preva-
lent in applications such as the continuous casting 
of steel and numerous other domains [15,16,17]. 
As a result, the authors use the finite element meth-
od in the numerical section of their study.

Conductivity-radiation transient phenomena 
are commonly observed in engineering contexts, 
such as when investigating heat transport in com-
bustion chambers and designing thermal insula-
tion. A number of unidentified variables, such as 

absorption, emissivity, and thermal conductivity, 
frequently define these difficulties. The methodi-
cal process of deducing unknown parameters 
from empirical observations or experimental data 
is referred to as inverse analysis.

The researchers in the paper [18] introduce a 
novel approach to inverse analysis, which aims to 
determine the thermal characteristics of materials 
under transient conductivity-radiation scenarios. 
The method provided in this study is also founded 
upon the finite element method. The researchers 
also utilized the genetic algorithm (GA) and sto-
chastic optimization tool, to investigate and de-
termine the optimal values for thermal character-
istics. The study demonstrates that the approach 
described in this research is capable of accurately 
and consistently estimating unknown factors us-
ing test data. Fourier’s law is a commonly used 
theoretical framework for studying the transfer 
of heat in solid materials. Nevertheless, Fourier’s 
law does not hold true in several scenarios, in-
cluding cases involving significant temperature 
gradients or materials exhibiting non-uniform 
characteristics. It is crucial to use a more compre-
hensive model, such as Non-Fourier heat conduc-
tion, in cases like these.

The authors of the study [19] introduce a 
methodology for inverse analysis that aims to es-
timate parameters in systems governed by non-
Fourier’s law. As in the previous case, the ap-
proach is founded upon the FEM and the GA. The 
writers proved the efficacy of the approach utiliz-
ing in the context of the 2D non-Fourier problem 
of conductivity and radiation. The researchers 
demonstrated that the proposed methodology can 
reliably estimate parameters associated with the 
mentioned law based on experimental data.

The utilization of AI algorithms and their sub-
sequent implementations in domains such as heat 
conduction exemplify the capacity for ground-
breaking solutions across diverse disciplines. The 
ongoing advancement and exploration of AI ap-
proaches, such as swarm algorithms, in conjunc-
tion with mathematical models in the field of heat 
transfer and other related areas, will persistently 
propel scientific progress and create novel oppor-
tunities for further research and development.

Based on preliminary research [20, 21, 22], it 
was found that both ABC and ACO optimization 
algorithms achieve good results in reconstructing 
the heat conduction coefficient of the separation 
layer. Now, the authors are asking if increasing 
the population size makes sense and what impact 



352

Advances in Science and Technology Research Journal 2024, 18(2), 349–364

it might have on the final results. Therefore, it is 
essential to carefully balance the population size 
with the desired level of accuracy and available 
resources. Increasing the number of individuals 
in a population can affect the efficiency of algo-
rithms, but there is a limit beyond which the ben-
efits may be marginal or even invisible. With a 
small population, there is a risk of getting stuck 
in local minima, limiting the algorithm’s ability 
to find an optimal solution. On the other hand, too 
large a population can result in excessive use of 
computing resources, which can be inefficient in 
terms of time and computing power. One way to 
accelerate the calculations was to consider only 
one-fourth of the cast-mold system due to the axi-
symmetric geometry. Increasing the number of 
individuals in the population can also adversely 
affect the computation time of the algorithm, 
which can be particularly important in the case 
of a large-scale problem. However, the final deci-
sion on the optimal number of individuals in the 
population should be based on consideration of 
the specifics of the problem under study, avail-
able computational resources, and the evaluation 
of experimental results.

This article examines the suitability and ef-
ficiency of swarm intelligence algorithms, spe-
cifically the artificial bee colony and ant colony 
optimization, for optimizing continuous bound-
ary conditions. Our study aims to rebuild the heat 
transfer coefficient for the thermally conductive 
layer within a specific range and evaluate the 
accuracy of these estimations using numerical 
simulations. To the best authors’ knowledge, this 
is one of the initial instances linking swarm al-
gorithms with reconstruction selected thermal pa-
rameters in a continuous boundary condition.

In the subsequent sections of the article, three 
main research areas are presented sequentially. 
The first one involves the mathematical model 
of heat conduction, which serves as the basis for 
analyzing thermal processes in the studied sys-
tems. The second part goes into more detail about 
the model and how the ABC and ACO algorithms 
work. These algorithms are used to find the best 
solutions for designed systems. The third area 
shows how to use special software for numerical 
modeling. This software lets you check and un-
derstand the results of models that have already 
been made, which makes it easier to get a full 
picture of the processes that were studied. The 
entirety is summarized with conclusions drawn 
from the conducted research.

MATHEMATICAL MODEL

Heat transfer

Transient heat conduction is a phenomenon 
that takes place when bodies undergo heating or 
cooling processes in their attempt to attain ther-
mal equilibrium with their surrounding environ-
ment. The process of heat transfer that occurs 
among parts of body that are in contact with one 
another is referred to as conduction. The subse-
quent equation delineates the mathematical repre-
sentation of conduction in a singular body:

 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ∙ (−𝜆𝜆𝛻𝛻𝜆𝜆) = 𝑄𝑄                                               (1) 

 
𝜆𝜆(𝑟𝑟, 𝑡𝑡)𝜕𝜕 = 𝜆𝜆0(𝑟𝑟)                                               (2) 
 
𝛤𝛤𝐴𝐴: 𝜆𝜆 = 𝜆𝜆𝑧𝑧                                            (3) 
 
𝛤𝛤𝐵𝐵: 𝑞𝑞 = (𝑞𝑞𝑧𝑧)                                            (4) 
 
𝛤𝛤𝐶𝐶: 𝑞𝑞 = 𝛼𝛼(𝜆𝜆 − 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒)                                (5) 
 
𝜅𝜅 = 𝜆𝜆𝑝𝑝

𝛿𝛿                                                    (6) 
 

𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖 = {
1

1+𝐽𝐽(𝑥𝑥𝑖𝑖)
𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0,

1 + 𝑖𝑖(𝑥𝑥𝑖𝑖) ∨ 𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0
}                                (7) 

 
𝑝𝑝𝑖𝑖 =

𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖𝑆𝑆𝑆𝑆
𝑗𝑗=1

, 𝑓𝑓 = 1,… , 𝑆𝑆𝑆𝑆                                           (8) 

 
𝑣𝑣𝑖𝑖
𝑗𝑗 = 𝑥𝑥𝑖𝑖

𝑗𝑗 + 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖
𝑗𝑗 − 𝑥𝑥𝑘𝑘

𝑗𝑗)                                            (9) 
 

𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) =
[𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛽𝛽

∑ [𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛽𝛽′
𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

, 𝑓𝑓 = 1,… , 𝐷𝐷, 𝑗𝑗 = 1, … , 𝑅𝑅                  (10) 

 
𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡) + ∑ ∆𝑀𝑀

𝑘𝑘=1 𝜏𝜏𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) + 𝜌𝜌∆𝜏𝜏𝑖𝑖𝑗𝑗𝑏𝑏𝑒𝑒𝑏𝑏𝜕𝜕(𝑡𝑡)                    (11) 
 
𝑖𝑖(𝜅𝜅) = ∑ ∑ (𝜆𝜆𝑖𝑖𝑗𝑗 − 𝑈𝑈𝑖𝑖𝑗𝑗)

2𝑁𝑁2
𝑗𝑗=1

𝑁𝑁1
𝑖𝑖=1                                     (12) 

 (1)

where: ρ  – material’s density [kg/m3], Q – the 
capacity of internal heat sources [W/
m3] (in this paper  due to lack of such 
sources), ∇ – differential nabla operator, 
T – temperature [K], c – specific heat [J/
(kg·K)], and ∂T/∂t is the time derivative 
of temperature.

It is customary in foundry engineering to use 
Eq. 1 to describe the heat flow during the cool-
ing of castings. The cooling rate determines the 
properties of the final product; hence, determin-
ing accurate parameters is crucial from the engi-
neer’s perspective. The subject under consider-
ation pertains to initial-boundary value problems, 
necessitating the inclusion of suitable initial and 
boundary conditions. The authors employed Cau-
chy conditions as the initial conditions, wherein 
specified temperature values are assigned at the 
beginning moment. The initial time, indicated as 
, is equal to zero seconds and is required to calcu-
late the beginning temperature distribution [23]:
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where: r is the field vector at a given point.

There are four distinct categories of boundary 
conditions that are linked to the phenomenon of 
heat transfer:
 • the first form of boundary condition (Dirich-

let) specifies that the temperature distribution  
(TZ) is given on the boundary ΓA of area Ω 
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𝑝𝑝𝑖𝑖 =

𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖𝑆𝑆𝑆𝑆
𝑗𝑗=1

, 𝑓𝑓 = 1,… , 𝑆𝑆𝑆𝑆                                           (8) 

 
𝑣𝑣𝑖𝑖
𝑗𝑗 = 𝑥𝑥𝑖𝑖

𝑗𝑗 + 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖
𝑗𝑗 − 𝑥𝑥𝑘𝑘

𝑗𝑗)                                            (9) 
 

𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) =
[𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛽𝛽

∑ [𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛽𝛽′
𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

, 𝑓𝑓 = 1,… , 𝐷𝐷, 𝑗𝑗 = 1, … , 𝑅𝑅                  (10) 

 
𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡) + ∑ ∆𝑀𝑀

𝑘𝑘=1 𝜏𝜏𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) + 𝜌𝜌∆𝜏𝜏𝑖𝑖𝑗𝑗𝑏𝑏𝑒𝑒𝑏𝑏𝜕𝜕(𝑡𝑡)                    (11) 
 
𝑖𝑖(𝜅𝜅) = ∑ ∑ (𝜆𝜆𝑖𝑖𝑗𝑗 − 𝑈𝑈𝑖𝑖𝑗𝑗)

2𝑁𝑁2
𝑗𝑗=1

𝑁𝑁1
𝑖𝑖=1                                     (12) 

  (3)

 • the second form of boundary condition (von 
Neumann) specifies that heat flux is known on 
the boundary ΓB of area Ω

 

𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ∙ (−𝜆𝜆𝛻𝛻𝜆𝜆) = 𝑄𝑄                                               (1) 

 
𝜆𝜆(𝑟𝑟, 𝑡𝑡)𝜕𝜕 = 𝜆𝜆0(𝑟𝑟)                                               (2) 
 
𝛤𝛤𝐴𝐴: 𝜆𝜆 = 𝜆𝜆𝑧𝑧                                            (3) 
 
𝛤𝛤𝐵𝐵: 𝑞𝑞 = (𝑞𝑞𝑧𝑧)                                            (4) 
 
𝛤𝛤𝐶𝐶: 𝑞𝑞 = 𝛼𝛼(𝜆𝜆 − 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒)                                (5) 
 
𝜅𝜅 = 𝜆𝜆𝑝𝑝

𝛿𝛿                                                    (6) 
 

𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖 = {
1

1+𝐽𝐽(𝑥𝑥𝑖𝑖)
𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0,

1 + 𝑖𝑖(𝑥𝑥𝑖𝑖) ∨ 𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0
}                                (7) 

 
𝑝𝑝𝑖𝑖 =

𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖𝑆𝑆𝑆𝑆
𝑗𝑗=1

, 𝑓𝑓 = 1,… , 𝑆𝑆𝑆𝑆                                           (8) 

 
𝑣𝑣𝑖𝑖
𝑗𝑗 = 𝑥𝑥𝑖𝑖

𝑗𝑗 + 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖
𝑗𝑗 − 𝑥𝑥𝑘𝑘

𝑗𝑗)                                            (9) 
 

𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) =
[𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛽𝛽

∑ [𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛽𝛽′
𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

, 𝑓𝑓 = 1,… , 𝐷𝐷, 𝑗𝑗 = 1, … , 𝑅𝑅                  (10) 

 
𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡) + ∑ ∆𝑀𝑀

𝑘𝑘=1 𝜏𝜏𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) + 𝜌𝜌∆𝜏𝜏𝑖𝑖𝑗𝑗𝑏𝑏𝑒𝑒𝑏𝑏𝜕𝜕(𝑡𝑡)                    (11) 
 
𝑖𝑖(𝜅𝜅) = ∑ ∑ (𝜆𝜆𝑖𝑖𝑗𝑗 − 𝑈𝑈𝑖𝑖𝑗𝑗)

2𝑁𝑁2
𝑗𝑗=1

𝑁𝑁1
𝑖𝑖=1                                     (12) 

 (4)
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 • the third form of boundary condition (New-
ton’s or Robin’s) specifies that heat exchange 
with the environment occurs on the border ΓC 
of the region Ω:

 

𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ∙ (−𝜆𝜆𝛻𝛻𝜆𝜆) = 𝑄𝑄                                               (1) 

 
𝜆𝜆(𝑟𝑟, 𝑡𝑡)𝜕𝜕 = 𝜆𝜆0(𝑟𝑟)                                               (2) 
 
𝛤𝛤𝐴𝐴: 𝜆𝜆 = 𝜆𝜆𝑧𝑧                                            (3) 
 
𝛤𝛤𝐵𝐵: 𝑞𝑞 = (𝑞𝑞𝑧𝑧)                                            (4) 
 
𝛤𝛤𝐶𝐶: 𝑞𝑞 = 𝛼𝛼(𝜆𝜆 − 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒)                                (5) 
 
𝜅𝜅 = 𝜆𝜆𝑝𝑝

𝛿𝛿                                                    (6) 
 

𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖 = {
1

1+𝐽𝐽(𝑥𝑥𝑖𝑖)
𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0,

1 + 𝑖𝑖(𝑥𝑥𝑖𝑖) ∨ 𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0
}                                (7) 

 
𝑝𝑝𝑖𝑖 =

𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖𝑆𝑆𝑆𝑆
𝑗𝑗=1

, 𝑓𝑓 = 1,… , 𝑆𝑆𝑆𝑆                                           (8) 

 
𝑣𝑣𝑖𝑖
𝑗𝑗 = 𝑥𝑥𝑖𝑖

𝑗𝑗 + 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖
𝑗𝑗 − 𝑥𝑥𝑘𝑘

𝑗𝑗)                                            (9) 
 

𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) =
[𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛽𝛽

∑ [𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛽𝛽′
𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

, 𝑓𝑓 = 1,… , 𝐷𝐷, 𝑗𝑗 = 1, … , 𝑅𝑅                  (10) 

 
𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡) + ∑ ∆𝑀𝑀

𝑘𝑘=1 𝜏𝜏𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) + 𝜌𝜌∆𝜏𝜏𝑖𝑖𝑗𝑗𝑏𝑏𝑒𝑒𝑏𝑏𝜕𝜕(𝑡𝑡)                    (11) 
 
𝑖𝑖(𝜅𝜅) = ∑ ∑ (𝜆𝜆𝑖𝑖𝑗𝑗 − 𝑈𝑈𝑖𝑖𝑗𝑗)

2𝑁𝑁2
𝑗𝑗=1

𝑁𝑁1
𝑖𝑖=1                                     (12) 

 (5)

where: α is the heat transfer coefficient of ex-
change with the environment, T is the 
temperature at the boundary between the 
body and ΓC, Tenv is the ambient tempera-
ture, q denotes the heat flux inflow (T < 
Tenv into the area Ω or outflow T > Tenv 
from the area Ω);

 • the fourth form of boundary condition (conti-
nuity condition) specifies that heat exchange 
occurs on the boundary ΓD separating areas Ω1 
and Ω2. Two cases are possible here: 
− ideal contact between areas,
− lack of ideal contact – heat exchange through 

the separation layer describe κ coefficient:

 

𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ∙ (−𝜆𝜆𝛻𝛻𝜆𝜆) = 𝑄𝑄                                               (1) 

 
𝜆𝜆(𝑟𝑟, 𝑡𝑡)𝜕𝜕 = 𝜆𝜆0(𝑟𝑟)                                               (2) 
 
𝛤𝛤𝐴𝐴: 𝜆𝜆 = 𝜆𝜆𝑧𝑧                                            (3) 
 
𝛤𝛤𝐵𝐵: 𝑞𝑞 = (𝑞𝑞𝑧𝑧)                                            (4) 
 
𝛤𝛤𝐶𝐶: 𝑞𝑞 = 𝛼𝛼(𝜆𝜆 − 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒)                                (5) 
 
𝜅𝜅 = 𝜆𝜆𝑝𝑝

𝛿𝛿                                                    (6) 
 

𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖 = {
1

1+𝐽𝐽(𝑥𝑥𝑖𝑖)
𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0,

1 + 𝑖𝑖(𝑥𝑥𝑖𝑖) ∨ 𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0
}                                (7) 

 
𝑝𝑝𝑖𝑖 =

𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖𝑆𝑆𝑆𝑆
𝑗𝑗=1

, 𝑓𝑓 = 1,… , 𝑆𝑆𝑆𝑆                                           (8) 

 
𝑣𝑣𝑖𝑖
𝑗𝑗 = 𝑥𝑥𝑖𝑖

𝑗𝑗 + 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖
𝑗𝑗 − 𝑥𝑥𝑘𝑘

𝑗𝑗)                                            (9) 
 

𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) =
[𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛽𝛽

∑ [𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛽𝛽′
𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

, 𝑓𝑓 = 1,… , 𝐷𝐷, 𝑗𝑗 = 1, … , 𝑅𝑅                  (10) 

 
𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡) + ∑ ∆𝑀𝑀

𝑘𝑘=1 𝜏𝜏𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) + 𝜌𝜌∆𝜏𝜏𝑖𝑖𝑗𝑗𝑏𝑏𝑒𝑒𝑏𝑏𝜕𝜕(𝑡𝑡)                    (11) 
 
𝑖𝑖(𝜅𝜅) = ∑ ∑ (𝜆𝜆𝑖𝑖𝑗𝑗 − 𝑈𝑈𝑖𝑖𝑗𝑗)

2𝑁𝑁2
𝑗𝑗=1

𝑁𝑁1
𝑖𝑖=1                                     (12) 

  (6)

where: λp  is the thermal conductivity coefficient 
of the separation layer, and δ is the thick-
ness of that layer [23,24].

Artificial intelligence algorithms 

Bee and ant algorithms are categorized as 
swarm algorithms and are classified within the 
domain of metaheuristic algorithms. A meta-
heuristic refers to a broad computational prob-
lem-solving approach that may be applied to 
address a wide range of problems as defined by 
the terms specified inside the algorithm. Fre-
quently, these models draw upon comparisons 
to tangible phenomena in the fields of physics, 
chemistry, and biology, which can be analyzed 
via the lens of optimization principles [25]. Me-
taheuristics make it possible to find solutions 
that come close to the optimum, even without 
specific knowledge of a particular optimization 
problem. These methods show a fast flexibil-
ity with respect to constraints and the size of 
the solution space, without depending on the 
number of variables. Gerardo et al. in their in-
dividual articles [26] and Hackwood [5] have 
proposed the notion of swarm intelligence. 
The algorithms were developed on the basis of 
practical studies of natural processes, such as 
the collective behavior of bird flocks, ant colo-
nies, worm communities and bee swarms. 

Bee algorithm

Bee algorithm consists of two distinct groups 
of bees, forming an artificial bee colony. The 
colony’s first part consists of worker bees. The 
latter part of the swarm has a proportionate num-
ber of bees that are not involved in any type of 
occupation.

One of the underlying premises of the ABC 
algorithm refers to the count of bees that are 
not employed in the population is equivalent to 
the population of working bees. This implies 
that each bee is associated with a singular food 
source within a specific environment. When em-
ployed bees deplete a food source, they become 
unemployed.

An effective solution to the problem encoun-
tered in the bee algorithm is the optimization of feed 
supply locations. The amount of nectar present in 
the food source directly impacts the effectiveness 
of the remedy, thereby determining its quality. The 
first phase of the bee algorithm entails the stochas-
tic creation of the starting population () and the 
exploration of a certain number of food sources (). 
For each iteration  in the range  to , a solution is 
considered equivalent to the location of the food 
supply. The iterations are of fundamental impor-
tance in the process of updating the solution since 
they involve many transitions that determine the 
coordinates of the source location after initiation. 
The employed bee’s adjustment of the solution is 
contingent upon local knowledge, while the evalu-
ation of the new source is dependent on the quanti-
ty of nectar available. The recollection of the food 
source’s updated location is contingent upon the 
condition that the quantity of nectar in subsequent 
rounds surpasses the value seen in earlier itera-
tions. Alternatively, the preceding state is retained. 
Thus, there is a mutual exchange of information 
between the worker and the unemployed bees. In 
the context of bee behavior, worker bees engage 
in a process known as foraging, during which they 
collect nectar from various sources. Subsequently, 
these employed bees engage in a type of commu-
nication wherein they share information regarding 
the quantity of nectar obtained. This information 
exchange is facilitated through the utilization of a 
formula that enables the calculation of the afore-
mentioned nectar quantity:

   

𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ∙ (−𝜆𝜆𝛻𝛻𝜆𝜆) = 𝑄𝑄                                               (1) 

 
𝜆𝜆(𝑟𝑟, 𝑡𝑡)𝜕𝜕 = 𝜆𝜆0(𝑟𝑟)                                               (2) 
 
𝛤𝛤𝐴𝐴: 𝜆𝜆 = 𝜆𝜆𝑧𝑧                                            (3) 
 
𝛤𝛤𝐵𝐵: 𝑞𝑞 = (𝑞𝑞𝑧𝑧)                                            (4) 
 
𝛤𝛤𝐶𝐶: 𝑞𝑞 = 𝛼𝛼(𝜆𝜆 − 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒)                                (5) 
 
𝜅𝜅 = 𝜆𝜆𝑝𝑝

𝛿𝛿                                                    (6) 
 

𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖 = {
1

1+𝐽𝐽(𝑥𝑥𝑖𝑖)
𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0,

1 + 𝑖𝑖(𝑥𝑥𝑖𝑖) ∨ 𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0
}                                (7) 

 
𝑝𝑝𝑖𝑖 =

𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖𝑆𝑆𝑆𝑆
𝑗𝑗=1

, 𝑓𝑓 = 1,… , 𝑆𝑆𝑆𝑆                                           (8) 

 
𝑣𝑣𝑖𝑖
𝑗𝑗 = 𝑥𝑥𝑖𝑖

𝑗𝑗 + 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖
𝑗𝑗 − 𝑥𝑥𝑘𝑘

𝑗𝑗)                                            (9) 
 

𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) =
[𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛽𝛽

∑ [𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛽𝛽′
𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

, 𝑓𝑓 = 1,… , 𝐷𝐷, 𝑗𝑗 = 1, … , 𝑅𝑅                  (10) 

 
𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡) + ∑ ∆𝑀𝑀

𝑘𝑘=1 𝜏𝜏𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) + 𝜌𝜌∆𝜏𝜏𝑖𝑖𝑗𝑗𝑏𝑏𝑒𝑒𝑏𝑏𝜕𝜕(𝑡𝑡)                    (11) 
 
𝑖𝑖(𝜅𝜅) = ∑ ∑ (𝜆𝜆𝑖𝑖𝑗𝑗 − 𝑈𝑈𝑖𝑖𝑗𝑗)

2𝑁𝑁2
𝑗𝑗=1

𝑁𝑁1
𝑖𝑖=1                                     (12) 

 (7) 

where: J(x│i) the quality of a given source xi.
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The selection of food source by bees is con-
tingent upon the quantity of nectar fitj present 
in the food source. The primary requirements 
for selection by an unemployed bee is the prob-
ability value pi associated with picking a food 
source, which is determined using the following 
formula [7, 27]:

 

𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ∙ (−𝜆𝜆𝛻𝛻𝜆𝜆) = 𝑄𝑄                                               (1) 

 
𝜆𝜆(𝑟𝑟, 𝑡𝑡)𝜕𝜕 = 𝜆𝜆0(𝑟𝑟)                                               (2) 
 
𝛤𝛤𝐴𝐴: 𝜆𝜆 = 𝜆𝜆𝑧𝑧                                            (3) 
 
𝛤𝛤𝐵𝐵: 𝑞𝑞 = (𝑞𝑞𝑧𝑧)                                            (4) 
 
𝛤𝛤𝐶𝐶: 𝑞𝑞 = 𝛼𝛼(𝜆𝜆 − 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒)                                (5) 
 
𝜅𝜅 = 𝜆𝜆𝑝𝑝

𝛿𝛿                                                    (6) 
 

𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖 = {
1

1+𝐽𝐽(𝑥𝑥𝑖𝑖)
𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0,

1 + 𝑖𝑖(𝑥𝑥𝑖𝑖) ∨ 𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0
}                                (7) 

 
𝑝𝑝𝑖𝑖 =

𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖𝑆𝑆𝑆𝑆
𝑗𝑗=1

, 𝑓𝑓 = 1,… , 𝑆𝑆𝑆𝑆                                           (8) 

 
𝑣𝑣𝑖𝑖
𝑗𝑗 = 𝑥𝑥𝑖𝑖

𝑗𝑗 + 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖
𝑗𝑗 − 𝑥𝑥𝑘𝑘

𝑗𝑗)                                            (9) 
 

𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) =
[𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛽𝛽

∑ [𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛽𝛽′
𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

, 𝑓𝑓 = 1,… , 𝐷𝐷, 𝑗𝑗 = 1, … , 𝑅𝑅                  (10) 

 
𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡) + ∑ ∆𝑀𝑀

𝑘𝑘=1 𝜏𝜏𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) + 𝜌𝜌∆𝜏𝜏𝑖𝑖𝑗𝑗𝑏𝑏𝑒𝑒𝑏𝑏𝜕𝜕(𝑡𝑡)                    (11) 
 
𝑖𝑖(𝜅𝜅) = ∑ ∑ (𝜆𝜆𝑖𝑖𝑗𝑗 − 𝑈𝑈𝑖𝑖𝑗𝑗)

2𝑁𝑁2
𝑗𝑗=1

𝑁𝑁1
𝑖𝑖=1                                     (12) 

  (8)

Subsequently, the food source coordinates vij 
are updated in accordance with the given relation:

 

𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ∙ (−𝜆𝜆𝛻𝛻𝜆𝜆) = 𝑄𝑄                                               (1) 

 
𝜆𝜆(𝑟𝑟, 𝑡𝑡)𝜕𝜕 = 𝜆𝜆0(𝑟𝑟)                                               (2) 
 
𝛤𝛤𝐴𝐴: 𝜆𝜆 = 𝜆𝜆𝑧𝑧                                            (3) 
 
𝛤𝛤𝐵𝐵: 𝑞𝑞 = (𝑞𝑞𝑧𝑧)                                            (4) 
 
𝛤𝛤𝐶𝐶: 𝑞𝑞 = 𝛼𝛼(𝜆𝜆 − 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒)                                (5) 
 
𝜅𝜅 = 𝜆𝜆𝑝𝑝

𝛿𝛿                                                    (6) 
 

𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖 = {
1

1+𝐽𝐽(𝑥𝑥𝑖𝑖)
𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0,

1 + 𝑖𝑖(𝑥𝑥𝑖𝑖) ∨ 𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0
}                                (7) 

 
𝑝𝑝𝑖𝑖 =

𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖𝑆𝑆𝑆𝑆
𝑗𝑗=1

, 𝑓𝑓 = 1,… , 𝑆𝑆𝑆𝑆                                           (8) 

 
𝑣𝑣𝑖𝑖
𝑗𝑗 = 𝑥𝑥𝑖𝑖

𝑗𝑗 + 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖
𝑗𝑗 − 𝑥𝑥𝑘𝑘

𝑗𝑗)                                            (9) 
 

𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) =
[𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛽𝛽

∑ [𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛽𝛽′
𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

, 𝑓𝑓 = 1,… , 𝐷𝐷, 𝑗𝑗 = 1, … , 𝑅𝑅                  (10) 

 
𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡) + ∑ ∆𝑀𝑀

𝑘𝑘=1 𝜏𝜏𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) + 𝜌𝜌∆𝜏𝜏𝑖𝑖𝑗𝑗𝑏𝑏𝑒𝑒𝑏𝑏𝜕𝜕(𝑡𝑡)                    (11) 
 
𝑖𝑖(𝜅𝜅) = ∑ ∑ (𝜆𝜆𝑖𝑖𝑗𝑗 − 𝑈𝑈𝑖𝑖𝑗𝑗)

2𝑁𝑁2
𝑗𝑗=1

𝑁𝑁1
𝑖𝑖=1                                     (12) 

  (9)

where: k ϵ {1,2,...,SN} and ϕij ϵ [-1,1] is a random 
number and j ϵ{1,2,...,D. 

A vector of xi is a solution vector and the D 
factor represents the quantity of optimization cri-
teria utilized in the bee algorithm. The parameter  
must be distinct from i.

Ant algorithm

The ant algorithm is commonly employed in 
the context of graph theory to address the task of 
identifying the shortest path. This approach draws 
inspiration from the behavior of actual ants. The 
search process involves identifying the most ef-
ficient route connecting the anthill and the food 
source, with the objective of minimizing the dis-
tance traveled. The ants exhibit stochastic be-
havior in selecting the direction of their foraging 
activities while simultaneously depositing a trail 
of pheromones as they return to the anthill. The 
route on a certain path gradually vanishes if other 
ants fail to visit the road. The ants have a greater 
tendency to choose shorter routes because phero-
mone trails spread more slowly along these roads 
compared to longer ones. It is noteworthy that in 
the context of ant behavior, the phenomenon of 
positive feedback occurs when ants, upon discov-
ering a more favorable path, exhibit an increased 
tendency to utilize it.

The artificial ants exhibit cooperative behav-
ior in order to collaboratively explore and find the 
most effective solution for intricate combinato-
rial issues. While searching for a remedy, there 
is a correlation between the ants and the whole 
knowledge they utilize. The ants collectively de-
velop a shared repertoire of strategies over a peri-
od of time, specifically in the form of the most ef-
ficient routes that guide them towards their objec-
tive. Nevertheless, there are distinctions between 

artificial ants and their natural counterparts. Arti-
ficial ants traverse the edges of the input graph, 
whereas natural ants possess the ability to select 
any path. The efficacy of the solution within the 
ACO algorithm is intricately linked to the trans-
mission of pheromones. An important property 
of a group of ants is that each ant can recognize 
the expected solution throughout each iteration. 
The method yields the optimal solution, which is 
determined by the most efficient ant. The phero-
mone pathway is modified during the course of 
the artificial ant’s exploration when it discovers 
a more optimal route compared to the previously 
constructed one. As a result, future ants have a 
higher propensity to select specific edges within 
the graph. The process of tracing trace-reinforced 
ants is subject to the influence of the distance 
between the anthill and the foraging region, as 
shown by the path length in the graph. The like-
lihood of a subsequent ant adhering to the path 
established by its predecessor is positively cor-
related with the intensity of the pheromone trail.

The foraging paths of all ants adhere to a set 
of rules. Initially, the nodes that the ant will tra-
verse are randomly generated, with each ant hav-
ing a unique set of nodes. The number of ants is 
denoted by M, and each ant is assigned a distinct 
value of k ranging from 1 to M. The probability pij, 
which represents the likelihood of an ant in node 
i selecting node j, is determined by the equation:

  

𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ∙ (−𝜆𝜆𝛻𝛻𝜆𝜆) = 𝑄𝑄                                               (1) 

 
𝜆𝜆(𝑟𝑟, 𝑡𝑡)𝜕𝜕 = 𝜆𝜆0(𝑟𝑟)                                               (2) 
 
𝛤𝛤𝐴𝐴: 𝜆𝜆 = 𝜆𝜆𝑧𝑧                                            (3) 
 
𝛤𝛤𝐵𝐵: 𝑞𝑞 = (𝑞𝑞𝑧𝑧)                                            (4) 
 
𝛤𝛤𝐶𝐶: 𝑞𝑞 = 𝛼𝛼(𝜆𝜆 − 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒)                                (5) 
 
𝜅𝜅 = 𝜆𝜆𝑝𝑝

𝛿𝛿                                                    (6) 
 

𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖 = {
1

1+𝐽𝐽(𝑥𝑥𝑖𝑖)
𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0,

1 + 𝑖𝑖(𝑥𝑥𝑖𝑖) ∨ 𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0
}                                (7) 

 
𝑝𝑝𝑖𝑖 =

𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖𝑆𝑆𝑆𝑆
𝑗𝑗=1

, 𝑓𝑓 = 1,… , 𝑆𝑆𝑆𝑆                                           (8) 

 
𝑣𝑣𝑖𝑖
𝑗𝑗 = 𝑥𝑥𝑖𝑖

𝑗𝑗 + 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖
𝑗𝑗 − 𝑥𝑥𝑘𝑘

𝑗𝑗)                                            (9) 
 

𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) =
[𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛽𝛽

∑ [𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛽𝛽′
𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

, 𝑓𝑓 = 1,… , 𝐷𝐷, 𝑗𝑗 = 1, … , 𝑅𝑅                  (10) 

 
𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡) + ∑ ∆𝑀𝑀

𝑘𝑘=1 𝜏𝜏𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) + 𝜌𝜌∆𝜏𝜏𝑖𝑖𝑗𝑗𝑏𝑏𝑒𝑒𝑏𝑏𝜕𝜕(𝑡𝑡)                    (11) 
 
𝑖𝑖(𝜅𝜅) = ∑ ∑ (𝜆𝜆𝑖𝑖𝑗𝑗 − 𝑈𝑈𝑖𝑖𝑗𝑗)

2𝑁𝑁2
𝑗𝑗=1

𝑁𝑁1
𝑖𝑖=1                                     (12) 

  (10)

𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ∙ (−𝜆𝜆𝛻𝛻𝜆𝜆) = 𝑄𝑄                                               (1) 

 
𝜆𝜆(𝑟𝑟, 𝑡𝑡)𝜕𝜕 = 𝜆𝜆0(𝑟𝑟)                                               (2) 
 
𝛤𝛤𝐴𝐴: 𝜆𝜆 = 𝜆𝜆𝑧𝑧                                            (3) 
 
𝛤𝛤𝐵𝐵: 𝑞𝑞 = (𝑞𝑞𝑧𝑧)                                            (4) 
 
𝛤𝛤𝐶𝐶: 𝑞𝑞 = 𝛼𝛼(𝜆𝜆 − 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒)                                (5) 
 
𝜅𝜅 = 𝜆𝜆𝑝𝑝

𝛿𝛿                                                    (6) 
 

𝑓𝑓𝑓𝑓𝑡𝑡𝑖𝑖 = {
1

1+𝐽𝐽(𝑥𝑥𝑖𝑖)
𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0,

1 + 𝑖𝑖(𝑥𝑥𝑖𝑖) ∨ 𝑓𝑓𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 0
}                                (7) 

 
𝑝𝑝𝑖𝑖 =

𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝜕𝜕𝑖𝑖𝑆𝑆𝑆𝑆
𝑗𝑗=1

, 𝑓𝑓 = 1,… , 𝑆𝑆𝑆𝑆                                           (8) 

 
𝑣𝑣𝑖𝑖
𝑗𝑗 = 𝑥𝑥𝑖𝑖

𝑗𝑗 + 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖
𝑗𝑗 − 𝑥𝑥𝑘𝑘

𝑗𝑗)                                            (9) 
 

𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) =
[𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛽𝛽

∑ [𝜏𝜏𝑖𝑖𝑗𝑗(𝜕𝜕)]
𝛼𝛼[𝜂𝜂𝑖𝑖𝑗𝑗(𝜕𝜕)]

𝛽𝛽′
𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

, 𝑓𝑓 = 1,… , 𝐷𝐷, 𝑗𝑗 = 1, … , 𝑅𝑅                  (10) 

 
𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡) + ∑ ∆𝑀𝑀

𝑘𝑘=1 𝜏𝜏𝑖𝑖𝑗𝑗𝑘𝑘 (𝑡𝑡) + 𝜌𝜌∆𝜏𝜏𝑖𝑖𝑗𝑗𝑏𝑏𝑒𝑒𝑏𝑏𝜕𝜕(𝑡𝑡)                    (11) 
 
𝑖𝑖(𝜅𝜅) = ∑ ∑ (𝜆𝜆𝑖𝑖𝑗𝑗 − 𝑈𝑈𝑖𝑖𝑗𝑗)

2𝑁𝑁2
𝑗𝑗=1

𝑁𝑁1
𝑖𝑖=1                                     (12) 

where: η – is the heuristic function, the constants  
α and β dictate the influence of phero-
mone values and heuristic values on the 
decision-making process kth ant, G repre-
sents a route within the graph that can be 
traveled by kth ant, τij and τϵ represent the 
pheromone array, which stores informa-
tion on the remaining amount of phero-
mone, t is the time step iteration, R is 
node in the graph. 

The optimal strategy for retaining a route in 
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where: value ∆τij
k is the amount of pheromone 

left by the kth ant on the movement path, 
∆τij

best is the amount of pheromone left by 
the best ant on the path of movement, ρ 
is the evaporation coefficient in the range 
(0–1), which determines what part of the 
pheromone is to remain (0 – evaporates 
everything, 1 – nothing evaporates).

During the execution of the algorithm, a 
mechanism of pheromone evaporation is incor-
porated to prevent the uncontrolled prolifera-
tion of the pheromone trail. The roulette wheel 
approach is used to introduce unpredictability in 
the node selection process for each ant during the 
early iterations. The probability calculated using 
equation (Eq. 10) is considered in the random-
ized selection procedure. The optimal route, as 
determined by the highest quality index, is iden-
tified along the trajectory connecting the anthill 
and the feeding area subsequent to the initial tra-
versal of all ants. The trajectory of an ant changes 
when the quality indicator is set, but only if it has 
reached the highest grade. The ideal pathway for 
traversal is formed by probabilistically selecting 
novel nodes inside each stratum of the network. 
The path nodes serve as an approximation for the 
nodes present in each layer, specifically those that 
possess the highest quality index. Subsequently, 
the pheromone array of each iteration of calcula-
tion is updated according to the formula (Eq.11). 
After completing the aforementioned task, the 
probability calculation is initiated, using the es-
tablished pheromone array , and then advancing 
to subsequent iterations of computation [28,29].

Assumption of the research

The analysis focuses on the physical phe-
nomenon of heat conduction, specifically the 
continuity boundary condition, which makes the 
problem at hand an important challenge for en-
gineers and researchers in these two fields. The 
study focused on analyzing the impact of swarm 
algorithms’ input parameters on computer simu-
lations of heat conduction. The results obtained 
are an important contribution to the development 
of the field, allowing us to better understand the 
dynamics of thermomechanical processes using 
advanced computational techniques based on ar-
tificial intelligence.

The purpose of this paper is to analyze in 
detail the results obtained from the numerical 

experiment, with a particular focus on the ques-
tion of whether increasing the population size 
used by the bee and ant algorithms may have va-
lidity and what effects it may have. Attention will 
also be paid to the effect of this variable on the 
reconstruction of the parameter κ – the heat con-
duction coefficient through the separation layer, 
by these algorithms, which plays a crucial role in 
the analyzed process.

This work’s presented results and conclusions 
are intended not only to increase knowledge in 
the field of thermo-mechanics and artificial intel-
ligence algorithms but also to provide practical 
guidance for optimizing numerical processes in 
the context of thermal conductivity.

The GMSH software was used to construct 
a model of geometry and a finite element mesh 
[30]. The numerical calculations in this study use 
the TalyFEM package and algorithms built in the 
C++ computer language [31]. The TalyFEM tool 
utilizes the finite element method to simulate spe-
cific physical processes. Utilizing data structures 
from the PETSc library, such as vectors, matrices, 
and pre-existing solvers, ensures good calculation 
performance [32]. The experiments were con-
ducted using a computer system, running Linux, 
with an Ubuntu version.

Implementing swarming algorithms in Python 
has been carried out, with adaptations made to 
enable their integration with the TalyFEM frame-
work [33]. The error reduction in the approxima-
tion solution was accomplished by employing 
the ABC and ACO algorithms, respectively. The 
reference temperature values were determined us-
ing a constant reference heat transfer coefficient, 
denoted as , and the temperatures recorded during 
the simulation.

Simulations were conducted for a single  pa-
rameter. The research used a mesh of the finite ele-
ments divided into 576 nodes. Optimizing coeffi-
cients is undertaken within a specific range of val-
ues, specifically between 900 and 1500 [W/m2K]. 
The referencing temperatures were determined for 
the referencing coefficient of  = 1000 [W/m2K].

The simulations were conducted for the Al-
2%Cu alloy. The material properties are displayed 

Table 1. Material properties
Parameter Cast Casting mold

ρ, [kg/m3] 2824 7500

c, [J/kgK] 1077 620

λ, [W/mK] 262 40
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in Table 1. The initial temperatures for the cast 
and the casting mold were T0 = 960 K and T0 = 
590 K, respectively.

The procedure’s input parameters criterion 
for completing computations was the number of 
iterations, which served as the basis for the arti-
cle’s computations. The algorithm’s convergence 
control was assessed by considering the function-
al value:
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where: i is the number of nodes in the FEM mesh, 
j is the number of time steps, Ni is the 
number of nodes in all node pairs consid-
ered, Nj is the number of time steps, and, 
Tij is the benchmark temperatures gener-
ated at a constant benchmark heat transfer 
coefficient κ and Uij denotes the tempera-
tures obtained during the simulation [34].

The obtained results refer to the layer that 
separates the cast and the casting mold into two 
distinct tessellations, as depicted in (Figure 1). 
The continuity boundary condition in the heat 
conduction model necessitates the presence of 
distinct nodes at the contact between the cast 
mold and the casting mold. The spatial coordi-
nates of the nodes located at the interface between 
the cast and the casting mold are identical, which 
makes it much easier to implement this boundary 
condition in the code.

Figure 1a depicts a quadrilateral (casting) en-
closed within a quadrilateral (mold) that is sepa-
rated by a layer with a heat-conducting coefficient 
of κ. Considering the geometric symmetry, just 
one-fourth of the casting-mold system was con-
sidered. The right and top borders of the casting 

mold were assumed to have a boundary condition 
of the third type; the left and bottom edges of the 
two areas were isolated, and a boundary condition 
of the fourth kind with non-ideal contact was as-
sumed between the areas. In the boundary condi-
tion of the third kind, convective heat exchange 
with the surroundings was assumed, assuming 
that the ambient temperature is Tenv = 300 K, and 
the heat transfer coefficient with the surroundings 
is equal to α = 100 W/(m2K).

RESULTS AND DISCUSSION

The computations were conducted for the bee 
and ant algorithms on a tessellation consisting of 
576 nodes. The populations considered had 5, 10, 
15, and 20 individuals. All calculations were con-
ducted for 6 iterations of ABC or ACO algorithms. 
To optimize the search process and ensure accu-
rate outcomes, the implementation used a charac-
teristic commonly associated with heuristic algo-
rithms, namely the requirement for repeated itera-
tions. The algorithms were ran three times to do the 
computations in each circumstance. Each scenario 
additionally incorporated disturbances of 0%, 2%, 
and 5% with respect to the reference values. 

Perturbations were added to the values of 
temperature within the framework of our compu-
tations. In general, the accuracy of temperature 
measurements using a thermocouple during ex-
perimental procedures is considered to be high. 
It is generally accepted that the measurement ac-
curacy for thermocouples falls within a range of 
plus or minus 2 °C, while the disturbances are 
expected to be within a maximum of 5%. Based 
on empirical evidence, we chose four disturbance 

Figure 1. View of: a) dimensions of the geometry in mm, b) geometry, c) 576-nodes finite element mesh
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values that span from 0 to 5%. When subjected 
to a 5% disturbance, it was observed that the in-
put parameters of the ABC and ACO algorithms 
do not ensure that an optimal solution is achieved 
compared to the referencing value [35].

During our work, we utilized a uniform distri-
bution to represent the disruption, using the ran-
dom uniform function offered by the Python com-
puter language. The distribution of disturbance 
exhibits symmetry, indicating that a temperature 
perturbation of 5% corresponds to a range of 
-2.5% to +2.5%.

In the case of the ABC algorithm in Figure 2, a 
diverse situation can be observed. The number of in-
dividuals of 5 or 10 resulted in outcomes burdened 
with a high value of the standard deviation. Only the 
number of individuals of 15 reduced this value to a 
lower level, and at the number of 20 individuals, the 
standard deviation reached values close to 0.

Figure 3 represents case of the ACO algorithm, 
where the standard deviation for the results of the 
restoration of the  coefficient is low regardless of 
the number of individuals. Only a slight increase 

in the standard deviation is observed when running 
the algorithm with only 5 individuals. For this rea-
son, it can be concluded that the ACO algorithm in 
the study of the effect of the number of individu-
als on the quality of the results gave reproducible 
results from the lower value of 5 individuals, and 
from the number of individuals of 10 it was dif-
ficult to observe an improvement in the results in 
terms of reducing the standard deviation. 

As a summary of the Figure 2 and Figure 
3 discussion, the ACO and ABC algorithms re-
spond differently to increasing the number of 
individuals in the study. While the ACO algo-
rithm reached standard deviation values close to 
zero very quickly, the ABC algorithm needed a 
number of 20 individuals (which is the accepted 
maximum number of individuals in the presented 
study) to reach such standard deviation values.

In the Table 2 we can observe that for both al-
gorithms, as the population size increases, the re-
sults become more stable. For the ACO algorithm, 
the stability of the results is more pronounced 
than for the ABC algorithm. The ABC algorithm 

Figure 2. The standard deviation and mean value of the  coefficient a) 0%, b) 2%, c) 5% noise for algorithm ABC
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for the number of individuals with a 20 standard 
deviation obtains results close to 0, which means 
that the results are very stable. An increase in the 
level of disturbance leads to a deterioration in the 
quality of the results for both algorithms.

For the ABC algorithm, for a perturbation 
level of 5%, the standard deviation is higher com-
pared to a perturbation level of 0%. For the ABC 
algorithm, as the number of individuals increas-
es, the results become more stable and better. 

Figure 3. The standard deviation and mean value of the  coefficient a) 0%, b) 2%, c) 5% noise for algorithm ACO

Table 2. Reconstructed the coefficient κ value and relative error (σ%) for 5, 10, 15, and 20 individuals using ABC 
and ACO algorithms. Computations were conducted for six iterations of bee and ant algorithms

Noise Number of 
individuals

κ (567 nodes) s%

ABC ACO ABC ACO

0%

5 992.972 997.296 1.324 0.260

10 1002.298 999.780 0.433 0.049

15 999.598 1000.129 0.028 0.049

20 1000.645 1000.006 0.028 0.000

2%

5 1004.006 990.001 1.676 0.57

10 998.78 1002.499 0.288 0.238

15 991.5 992.996 0.248 0.031

20 992.904 992.737 0.067 0.006

5%

5 1008.814 1015.067 0.267 0.069

10 1009.4104 1015.39 1.585 0.035

15 1011.438 1014.842 0.367 0.025

20 1014.36 1014.888 0.033 0.009
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An increase in the level of disturbance leads to 
a deterioration in the quality of the results. For 
the ABC algorithm, using as many individuals as 
possible to get stable and good results; in case of 
high disturbance level additional care in choosing 
control, parameters must be taken to ensure the 
quality of results. This is not as necessary for the 
ACO algorithm.

Figure 4 and Figure 5 based on the presented 
graphs, it can be concluded that both algorithms, 
ABC and ACO, provide very accurate recon-
struction of cooling curves. No significant differ-
ences can be seen between the curves obtained 
for the two algorithms. All curves coincide very 
well with the reference temperature. There is no 
clear preference for one of the algorithms. The 

Figure 4. Reconstructed cooling curves in a mold for the ABC algorithm with 
a) 0%, b) 2%, and c) 5% noise of the reference temperature value

Figure 5. Reconstructed cooling curves in a mold for the ACO algorithm with 
a) 0%, b) 2%, and c) 5% noise of the reference temperature value
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accuracy of the results depends on the correctly 
chosen parameters of the algorithms.

Figure 6 and Figure 7 the graphs showing the 
cooling curves for the casting show that the values 
for ABC and for ACO are close to each other and 
to the reference cooling curve. The differences are 
small and do not affect the overall accuracy of the 
simulation. In the case of the graphs showing the 

Figure 6. Reconstructed cooling curves in a cast for the ABC algorithm with 
a) 0%, b) 2%, and c) 5% noise of the reference temperature value

Figure 7. Reconstructed cooling curves in a cast for the ACO algorithm with 
a) 0%, b) 2%, and c) 5% noise of the reference temperature value

cooling curves for the mold, the values for ABC 
and for ACO are also close to each other and to 
the reference cooling curve. The differences are 
even smaller than for the casting. In the case of 
the graphs of the temperature difference curves 
obtained from the reference temperatures, it can 
be seen that the differences between the curves 
for the two algorithms are small.
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Figure 8 and Figure 9 in the first-time step 
for ABC, the difference reached 0.6 K for 5 indi-
viduals after about 15 s, the differences in cooling 
curves shrink to almost zero. In the case of ACO, 
for 5 individuals after the first-time step, the dif-
ference did not exceed 0.25 K, and, as in the case 
of ABC, after about 10 s, the differences in cool-
ing curves shrink to almost zero. Regardless of 

the population size, the differences between the 
observed temperature amplitude and the refer-
ence were less significant for ACO than ABC.

In the case of a 2% disturbance, ACO has a 
larger difference for 5 individuals relative to refer-
ence temperatures than ABC. 20 individuals pres-
ent similar relative results for both algorithms. 
With this disturbance, the smallest differences in 

Figure 8. Differences in cooling curves between reference and reconstructed values of parameter κ in a mold for 
the ABC algorithm with (a) 0%, (b) 2%, and (c) 5% noise of the reference temperature value 

Figure 9. Differences in cooling curves between reference and reconstructed values of parameter κ in a 
mold for the ACO algorithm with (a) 0%, (b) 2%, and (c) 5% noise of the reference temperature value
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cooling curves relative to reference can be ob-
served for 10 individuals for both ABC and ACO. 
In the case of the 5% perturbation, in the initial 
time steps the differences increased to about 1.25 
[K]. For ABC, the smallest differences in cooling 
curves relative to the reference are observed for 
5% disturbance and they increase for 10% and for 
20%, while for ACO there is no noticeable change 

in the difference in temperature waveforms rela-
tive to the reference for the number of individuals 
considered.

Figure 10 and Figure 11 based on the data pre-
sented, it can be concluded that both algorithms, 
ABC and ACO, are capable of providing accurate 
simulations of casting cooling curves. However, 
ACO is more robust than ABC. Both algorithms 

Figure 10. Differences in cooling curves between reference and reconstructed values of parameter κ in a 
cast for the ABC algorithm with (a) 0%, (b) 2%, and (c) 5% noise of the reference temperature value

Figure 11. Differences in cooling curves between reference and reconstructed values of parameter κ in a 
cast for the ACO algorithm with (a) 0%, (b) 2%, and (c) 5% noise of the reference temperature value
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are able to provide accurate reproductions of the 
boundary condition parameters required to sim-
ulate casting temperature waveforms. ACO is 
more robust to disturbances than ABC. For small 
disturbances (2%), the differences between the 
curves obtained for both algorithms are small and 
do not affect the overall accuracy of the simula-
tion. For large disturbances (5%), ACO provides 
more accurate simulations than ABC.

CONCLUSIONS

Based on the results presented, an increase in 
the number of individuals is significant when cal-
culating with the bee algorithm. For the ant algo-
rithm, increasing the number of individuals does 
not significantly affect the accuracy of the results.

For the ABC algorithm, it is recommended to 
use a large number of individuals to obtain the 
most accurate and stable results.

The research investigated the performance of 
the bee and ant algorithms in reconstructing cool-
ing curves for a tessellation including 576 nodes, 
with populations consisting of 5, 10, 15, and 20 
individuals. The findings indicated that both al-
gorithms yielded precise simulations of the cool-
ing curves, with no notable disparities across the 
curves. The obtained cooling curves are consistent 
with the reference ones, which suggest the physi-
cal correctness of the determined parameters of the 
continuity boundary condition. The ant algorithm 
demonstrated enhanced stability and consistent 
outcomes with a reduced population size. In con-
trast, the bee algorithm exhibited a more signifi-
cant standard deviation when applied to a smaller 
group of individuals. The precision of the out-
comes is contingent upon the selected parameters 
of the algorithms. The ant algorithm exhibited a 
more significant deviation from reference temper-
atures than the bee algorithm for a sample size of 
five persons, specifically for modest perturbations 
of 2%. In general, both techniques can provide pre-
cise simulations of the cooling curves of castings.
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