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INTRODUCTION

Cubic boron nitride (CBN) is an exceptional-
ly hard material, maintaining its properties at high 
temperatures. Its hardness is evaluated at 90-95% 
of the hardness of diamond. It also maintains a 
high chemical resistance in contact with iron [1]. 
As a result, CBN is widely used to produce the 
edges of cutting tools [2]. Milling cutters with 
CBN edges allow machining of materials in hard-
ened state, replacing traditional, low-efficiency 
grinding or electrical discharge machining pro-
cesses by milling or turning [3-4]. Such approach 
makes it possible to reduce the machining time 
and production costs, limits the machine park and 
workpiece handling. This solution is becoming 
increasingly popular and many researchers study 
the use of cutting tools with CBN edges in ma-
chining of materials in hardened state. Waszczuk 

et al. [5] have analysed the impact of the machin-
ing method and strategy on the surface roughness 
of materials in hardened state. Wang et al. [6] 
have compared the machining efficiency during 
high-speed milling with the use of tools made of 
fine-grained binder-less and conventional CBN. 
They have analysed the cutting forces, friction 
coefficient on the rake face, tool temperature and 
wear. Saketi et al. [7] have analysed the wear of 
a high CBN-content cutting tool during the ma-
chining of materials witch different hardnesses. 
They have observed tool wear due to tribo-chem-
ical reactions, adhesive wear and mild abrasive 
wear, and indicated the tendency to micro-chip-
ping along the cutting edge especially at higher 
cutting speeds. Jin et al. [8] have developed ball-
nosed end milling cutters with CBN edges for 
machining of hardened steels. Focusing on the 
tool production costs and shape accuracy and the 
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resistance of the cutting edge to micro-chipping, 
they have developed solutions that allow improve 
the surface roughness in finishing machining or 
increase the machining efficiency in the rough-
ing machining. Sato et al. [9] have measured the 
temperature during the finish milling using a cut-
ter with CBN edges. They have obtained a lower 
temperature for the down milling. Okada et al. 
[10] have machined a 60 HRC steel using a tool 
with CBN edges, and have noticed a strong im-
pact of the cutting speed on the tool temperature. 
At 600 m/min the temperature was 850 °C.

Many researchers analyse the machining 
process of curvilinear surfaces using an inclined 
ball-nosed milling cutter [11]. Benio et al. [12] 
have suggested a sequence of steps taken in or-
der to select the optimum strategy for milling 
of curvilinear surfaces. They have analysed the 
impact of the tool path on the surface roughness 
measured in the workpiece areas inclined at dif-
ferent angles. Based on a ANNs and orthogonal 
arrays, Zhou et al. [13] and Bilek et al. [14] have 
developed a method for multicriterial optimiza-
tion of the cutting tool inclination angle measured 
in a single plane. Yao et al. [15] and De Souza et 
al. [16] have studied the impact of the cutting tool 
direction and angle during machining of a curvi-
linear surface using a carbide ball-nosed milling 
cutter. They have indicated that the best effects 
are obtained when during the machining the tool 
is kept at a fixed angle measured in relation to the 
machined surface. Matras and Zębala [17] have 
used a two-stage optimization of the machining 
of a curvilinear surface using a ball-nosed mill-
ing cutter with CBN edges. The cutting tool in-
clination angle is specified in the first stage, and 
then – depending on the workpiece shape – the 
feedrate is optimized based on the FEM calcula-
tions in order to obtain the surface with a uniform 
roughness. 

Various techniques are used for modelling 
the machining process. Among the experiment-
based techniques, the most often used experiment 
design techniques include the Taguchi Method, 
Response Surface Methodology (RSM) and in-
creasingly popular modelling based on artificial 
neural networks (ANNs) [18]. Using the ANNs, 
it is possible to develop well-fitted to the experi-
mental data mathematical models used to predict 
surface roughness[19-20]. Thanks to the ANNs, 
Mongan et al. [21] have developed models de-
scribing complex, nonlinear relations between 
the milling process parameters and its efficiency 

and obtained surface roughness. Bilek et al. [22] 
using a neural network developed mathematical 
models for predicting surface roughness. Gupta 
et al. [23] have applied the Taguchi method for a 
multicriterial evaluation of the impact of cutting 
parameters on the quality of surface machined by 
using tools with CBN edges. Vishnu et al. [24] 
have applied the Taguchi Method and the RSM 
to optimize the impact of the cutting speed, fee-
drate as well as axial and radial depth of cut on 
the surface roughness. They have machined the 
P20 steel for which they have determined the op-
timal parameters, mentioning however that as a 
result of using both methods the optimum solu-
tion is analogous. The Taguchi method has also 
been used by Masmaiati et al. [25] who have opti-
mized the machining using an inclined ball-nosed 
milling cutter with cemented carbide edges.

The literature review indicates that the design 
of experiment techniques and modelling with the 
use of artificial neural networks are efficient and 
effective methods which can be used to analyse 
the impact of the cutting tool inclination angle on 
the roughness of machined curvilinear surface. At 
the same time, it was noticed that the number of 
papers on the modelling of machining of curvilin-
ear surfaces using CBN ball-nosed mills inclined 
simultaneously in the parallel and perpendicular 
to the feed direction is insufficient.

The paper describes the developed optimiza-
tion method, based on modelling by using the ar-
tificial neural networks to determine the simulta-
neous effects of feed rate, radial depth of cut and 
tool tilt angles. Using the artificial neural network 
modelling, based on the same number of experi-
mental studies as in the Taguchi method, surface 
roughness prediction was made for different lev-
els of machining process efficiency, which is not 
possible in the Taguchi method. The application 
of the proposed method can improve the effi-
ciency and precision of machining processes with 
superhard tooling materials, which will positively 
affect to the technology of manufacturing molds 
and dies machined in the hardened state.

MATERIALS AND METHODS

The studies involved machining of the AISI 
H13 steel hardened to 50 HRC. The chemical 
composition of AISI H13 is presented in Table 1.

The machining was performed using a Mit-
subishi ball-nosed end mill with CBN edges, 
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designated CBN2XLBR0100N050S04. A cutting 
edge geometry with a rake angle go = 0° and helix 
angle ls = 0° was used. The cutting edge radius of 
the tool arc was rn = 1 mm with a tolerance of ±5 
μm. The geometrical parameters of the tool are 
presented in Table 2. 

Recommended by tool producer cutting data 
values for the selected tool and workpiece mate-
rial are presented in Table 3.

The machining was carried out on a five axis 
machine tool DMG Ultrasonic 20 linear. The stud-
ies aimed at determination of a simultaneous im-
pact of the tool inclination direction and inclination 

angle in the plane parallel (d1) and perpendicular 
(d2) to the tool feed direction, and the impact of 
the radial depth of cut (ae) and the feedrate (f) on 
the microgeometry of the surface described by 
means values of the roughness parameter Ra. The 
tests were performed at constant cutting speed (vc 
= 150 m/min), tool rotational speed (n = 27 000 
rev/min) and depth of cut (ap = 0.1 mm). Down 
milling was used, and the coolant was not used. 
The variability ranges of cutting parameters and 
the values of constant parameters were selected 
based on the literature review and the tool manu-
facturer’s recommendations. The range of applied 

Table 1. Chemical composition of the AISI H13 steel (wt%)
C Mn Si Cr Mo V

0.4 0.4 1.0 5.25 1.35 1.0

Table 2. Geometry of the milling tool

R 
(mm)

D1 
(mm)

ap 
(mm)

L3 
(mm)

D5 
(mm)

B2 
(o)

L1 
(mm)

D4 
(mm)

1 2 1.5 5 1.9 7.3 52 4

Table 3. Recommended cutting data values
n 

(rev/min)
vc 

(m/min)
ap 

(mm)
ae 

(mm)
f 

(mm/min)

27000 150 0.1 0.035 1900

Fig. 1. The tool inclination directions for individual strategies directions 
(in view in a plane parallel and perpendicular to the feed)
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cutting parameters corresponds to the HSC finish 
machining of curvilinear surfaces.

During the experimental tests, flat surfaces 
with dimensions of 5x5 mm were machined. The 
material used for the research was heat-treated and 
the variation in hardness is not more than ± 1 HRC. 
After fixing on the machine tool, the top surface 
of the specimens was milled, and then the tests 
planned were performed in the same fixture. As 
the studies are aimed at machining of curvilinear 
surfaces, this constituted a sort of simplification. 
However, it can be assumed that each curvilinear 
surface consists of fragments of straight surfaces of 
small dimensions measured in micrometres [26]. 
The experiments were conducted based on the L16 
Taguchi orthogonal array. Depending on the tool 
inclination directions, four possible strategies were 
studied which corresponded to four analysed cases 
obtained by setting positive or negative values of 
tool inclination angles: push–oblique plunge (+d1, 
+d2), push–oblique reverse (+d1, -d2), pull–oblique 
reverse (-d1, -d2) and pull–oblique plunge (-d1, +d2). 

The obtained tool inclination for individual strate-
gies are presented in Figure 1.

Table 4 includes the applied levels of vari-
able analysed parameters for each tool inclination 
strategy.

Sixty-four surfaces in total were made dur-
ing the experiments. Each surface was measured 
three times and the Ra parameter was calculated, 
giving 192 data points. The measurements of the 
surface geometric microstructure were made us-
ing the profilograph Form TalySurf Intra 50. Mea-
surements were made based on standards EUR 
15178N, ISO 25178 and ISO 12781. The Taguchi 
method and artificial neural networks were used 
during the analyses.

The set values of the input factors along with 
the average value of surface roughness parameters 
Ra and standard deviations are shown in Table 5.

Depending on the tool inclination strategy, the 
corresponding signs from the first row in the table 
should be used for the tool inclination angles in 
the columns two and three.

Table 4. The applied levels of variable analysed parameters
No. Case ae (mm) f (mm/min) d1 (o) d2 (o)

1. Push–oblique plunge 0.025; 0.05; 0.075; 0.1 720; 960; 1440; 1920 0; 6; 12; 18 0; 6; 12; 18

2. Push–oblique revers 0.025; 0.05; 0.075; 0.1 720; 960; 1440; 1920 0; 6; 12; 18 -18; -12; -6; 0

3. Pull–oblique revers 0.025; 0.05; 0.075; 0.1 720; 960; 1440; 1920 -18; -12; -6; 0 -18; -12; -6; 0

4. Pull–oblique plunge 0.025; 0.05; 0.075; 0.1 720; 960; 1440; 1920 -18; -12; -6; 0 0; 6; 12; 18

Table 5. Average values and standard deviations for the parameter Ra

Parameters
Push-oblique 

plunge
(+d1, +d2)

Push-oblique 
revers

(+d1,-d2)

Pull-oblique  
revers

(-d1, -d2)

Pull-oblique
plunge

(-d1, +d2)

ae  
(mm)

d1 
(o)

d2 

 (
o)

f 
(mm/min)

Ra 
(mm)

Std. 
Dev.

Ra  
(mm)

Std. 
Dev.

Ra 
(mm)

Std. 
Dev.

Ra 
(mm)

Std. 
Dev.

0.025 0 18 960 0.20 0.077 0.23 0.045 0.29 0.074 0.17 0.016

0.025 6 12 720 0.17 0.003 0.18 0.005 0.16 0.004 0.20 0.007

0.025 12 6 1920 0.21 0.024 0.33 0.052 0.19 0.030 0.23 0.010

0.025 18 0 1440 0.28 0.011 0.26 0.021 0.15 0.010 0.20 0.007

0.050 0 12 1920 0.42 0.039 0.43 0.035 0.43 0.024 0.35 0.041

0.050 6 18 1440 0.30 0.051 0.19 0.010 0.22 0.019 0.20 0.010

0.050 12 0 960 0.27 0.047 0.27 0.004 0.31 0.077 0.16 0.018

0.050 18 6 720 0.19 0.005 0.24 0.020 0.18 0.010 0.22 0.049

0.075 0 6 1440 1.07 0.018 0.95 0.025 0.80 0.040 0.86 0.016

0.075 6 0 1920 0.68 0.030 0.66 0.053 0.68 0.037 0.58 0.048

0.075 12 18 720 0.18 0.012 0.28 0.027 0.24 0.012 0.24 0.004

0.075 18 12 960 0.21 0.014 0.30 0.015 0.22 0.009 0.31 0.046

0.100 6 6 960 1.03 0.047 0.50 0.017 0.48 0.035 0.41 0.009

0.100 12 12 1440 0.30 0.018 0.38 0.011 0.33 0.020 0.33 0.006

0.100 18 18 1920 0.40 0.017 0.41 0.026 0.34 0.023 0.51 0.013

0.100 0 0 720 0.38 0.073 0.38 0.073 0.38 0.073 0.38 0.073
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RESULTS AND DISCUSION

ANOVA

The ANOVA was performed in order to deter-
mine the statistical significance of the analysed pro-
cess parameters. The analysis was performed for 
the level of significance α = 0.05. The analysis re-
sults for the Ra parameters are presented in Table 6. 

The sensitivity of neural networks was also anal-
ysed. The sensitivity values greater than one indicate 
the statistical significance of the analysed input pa-
rameter. The analysis results are presented in Table 7.

The analysis of these tables 6-7 indicates that 
both ANOVA and the sensitivity analysis confirm 
that all analysed process parameters are statisti-
cally significant.

Optimization with the Taguchi method

The optimization with the Taguchi method 
was performed based on the “Smaller is better”. 
Such method is applied in order to minimize the 
value of the dependent variable. The ideal value 
of this variable is 0, and the measured value of 
the dependent variable must be equal to or greater 

Table 6. ANOVA for the Ra parameters

Source
Push-oblique plunge Push-oblique revers Pull-oblique revers Pull-oblique plunge

SS df MS F p SS df MS F p SS df MS F p SS df MS F p

ae 0.75 1 0.75 17.2 0.000 0.34 1 0.34 19.2 0.000 0.34 1 0.34 29.0 0.000 0.51 1 0.51 38.0 0.000

d1 0.59 1 0.59 13.3 0.001 0.23 1 0.23 13.4 0.001 0.46 1 0.46 39.4 0.000 0.18 1 0.18 13.6 0.001

d2 0.28 1 0.28 6.4 0.015 0.16 1 0.16 9.1 0.004 0.11 1 0.11 9.8 0.003 0.10 1 0.10 7.1 0.011

f 0.23 1 0.23 5.2 0.028 0.29 1 0.29 16.4 0.000 0.18 1 0.18 15.1 0.000 0.16 1 0.16 11.9 0.001

Error 1.89 43 0.04 0.75 43 0.02 0.50 43 0.01 0.58 43 0.01

Total 3.74 47 1.77 47 1.59 47 1.54 47

Table 7. Sensitivity analysis for the Ra parameter
Case ae (mm) d1 (o) d2 (o) f (mm/min)

Push-oblique plunge 21.18 17.29 15.27 9.95

Push-oblique revers 66.93 39.97 37.30 29.49

Pull-oblique revers 12.65 11.12 5.64 2.77

Pull-oblique plunge 11.85 8.92 8.76 3.07

Table 8. The values of S/N ratios

ae (mm) d1 (o) d2 (o) f (mm/
min)

S/N for  
push-oblique 

plunge
(+d1, +d2)

S/N for  
push-oblique 

revers
(+d1, -d2)

S/N for  
pull-oblique 

revers
(-d1, -d2)

S/N for  
pull-oblique 

plunge
(-d1, +d2)

0.025 0 18 960 14.159 12.930 10.810 14.438

0.025 6 12 720 15.437 15.028 15.687 14.121

0.025 12 6 1920 13.645 9.657 14.352 12.600

0.025 18 0 1440 11.066 11.670 16.752 14.100

0.050 0 12 1920 7.555 7.432 7.304 9.174

0.050 6 18 1440 10.649 14.447 13.369 13.918

0.050 12 0 960 11.614 11.427 10.500 12.332

0.050 18 6 720 14.224 12.374 14.764 13.214

0.075 0 6 1440 0.575 0.493 1.893 1.330

0.075 6 0 1920 3.395 3.626 3.387 4.704

0.075 12 18 720 14.960 11.191 12.412 12.293

0.075 18 12 960 13.580 10.488 13.098 9.865

0.100 6 6 960 0.240 6.057 6.416 7.686

0.100 12 12 1440 10.343 8.497 9.609 9.588

0.100 18 18 1920 7.936 7.696 9.284 5.931

0.100 0 0 720 10.359 8.972 8.533 6.539
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than 0. For the analysis, the data were converted 
to the form expressed by equation (1).

𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁

= −10 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙10 �
∑ 𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
𝑛𝑛𝑛𝑛 � 

𝑓𝑓𝑓𝑓(𝜈𝜈𝜈𝜈)  =  𝜈𝜈𝜈𝜈 

𝑓𝑓𝑓𝑓(𝑣𝑣𝑣𝑣) =
1

1 + 𝑒𝑒𝑒𝑒−𝜈𝜈𝜈𝜈
 

𝑓𝑓𝑓𝑓(𝜈𝜈𝜈𝜈) = 𝑒𝑒𝑒𝑒−𝜈𝜈𝜈𝜈  

𝑓𝑓𝑓𝑓(𝜈𝜈𝜈𝜈) =
𝑒𝑒𝑒𝑒𝜈𝜈𝜈𝜈 − 𝑒𝑒𝑒𝑒−𝜈𝜈𝜈𝜈

𝑒𝑒𝑒𝑒𝜈𝜈𝜈𝜈 + 𝑒𝑒𝑒𝑒−𝜈𝜈𝜈𝜈
 

𝐸𝐸𝐸𝐸 = �(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

𝑄𝑄𝑄𝑄𝑓𝑓𝑓𝑓 = 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ∙ 𝑓𝑓𝑓𝑓 

(1)

where: n – number of cases;  
y – observed value of dependent variable.

The Table 8 includes the values of S/N ratios 
for the analysed strategies and the tool inclination 
angles, feedrate and radial depth of cut. Analo-
gously to Table 5, suitable signs should be used 
for the tool inclination strategies. 

The analysis based on the Taguchi method is 
conducted by analysing the plots representing the 
averaged impact of the studied parameters on the 
values of S/N ratios. The plots are presented in 
Figures 2a-d.

The analysis of these plots allows the deter-
mination of how to change the analysed param-
eters in order to minimize the Ra. For each of 
the studied tool inclination strategies there is one 
solution that ensures the least surface roughness.  

In all analysed cases, this solution is obtained with 
the application of the lowest feedrate and the least 
radial depth of cut. The Taguchi method has a 
drawback in this aspect. The optimum solution is 
related to the least tested performance of the ma-
chining process. The optimum cutting tool incli-
nation angles differ depending on the applied tool 
inclination strategy. For the push–oblique reverse 
and pull–oblique reverse strategies, they are d1 = 
18° and d2  = -18°, and d1  = -18° and d2  = -18°, 
respectively; and for the push–oblique plunge and 
pull–oblique plunge strategies, they are d1  = 12° 
and d2  = 18°, and d1 = -12° and d2 = 18°.

Modelling with the use of neural networks

The multilayer perceptron (MLP) neural 
networks were used, because they are recom-
mended for describing a nonlinear impact of in-
put variables on the dependent variables (24). 
Such impact is observed for the studied process. 
The MLP neural network is learning in the su-
pervised mode based on the previously created 

Fig. 2. The S/N ratios for a) push–oblique plunge tool inclination strategy, b) push-oblique revers tool inclination 
strategy, c) pull-oblique revers tool inclination strategy, d) pull-oblique plunge tool inclination strategy

a)

c) d)

b)
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set of observations. Four different networks were 
used, and each of them are learned based on the 
data from a different tool inclination strategy. The 
surface roughness values Ra were determined 
based on calculations performed with the use of a 
set of four neural networks. The networks archi-
tecture consisted of one hidden layer containing 
two neurons. As four input parameters and one 
output parameter were analysed, the input layer 
contained four neutrons, and the output layer con-
tained one. Such simple architecture prevents the 
network overfitting to the analysed data [27-29]. 
In order to choose four neural networks, a num-
ber of networks were generated and activated by 
means of various activation functions in the hid-
den and output layers. The following functions 
were used: linear (2), sigmoidal (3), exponential 
(4) and hyperbolic tangent (5). The argument in 
these functions is an aggregated signal connected 
with weights.

𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁

= −10 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙10 �
∑ 𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
𝑛𝑛𝑛𝑛 � 

𝑓𝑓𝑓𝑓(𝜈𝜈𝜈𝜈)  =  𝜈𝜈𝜈𝜈 

𝑓𝑓𝑓𝑓(𝑣𝑣𝑣𝑣) =
1

1 + 𝑒𝑒𝑒𝑒−𝜈𝜈𝜈𝜈
 

𝑓𝑓𝑓𝑓(𝜈𝜈𝜈𝜈) = 𝑒𝑒𝑒𝑒−𝜈𝜈𝜈𝜈  

𝑓𝑓𝑓𝑓(𝜈𝜈𝜈𝜈) =
𝑒𝑒𝑒𝑒𝜈𝜈𝜈𝜈 − 𝑒𝑒𝑒𝑒−𝜈𝜈𝜈𝜈

𝑒𝑒𝑒𝑒𝜈𝜈𝜈𝜈 + 𝑒𝑒𝑒𝑒−𝜈𝜈𝜈𝜈
 

𝐸𝐸𝐸𝐸 = �(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

𝑄𝑄𝑄𝑄𝑓𝑓𝑓𝑓 = 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 ∙ 𝑓𝑓𝑓𝑓 

(2)

𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁

= −10 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙10 �
∑ 𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
𝑛𝑛𝑛𝑛 � 

𝑓𝑓𝑓𝑓(𝜈𝜈𝜈𝜈)  =  𝜈𝜈𝜈𝜈 

𝑓𝑓𝑓𝑓(𝑣𝑣𝑣𝑣) =
1
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where: v – aggregated signal connected with 
weights.

During the neural networks learning process, 
70% of the data were learning data, 15% were 
the test data and 15% were the validation data. 
The networks learned with the use of the Broy-
den-Fletcher-Goldfarb-Shanno optimization al-
gorithm. The error functions were determined as 
sums of squares (6). 
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where: yi – observed value of dependent variable; 
ti – predicted value of dependent variable.

When the learning process was completed for 
all neural networks, based on the best fit of valida-
tion data one network was selected for each four 
cutting tool inclination strategy. The Pearson corre-
lation coefficients and the types of activation func-
tions used in the hidden and output layers for select-
ed four neural networks are presented in Table 9.

Table 10 includes the calculated values of Ra 
and values of remainders determined based on the 
average values from Ra measurements. Analo-
gously to Table 5, suitable signs should be use for 
the tool inclination strategies. 

The analysis of these tables indicates that the 
fit between the results calculated using the neural 
networks and the measurement data was good.

Successive figures include plots depicting the 
impact of the tool inclination strategies and the 
inclination angles on the surface roughness pa-
rameter Ra. The plots were made for different ra-
dial depths of cut (ae), feedrates (f) and machining 
efficiency (Qf) (7). 
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The calculated Ra values are presented with 
the use of a colour scale. Black lines are the bor-
ders of the areas determined based on the surface 

Table 9. The Pearson correlation coefficients and the types of activation functions
Case Learning Test Validation Total Hidden Output

Push-oblique plunge 0.98 0.97 0.97 0.98 hyperbolic tangent logistic

Push-oblique revers 0.99 0.98 0.98 0.98 logistic exponential

Pull-oblique revers 0.98 0.99 0.93 0.97 logistic exponential

Pull-oblique plunge 0.97 0.94 0.98 0.97 hyperbolic tangent logistic

Figure 3. The impact of tool inclination strategies and 
angles for the Ra parameter: f = 720 mm/min, ae = 
0.025 mm, Qf = 18 mm2/min
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Table 10. The calculated values of surface roughness Ra and values of remainders

Parameters Push-oblique plunge 
(+d1, +d2)

Push-oblique revers
(+d1, -d2)

Pull-oblique  
revers (-d1, -d2)

Pull-oblique  
plunge (-d1, +d2)

ae  
(mm)

d1 
(o)

d2 

 (o)
f 

 (mm/min)
Ra 

(mm) Rem. Ra 
(mm) Rem. Ra 

(mm) Rem. Ra 
(mm) Rem.

0.025 0 18 960 0.21 -0.01 0.26 -0.03 0.22 0.07 0.19 -0.02
0.025 6 12 720 0.19 -0.02 0.18 0.00 0.18 -0.02 0.19 0.01
0.025 12 6 1920 0.27 -0.06 0.30 0.03 0.22 -0.03 0.18 0.05
0.025 18 0 1440 0.20 0.08 0.27 -0.01 0.18 -0.03 0.14 0.06
0.050 0 12 1920 0.40 0.02 0.43 0.00 0.44 -0.01 0.38 -0.03
0.050 6 18 1440 0.27 0.03 0.19 0.00 0.24 -0.02 0.20 0.00
0.050 12 0 960 0.28 -0.01 0.25 0.02 0.24 0.07 0.28 -0.12
0.050 18 6 720 0.19 0.00 0.24 0.00 0.19 -0.01 0.23 -0.01
0.075 0 6 1440 0.92 0.15 0.84 0.11 0.90 -0.10 0.99 -0.13
0.075 6 0 1920 0.66 0.02 0.66 0.00 0.62 0.06 0.66 -0.08
0.075 12 18 720 0.22 -0.04 0.28 0.00 0.20 0.04 0.31 -0.07
0.075 18 12 960 0.23 -0.02 0.30 0.00 0.21 0.01 0.28 0.03
0.100 6 6 960 1.01 0.02 0.50 0.00 0.48 0.00 0.36 0.05
0.100 12 12 1440 0.31 -0.01 0.37 0.01 0.34 -0.01 0.36 -0.03
0.100 18 18 1920 0.41 -0.01 0.40 0.01 0.32 0.02 0.50 0.01
0.100 0 0 720 0.38 0.00 0.32 0.06 0.39 -0.01 0.36 0.02

Fig. 4. The impact of tool inclination strategies and angles for the Ra parameter: a) f = 960 mm/min, ae = 0.05 mm,  
Qf = 48 mm2/min, b) f = 1440 mm/min, ae = 0.05 mm, Qf = 72 mm2/min, c) f = 960 mm/min, ae = 0.075 mm,  
Qf = 72 mm2/min, d) f = 1440 mm/min, ae = 0.075 mm, Qf = 108 mm2/min

d)c)

b)a)
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roughness classes according to the PN-EN ISO 
1302:2004 standard. The Ra = 0.16 mm border was 
marked with a solid line, Ra = 0.32 mm with a dot-
ted line, Ra = 0.64 mm with a broken line, Ra = 
1.25 mm with a “long dash – short dash” line. 

Figure 3 shows the impact of tool inclination 
strategies and angles for the least applied feedrates 
and radial depths of cut. These parameters allow 
achieving the efficiency equal to only Qf = 18 mm2/
min. For this machining efficiency, the expected 
surface roughness Ra < 0,16 mm can be achieved 
for angle d1 < -12° and angle d2 > 15° or d2 < -15°. 
Angle d2 can be decreased with simultaneous de-
crease of angle d1. Surface roughness of 0.16–0.32 
mm is obtained over a wide range of tool inclina-
tion directions and angles. Machining with small 
tool inclination angles (-3° < d1 < 3° and -3° < d2 < 
3°) gives surface roughness of Ra > 0.32 mm.

The impact of tool inclination strategies and 
angles observed for the medium analysed values 
of ae and f are shown in figures 4a-d. Such ae and 
f parameters give the machining efficiency Qf in 
the 48–108 mm2/min range. When machining at 
f = 920 mm/min, ae = 0.05 mm and tool inclina-
tion angles d1 = 18° and d2 = 18° or d2 = -18° 
allowing Qf = 48 mm2/min to be obtained, it is 
still possible to achieve Ra < 0.16 mm (Fig. 4a). 
This area is however small, and consequently it 
may be unique. Similarly to the situation above, 
a simultaneous increase of the tool inclination in 
both directions leads to reduced Ra values. For 
the surface machined at f = 1440 mm/min and ae 
= 0,075 mm allowing Qf = 108 mm2/min (Fig. 4d) 
to be obtained, the range of possible strategies 

and tool inclination angles that give Ra < 0.32 
mm is wide. The plots also indicate that inclin-
ing the tool in both directions is a better solution. 
Application of the pull-oblique reverse strategy 
gives the largest Ra < 0.32 mm area. The greater 
the f and ae, the smaller the Ra < 0.32 mm area.

At the highest feedrates f = 1920 mm/min and 
greatest radial depths of cut ae = 0.1 mm that al-
low obtaining the performance of Qf = 192 mm2/
min, it is still possible to achieve Ra < 0.32 mm 
(Fig. 5). In order to do this, it is recommended 
to use the tool inclination angles of d1 = 9° and 
d2 = -18° or d1 = -18° and d2 = 6°. Application of 
each tested tool inclination strategy and both tool 
inclination angles from -9° to 9° allows achiev-
ing the surface roughness in the 0.64 < Ra < 1.25 
mm range. With the increase of feed rate and 
radial depth of cut, the positive effect of inclin-
ing the tool in both directions simultaneously is 
more visible. Figure 5 shows two areas of higher 
roughness. The first is for the case of machining 
with a non-inclined tool, while the second is for 
the case of inclining the tool only in the feed di-
rection, where a worsening of surface roughness 
is observed for values of d1 > 15°. Roughness 
worsening is also observed when the tool is in-
clined only in the perpendicular direction to the 
feed. A non-inclined cutting tool gives the surface 
roughness of Ra > 1.25 mm. 

CONCLUSIONS

The paper provides an analysis of the impact 
of the values of the cutting tool inclination strate-
gies and angles measured in the parallel and per-
pendicular direction to the feed, radial depth of cut 
and feedrate on the surface roughness parameter 
Ra. The workpiece was made of the AISI H13 
steel, hardness 50 HRC, and was machined using 
a 2 mm diameter ball-nosed end mill with CBN 
edges. The Taguchi method was applied in the first 
stage of the analysis. This allowed the determina-
tion of the tool inclination strategies and angles, 
and the feedrate and the depth of cut that would 
minimize the surface roughness parameter Ra. 
Due to a strongly nonlinear impact of the analysed 
cutting parameters, the analyses with the use of 
the Taguchi method were performed separately for 
each tool inclination strategy. In the second stage, 
the machining process was modelled with the use 
of neural networks. The analyses were performed 

Fig. 5. The impact of tool inclination strategies and 
angles for the Ra parameter: f = 1920 mm/min, ae = 0.1 
mm, Qf = 192 mm2/min
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simultaneously for all tool inclination strategies 
and various feedrates and radial depths of cut.

The main conclusions about the investigated 
free surfaces milling are as followed:
1. As a result of the experimental research, surfac-

es with low surface roughness were obtained, 
the lowest observed value of the Ra parameter 
was 0.15 mm.

2. During machining with ball end mills, inclining 
the tool in the parallel and perpendicular direc-
tion to the feed results in a surface with a lower 
roughness than when the tool is inclined in only 
one direction. Machining with a non-inclined 
tool results in a worsening of surface roughness. 

3. Taguchi Metod is an unsatisfactory in case 
of simultaneous minimalization of surface 
roughness and optimization of tool inclination 
angles, feedrate and the depth of cut, because 
– due to the impact of the feed rate a result of 
the experimental research, surfaces with low 
surface roughness were obtained.

4. The radial depth of cut on the surface rough-
ness the obtained optimum solution is related 
to low- efficiency machining. 

5. The application of the modelling technique 
with the use of the artificial neural networks 
due to the possibility of simultaneous optimi-
zation of cutting tool inclination angles, feed 
speed, radial depth of cut and process efficien-
cy will fill the demonstrated research gap. 

6. Modelling with artificial neural networks re-
sulted in mathematical models with a high fit to 
experimental data. All developed mathematical 
models were characterized by Pearson correla-
tion coefficients values above 0.93.

The proposed research methodology in this 
paper can be successfully used in industrial appli-
cations. During its application, a relatively small 
experimental test is needed, and the measurement 
technology required for its application is available in 
the industrial sector. By using the proposed method, 
it is possible to minimize the basic problems identi-
fied in the mold and die machining. Development 
of the technological process considering application 
of the proposed method results in improvement of 
surface quality and machining efficiency.
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