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INTRODUCTION

The determination of thermal diffusivity is a 
crucial aspect in the field of materials science and 
engineering. It is a key parameter for analyzing 
the heat transfer characteristics of a material and 
is essential in the design of heat transfer systems. 
Various methods have been proposed for deter-
mining thermal diffusivity, including the laser 
flash, transient plane source, and pulse methods. 
However, due to its accuracy and efficiency, the 
finite element method has recently emerged as 
a promising approach for determining thermal 

diffusivity. In this paper, the possibility of using 
the finite element method to determine thermal 
diffusivity using both the classic and modified 
pulse methods was investigated. The classic pulse 
method involves heating the surface of a mate-
rial with a short pulse of energy and monitoring 
the temperature response at a nearby point. The 
modified pulse method involves applying a lon-
ger pulse of energy to the surface of the mate-
rial and monitoring the temperature response at 
various points. Both methods are widely used for 
measuring thermal diffusivity, but the modified 
pulse method has been shown to provide more 
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ABSTRACT
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accurate results [1]. The authors focused on the 
example of nickel to demonstrate the feasibility 
of using the finite element method with the classic 
and modified pulse methods. Nickel is an impor-
tant material in many industries, including aero-
space, electronics, and automotive, and its ther-
mal properties have been extensively studied. In 
recent years, the finite element method has gained 
increasing attention as a promising approach for 
determining thermal diffusivity in materials [2, 3].  
This method involves solving the heat diffusion 
equation using numerical simulations, which can 
provide accurate and efficient results. The use of 
the finite element method for determining ther-
mal diffusivity has been investigated for a wide 
range of materials, including metals, ceramics, 
and polymers. COMSOL Multiphysics software 
is very frequently used for calculations in the area 
of heat transfer, as well as for the multi-physics 
simulation platform [4-6]. It is popular for heat 
transfer calculations in thin-film structures [7-9]. 
The influence of waviness is of great importance 
for calculations of heat transfer phenomena in thin 
films and in complex flow models used, among 
others, in aviation technology, e.g., rocket nozzles 
[10], engines [11] as well as in its heat conduction 
in microchannel flows [12], and heat exchangers 
[13, 14] which is a frequently tackled problem 
of modern mechanical engineering. In the case 
of heat transfer studies based on determining the 
global temperature distribution on the surface, it is 
necessary to take into account the thermal proper-
ties of all layers in the analysis [15], in particular, 
if the thickness is a square function, as in the case 
of determining thermal diffusivity using the laser 
flash method (LFA –Laser Flash Analysis), where 
the thickness is given to the second power [16]. 

Several studies have investigated the use of 
the finite element method to determine thermal 
diffusivity in materials [17-19]. 

For instance, Kuk-Hee Lim et al. [20], to min-
imize the error of the flash method in the mea-
surement of thermal diffusivity of a thin sample 
covered with graphite, proposed a 3-layer model 
that takes into account the corrections of the finite 
pulse effect and the heat loss effect. It was found 
that the proposed three-layer model significantly 
reduces the measurement error. In their study, 
[21] Philipp et al. checked the accuracy limita-
tions of laser flash analysis due to its underlying 
computational framework. To this end, they de-
veloped an exceptionally accurate and compre-
hensive computational framework and applied 

it to the data from simulation experiments. They 
quantified the impact of different (simulated) test 
conditions on the accuracy of the results by com-
paring the fit of their calculation framework with 
the simulated input parameters. In another study, 
Ruffio et al. [22] investigated the 3D flash method 
and argued that estimating the thermal diffusivity 
of homogeneous orthotropic materials is practical 
and efficient. The experimental setup is based on 
infrared thermography and thermal pulse excita-
tion. A corresponding model is derived and solved 
analytically. The unknown parameters are then 
estimated using an estimator that combines mea-
surements and model outputs. Their work, how-
ever, was only numerical. Malinaric et al. [23] 
studied the influence of heat source power and 
design on the accuracy of thermophysical param-
eters measurements in several transitional meth-
ods. The credibility of the analytical model of the 
Transient Plane Source method was confirmed by 
them by comparing it with the numerical model 
obtained by the finite element method (FEM), 
which uses three models of the material composi-
tion of the heat source. Temperature functions are 
determined based on numerical answers obtained 
by the FEM method and the analytical solution. 
Icing is a serious problem affecting the aviation 
sector, which is forced to use anti-icing and anti-
icing systems to ensure the safety of flights. Gar-
cia et al. [24] investigated the effect of the thermal 
properties of various materials on the temperature 
distribution obtained from a heater operating at 
anti-icing temperatures (5–10 °C) during a short 
on-time step. The authors note that the thermal 
diffusivity of the various layers that make up the 
systems must be considered an important design 
factor. The many parameters and the need to test 
the systems under real icing conditions or at least 
under forced convection conditions would result 
in very complex test matrices. In addition, ex-
perimental conditions are not easily reproduced 
in the laboratory, and wind tunnel testing under 
icing conditions is expensive. Garcia et al. [24] 
used the commercial Code Aster solver software 
with space-time discretization to calculate tem-
peratures as a time and sample position function. 
Time discretization was performed using the fi-
nite difference method, and spatial discretiza-
tion was performed using both 3D and 2D FEM 
models. Beaufait et al. [25] studied a method of 
measuring thermal diffusivity for samples of arbi-
trary geometry and unknown material properties. 
The aim was to fit the thermal diffusivity curve 
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using numerical simulation and measuring the 
transition temperature inside the tested object. 
This approach is designed to evaluate the mate-
rial properties of a bulk object that has the struc-
ture of a composite material, such as underground 
soil. The method creates the boundary conditions 
necessary to apply the analytical theory found in 
the literature. The authors found that the measure-
ments correlate best with theory and simulation, 
performed with COMSOL Multiphysics software, 
at positions between the center and the surface of 
the object. In conclusion, the use of the finite ele-
ment method for determining thermal diffusivity 
using the classic and modified pulse methods has 
been investigated in several studies. These stud-
ies have demonstrated the accuracy and efficien-
cy of the finite element method for determining 
thermal diffusivity in a wide range of materials, 
including metals, polymers, and composites. The 
use of the finite element method for determining 
thermal diffusivity has the potential to contribute 
to the development of more accurate and efficient 
methods for analyzing the thermal properties of 
materials. Overall, this paper aimed to provide a 
comprehensive analysis of the feasibility of using 
the finite element method for determining thermal 
diffusivity using the classic and modified pulse 
methods, with a focus on nickel as an example 
material. The results of this study have the po-
tential to contribute to the development of more 
accurate and efficient methods for analyzing the 
thermal properties of materials.

Many nickel-based alloys are used in the aero-
space industry, which is why the presented re-
search was conducted on this material. Nickel al-
loys for the aerospace industry are selected based 
on their resistance to extreme heat, corrosion and 

continuous wear, as well as their magnetic prop-
erties. Nickel alloys are one of the most durable 
materials in terms of construction; they are also 
characterized by good electrical conductivity. 
During the experimental studies, an attempt was 
also made to identify Curie points in ferromag-
netic materials –a clear phase transition of the sec-
ond kind. Therefore, nickel was selected as a test 
material with a low phase transition temperature.

METHOD FOR DETERMINING THE 
THERMAL DIFFUSIVITY OF SOLIDS 

The boundary conditions in the heat transfer 
model, based on which the thermal diffusivity is 
determined by using this pulse method [26], are 
shown in Figure 1. They are identical to the clas-
sic Parker method [27]:
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(1)

where: Θ (x, 0) = T(x, 0) − T0 – the initial dis-
tribution of the excess temperature in the 
sample, where T0 is the constant temper-
ature of the sample just prior to the cre-
ation of a rectangular temperature pulse;  
g – thickness of the layer in the sample in 
which a rectangular temperature pulse is 
generated by a heat source with surface 
density Q;      
Q – heat source with surface density.

The general solution of the unsteady heat 
conduction equation given in the monograph by 
Carslaw and Jaeger [29]:

Fig. 1. Heat transfer model used for thermal diffusivity of solids determined 
with the classic and the modified pulse methods [28]
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where: a – thermal diffusivity;   
t – time. 

In a one-dimensional and adiabatic sample with 
initial condition Θ(x, 0), has the following form:

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 0) = �
=

𝑄𝑄𝑄𝑄
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑔𝑔𝑔𝑔

,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑔𝑔𝑔𝑔 

= 0,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔 < 𝑥𝑥𝑥𝑥 ≤ 𝑑𝑑𝑑𝑑
 

𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕2𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 =

𝜕𝜕𝜕𝜕𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =
1
𝑑𝑑𝑑𝑑
�

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′ +

+
2
𝑑𝑑𝑑𝑑
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 �−

𝑛𝑛𝑛𝑛2𝜋𝜋𝜋𝜋2

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑

∞

𝑛𝑛𝑛𝑛=1

� 𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)
𝑑𝑑𝑑𝑑

0
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑

0
 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝛩𝛩𝛩𝛩∞ �1 + 2 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑
�

∞

𝑛𝑛𝑛𝑛=1

exp �−𝑛𝑛𝑛𝑛2 𝜕𝜕𝜕𝜕
𝜏𝜏𝜏𝜏
�� 

𝜏𝜏𝜏𝜏 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝑑𝑑𝑑𝑑
 

Θ∞ = Θ(x = l, t = ∞) =
Q
ρcp l

 

𝑑𝑑𝑑𝑑 =
1.368 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕0,5
 

𝑑𝑑𝑑𝑑 =
0.48 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
 

𝜏𝜏𝜏𝜏 = (𝜕𝜕𝜕𝜕2 − 𝜕𝜕𝜕𝜕1) �𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕1)
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕2)�

−1

 

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜏𝜏𝜏𝜏
 

𝑘𝑘𝑘𝑘𝜕𝜕𝜕𝜕 = 0,25𝑘𝑘𝑘𝑘
∆𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛=1(𝜕𝜕𝜕𝜕 = 0)
𝐸𝐸𝐸𝐸2(𝜕𝜕𝜕𝜕 → ∞)  

[𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)2] ÷ [𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)1] 

𝑇𝑇𝑇𝑇� ± 0.5∆𝑇𝑇𝑇𝑇 = (𝑇𝑇𝑇𝑇0 + 𝛩𝛩𝛩𝛩∞) ± 0.5∆𝑇𝑇𝑇𝑇 

𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ ∇(−𝑘𝑘𝑘𝑘∇𝑇𝑇𝑇𝑇) = 0 

 

(3)

and after taking into account the initial condi-
tion (1) and the inequality g ≪ l, they can be writ-
ten in the following form:

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 0) = �
=

𝑄𝑄𝑄𝑄
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑔𝑔𝑔𝑔

,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑔𝑔𝑔𝑔 

= 0,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔 < 𝑥𝑥𝑥𝑥 ≤ 𝑑𝑑𝑑𝑑
 

𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕2𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 =

𝜕𝜕𝜕𝜕𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =
1
𝑑𝑑𝑑𝑑
�

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′ +

+
2
𝑑𝑑𝑑𝑑
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 �−

𝑛𝑛𝑛𝑛2𝜋𝜋𝜋𝜋2

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑

∞

𝑛𝑛𝑛𝑛=1

� 𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)
𝑑𝑑𝑑𝑑

0
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑

0
 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝛩𝛩𝛩𝛩∞ �1 + 2 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑
�

∞

𝑛𝑛𝑛𝑛=1

exp �−𝑛𝑛𝑛𝑛2 𝜕𝜕𝜕𝜕
𝜏𝜏𝜏𝜏
�� 

𝜏𝜏𝜏𝜏 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝑑𝑑𝑑𝑑
 

Θ∞ = Θ(x = l, t = ∞) =
Q
ρcp l

 

𝑑𝑑𝑑𝑑 =
1.368 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕0,5
 

𝑑𝑑𝑑𝑑 =
0.48 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
 

𝜏𝜏𝜏𝜏 = (𝜕𝜕𝜕𝜕2 − 𝜕𝜕𝜕𝜕1) �𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕1)
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕2)�

−1

 

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜏𝜏𝜏𝜏
 

𝑘𝑘𝑘𝑘𝜕𝜕𝜕𝜕 = 0,25𝑘𝑘𝑘𝑘
∆𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛=1(𝜕𝜕𝜕𝜕 = 0)
𝐸𝐸𝐸𝐸2(𝜕𝜕𝜕𝜕 → ∞)  

[𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)2] ÷ [𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)1] 

𝑇𝑇𝑇𝑇� ± 0.5∆𝑇𝑇𝑇𝑇 = (𝑇𝑇𝑇𝑇0 + 𝛩𝛩𝛩𝛩∞) ± 0.5∆𝑇𝑇𝑇𝑇 

𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ ∇(−𝑘𝑘𝑘𝑘∇𝑇𝑇𝑇𝑇) = 0 

 

(4)

where: τ – characteristic time is given by the fol-
lowing relation: 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 0) = �
=

𝑄𝑄𝑄𝑄
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑔𝑔𝑔𝑔

,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑔𝑔𝑔𝑔 

= 0,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔 < 𝑥𝑥𝑥𝑥 ≤ 𝑑𝑑𝑑𝑑
 

𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕2𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 =

𝜕𝜕𝜕𝜕𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =
1
𝑑𝑑𝑑𝑑
�

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′ +

+
2
𝑑𝑑𝑑𝑑
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 �−

𝑛𝑛𝑛𝑛2𝜋𝜋𝜋𝜋2

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑

∞

𝑛𝑛𝑛𝑛=1

� 𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)
𝑑𝑑𝑑𝑑

0
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑

0
 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝛩𝛩𝛩𝛩∞ �1 + 2 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑
�

∞

𝑛𝑛𝑛𝑛=1

exp �−𝑛𝑛𝑛𝑛2 𝜕𝜕𝜕𝜕
𝜏𝜏𝜏𝜏
�� 

𝜏𝜏𝜏𝜏 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝑑𝑑𝑑𝑑
 

Θ∞ = Θ(x = l, t = ∞) =
Q
ρcp l

 

𝑑𝑑𝑑𝑑 =
1.368 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕0,5
 

𝑑𝑑𝑑𝑑 =
0.48 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
 

𝜏𝜏𝜏𝜏 = (𝜕𝜕𝜕𝜕2 − 𝜕𝜕𝜕𝜕1) �𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕1)
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕2)�

−1

 

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜏𝜏𝜏𝜏
 

𝑘𝑘𝑘𝑘𝜕𝜕𝜕𝜕 = 0,25𝑘𝑘𝑘𝑘
∆𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛=1(𝜕𝜕𝜕𝜕 = 0)
𝐸𝐸𝐸𝐸2(𝜕𝜕𝜕𝜕 → ∞)  

[𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)2] ÷ [𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)1] 

𝑇𝑇𝑇𝑇� ± 0.5∆𝑇𝑇𝑇𝑇 = (𝑇𝑇𝑇𝑇0 + 𝛩𝛩𝛩𝛩∞) ± 0.5∆𝑇𝑇𝑇𝑇 

𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ ∇(−𝑘𝑘𝑘𝑘∇𝑇𝑇𝑇𝑇) = 0 

 

(5)

 Θ∞ – is the average value of the excess 
temperature of the sample after the cessa-
tion of the transient process caused by the 
surface heat source of surface density Q 
and is equal to:

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 0) = �
=

𝑄𝑄𝑄𝑄
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑔𝑔𝑔𝑔

,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑔𝑔𝑔𝑔 

= 0,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔 < 𝑥𝑥𝑥𝑥 ≤ 𝑑𝑑𝑑𝑑
 

𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕2𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 =

𝜕𝜕𝜕𝜕𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =
1
𝑑𝑑𝑑𝑑
�

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′ +

+
2
𝑑𝑑𝑑𝑑
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 �−

𝑛𝑛𝑛𝑛2𝜋𝜋𝜋𝜋2

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑

∞

𝑛𝑛𝑛𝑛=1

� 𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)
𝑑𝑑𝑑𝑑

0
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑

0
 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝛩𝛩𝛩𝛩∞ �1 + 2 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑
�

∞

𝑛𝑛𝑛𝑛=1

exp �−𝑛𝑛𝑛𝑛2 𝜕𝜕𝜕𝜕
𝜏𝜏𝜏𝜏
�� 

𝜏𝜏𝜏𝜏 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝑑𝑑𝑑𝑑
 

Θ∞ = Θ(x = l, t = ∞) =
Q
ρcp l

 

𝑑𝑑𝑑𝑑 =
1.368 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕0,5
 

𝑑𝑑𝑑𝑑 =
0.48 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
 

𝜏𝜏𝜏𝜏 = (𝜕𝜕𝜕𝜕2 − 𝜕𝜕𝜕𝜕1) �𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕1)
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕2)�

−1

 

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜏𝜏𝜏𝜏
 

𝑘𝑘𝑘𝑘𝜕𝜕𝜕𝜕 = 0,25𝑘𝑘𝑘𝑘
∆𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛=1(𝜕𝜕𝜕𝜕 = 0)
𝐸𝐸𝐸𝐸2(𝜕𝜕𝜕𝜕 → ∞)  

[𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)2] ÷ [𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)1] 

𝑇𝑇𝑇𝑇� ± 0.5∆𝑇𝑇𝑇𝑇 = (𝑇𝑇𝑇𝑇0 + 𝛩𝛩𝛩𝛩∞) ± 0.5∆𝑇𝑇𝑇𝑇 

𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ ∇(−𝑘𝑘𝑘𝑘∇𝑇𝑇𝑇𝑇) = 0 

 

(6)

At the same time, solution (4) is correct as-
suming that g ≪ l.

The classic pulse method for determining 
thermal diffusivity (Parker method)

In the classic Parker method, thermal diffu-
sivity is expressed by the following formula:

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 0) = �
=

𝑄𝑄𝑄𝑄
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑔𝑔𝑔𝑔

,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑔𝑔𝑔𝑔 

= 0,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔 < 𝑥𝑥𝑥𝑥 ≤ 𝑑𝑑𝑑𝑑
 

𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕2𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 =

𝜕𝜕𝜕𝜕𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =
1
𝑑𝑑𝑑𝑑
�

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′ +

+
2
𝑑𝑑𝑑𝑑
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 �−

𝑛𝑛𝑛𝑛2𝜋𝜋𝜋𝜋2

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑

∞

𝑛𝑛𝑛𝑛=1

� 𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)
𝑑𝑑𝑑𝑑

0
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑

0
 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝛩𝛩𝛩𝛩∞ �1 + 2 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑
�

∞

𝑛𝑛𝑛𝑛=1

exp �−𝑛𝑛𝑛𝑛2 𝜕𝜕𝜕𝜕
𝜏𝜏𝜏𝜏
�� 

𝜏𝜏𝜏𝜏 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝑑𝑑𝑑𝑑
 

Θ∞ = Θ(x = l, t = ∞) =
Q
ρcp l

 

𝑑𝑑𝑑𝑑 =
1.368 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕0,5
 

𝑑𝑑𝑑𝑑 =
0.48 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
 

𝜏𝜏𝜏𝜏 = (𝜕𝜕𝜕𝜕2 − 𝜕𝜕𝜕𝜕1) �𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕1)
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕2)�

−1

 

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜏𝜏𝜏𝜏
 

𝑘𝑘𝑘𝑘𝜕𝜕𝜕𝜕 = 0,25𝑘𝑘𝑘𝑘
∆𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛=1(𝜕𝜕𝜕𝜕 = 0)
𝐸𝐸𝐸𝐸2(𝜕𝜕𝜕𝜕 → ∞)  

[𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)2] ÷ [𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)1] 

𝑇𝑇𝑇𝑇� ± 0.5∆𝑇𝑇𝑇𝑇 = (𝑇𝑇𝑇𝑇0 + 𝛩𝛩𝛩𝛩∞) ± 0.5∆𝑇𝑇𝑇𝑇 

𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ ∇(−𝑘𝑘𝑘𝑘∇𝑇𝑇𝑇𝑇) = 0 

 

(7)

where: t0,5 – is the so-called half time, which cor-
responds to the time after which the ex-
cess temperature of the back surface of 
the sample wall reaches half of its maxi-
mum value.

Another way of determining the thermal 
diffusivity in the classic Parker method is to 

extrapolate the linear segment of the excess tem-
perature growth curve Θ'(x, t) = Θ(l, t) to the in-
tersection with the t axis. Then, after tx denotes 
the time corresponding to the intersection point 
of the linear section of the curve Θ'(x, t) with the 
t axis, we obtain:

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 0) = �
=

𝑄𝑄𝑄𝑄
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑔𝑔𝑔𝑔

,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑔𝑔𝑔𝑔 

= 0,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔 < 𝑥𝑥𝑥𝑥 ≤ 𝑑𝑑𝑑𝑑
 

𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕2𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 =

𝜕𝜕𝜕𝜕𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =
1
𝑑𝑑𝑑𝑑
�

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′ +

+
2
𝑑𝑑𝑑𝑑
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 �−

𝑛𝑛𝑛𝑛2𝜋𝜋𝜋𝜋2

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑

∞

𝑛𝑛𝑛𝑛=1

� 𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)
𝑑𝑑𝑑𝑑

0
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑

0
 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝛩𝛩𝛩𝛩∞ �1 + 2 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑
�

∞

𝑛𝑛𝑛𝑛=1

exp �−𝑛𝑛𝑛𝑛2 𝜕𝜕𝜕𝜕
𝜏𝜏𝜏𝜏
�� 

𝜏𝜏𝜏𝜏 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝑑𝑑𝑑𝑑
 

Θ∞ = Θ(x = l, t = ∞) =
Q
ρcp l

 

𝑑𝑑𝑑𝑑 =
1.368 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕0,5
 

𝑑𝑑𝑑𝑑 =
0.48 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
 

𝜏𝜏𝜏𝜏 = (𝜕𝜕𝜕𝜕2 − 𝜕𝜕𝜕𝜕1) �𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕1)
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕2)�

−1

 

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜏𝜏𝜏𝜏
 

𝑘𝑘𝑘𝑘𝜕𝜕𝜕𝜕 = 0,25𝑘𝑘𝑘𝑘
∆𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛=1(𝜕𝜕𝜕𝜕 = 0)
𝐸𝐸𝐸𝐸2(𝜕𝜕𝜕𝜕 → ∞)  

[𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)2] ÷ [𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)1] 

𝑇𝑇𝑇𝑇� ± 0.5∆𝑇𝑇𝑇𝑇 = (𝑇𝑇𝑇𝑇0 + 𝛩𝛩𝛩𝛩∞) ± 0.5∆𝑇𝑇𝑇𝑇 

𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ ∇(−𝑘𝑘𝑘𝑘∇𝑇𝑇𝑇𝑇) = 0 

 

(8)

Modified pulse method (MPM)

Thermal diffusivity in this method is deter-
mined based on the measurement of the tempera-
ture difference between the sample’s front (x = 0)  
and back (x = l) surface Figure 2b. Temperature 
changes on the extreme surfaces of the tested 
sample and their differences along with the val-
ues characteristic for these changes. The error 
made as a result of replacing the exact solution of 
the series of the temperature difference between 
the extreme surfaces of the sample with the tem-
perature difference for the first term of this series 
is shown in Figure 2a and it is less than 1% for  
t/τ ≅ 0.58.

To determine the thermal diffusivity a, based 
on the recorded waveforms of changes in temper-
ature differences ∆Θ'(t), between the front and 
back surfaces of the tested sample, after a laser 
shot at its front surface, the characteristic time τ 
and the temperature increase Θ∞ of the sample 
should be determined after of the transition pro-
cess and is determined from the dependence:

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 0) = �
=

𝑄𝑄𝑄𝑄
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑔𝑔𝑔𝑔

,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑔𝑔𝑔𝑔 

= 0,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔 < 𝑥𝑥𝑥𝑥 ≤ 𝑑𝑑𝑑𝑑
 

𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕2𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 =

𝜕𝜕𝜕𝜕𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =
1
𝑑𝑑𝑑𝑑
�

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′ +

+
2
𝑑𝑑𝑑𝑑
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 �−

𝑛𝑛𝑛𝑛2𝜋𝜋𝜋𝜋2

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑

∞

𝑛𝑛𝑛𝑛=1

� 𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)
𝑑𝑑𝑑𝑑

0
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑

0
 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝛩𝛩𝛩𝛩∞ �1 + 2 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑
�

∞

𝑛𝑛𝑛𝑛=1

exp �−𝑛𝑛𝑛𝑛2 𝜕𝜕𝜕𝜕
𝜏𝜏𝜏𝜏
�� 

𝜏𝜏𝜏𝜏 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝑑𝑑𝑑𝑑
 

Θ∞ = Θ(x = l, t = ∞) =
Q
ρcp l

 

𝑑𝑑𝑑𝑑 =
1.368 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕0,5
 

𝑑𝑑𝑑𝑑 =
0.48 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
 

𝜏𝜏𝜏𝜏 = (𝜕𝜕𝜕𝜕2 − 𝜕𝜕𝜕𝜕1) �𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕1)
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕2)�

−1

 

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜏𝜏𝜏𝜏
 

𝑘𝑘𝑘𝑘𝜕𝜕𝜕𝜕 = 0,25𝑘𝑘𝑘𝑘
∆𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛=1(𝜕𝜕𝜕𝜕 = 0)
𝐸𝐸𝐸𝐸2(𝜕𝜕𝜕𝜕 → ∞)  

[𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)2] ÷ [𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)1] 

𝑇𝑇𝑇𝑇� ± 0.5∆𝑇𝑇𝑇𝑇 = (𝑇𝑇𝑇𝑇0 + 𝛩𝛩𝛩𝛩∞) ± 0.5∆𝑇𝑇𝑇𝑇 

𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ ∇(−𝑘𝑘𝑘𝑘∇𝑇𝑇𝑇𝑇) = 0 

 

(9)

where: t1 – initial temporal range of the approxi-
mation;       
t2 – final temporal range of approximation; 
∆Θ – temperature differences.

On the basis of the experimentally determined 
values of the characteristic time τ and the thick-
ness of the sample l, the thermal diffusivity a of 
the material of the tested sample is determined, 
from the dependence which has the following 
form:

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 0) = �
=

𝑄𝑄𝑄𝑄
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑔𝑔𝑔𝑔

,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑔𝑔𝑔𝑔 

= 0,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔 < 𝑥𝑥𝑥𝑥 ≤ 𝑑𝑑𝑑𝑑
 

𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕2𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 =

𝜕𝜕𝜕𝜕𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =
1
𝑑𝑑𝑑𝑑
�

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′ +

+
2
𝑑𝑑𝑑𝑑
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 �−

𝑛𝑛𝑛𝑛2𝜋𝜋𝜋𝜋2

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑

∞

𝑛𝑛𝑛𝑛=1

� 𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)
𝑑𝑑𝑑𝑑

0
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑

0
 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝛩𝛩𝛩𝛩∞ �1 + 2 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑
�

∞

𝑛𝑛𝑛𝑛=1

exp �−𝑛𝑛𝑛𝑛2 𝜕𝜕𝜕𝜕
𝜏𝜏𝜏𝜏
�� 

𝜏𝜏𝜏𝜏 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝑑𝑑𝑑𝑑
 

Θ∞ = Θ(x = l, t = ∞) =
Q
ρcp l

 

𝑑𝑑𝑑𝑑 =
1.368 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕0,5
 

𝑑𝑑𝑑𝑑 =
0.48 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
 

𝜏𝜏𝜏𝜏 = (𝜕𝜕𝜕𝜕2 − 𝜕𝜕𝜕𝜕1) �𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕1)
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕2)�

−1

 

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜏𝜏𝜏𝜏
 

𝑘𝑘𝑘𝑘𝜕𝜕𝜕𝜕 = 0,25𝑘𝑘𝑘𝑘
∆𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛=1(𝜕𝜕𝜕𝜕 = 0)
𝐸𝐸𝐸𝐸2(𝜕𝜕𝜕𝜕 → ∞)  

[𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)2] ÷ [𝑇𝑇𝑇𝑇� − (∆𝑇𝑇𝑇𝑇)1] 

𝑇𝑇𝑇𝑇� ± 0.5∆𝑇𝑇𝑇𝑇 = (𝑇𝑇𝑇𝑇0 + 𝛩𝛩𝛩𝛩∞) ± 0.5∆𝑇𝑇𝑇𝑇 

𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ ∇(−𝑘𝑘𝑘𝑘∇𝑇𝑇𝑇𝑇) = 0 

 

(10)

As a criterion for the correct determination of 
the characteristic time τ, and thus the thermal dif-
fusivity a, during the identification process, the 
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minimum mean square error between the recorded 
waveform and its theoretical form obtained from 
solving this problem, i.e., between the measured 
and theoretical temperature difference on the ex-
treme surfaces of the tested sample, is assumed. 
This parameter is minimized in the range t1,÷ t2 
by shifting the signal on the ordinate axis. The 
process stops when a satisfactory agreement is 
reached between the theoretical curve ∆Θ(t) and 
the experimentally recorded ∆Θ'(t) [26, 28, 30].

Determination of the Seebeck coefficient 
of the differential thermocouple

During the experiment, temperature measure-
ments T0, Θ2(t) and ∆Θ(t) were made with ther-
mocouples. In the case of T0 and Θ2(t) it was a 
Fe-CuNi thermocouple. On the other hand, the 

temperature difference ∆Θ(t) on the extreme sur-
faces of the tested sample was measured with a 
differential thermocouple, formed by two series-
connected junctions “CuNi thermoelectrode–
sample front surface” and “rear surface of the 
sample – CuNi thermoelectrode”. The schemat-
ic diagram of the method of carrying out these 
measurements is shown in Figure 3. Temperature 
measurements T0 and Θ2(t) are easy to carry out 
because the k(T) characteristic of the Fe-CuNi 
thermocouple is known. However, it is a rule 
that the kt(T) characteristic of the thermocouple 
“CuNi - material of the tested sample” is not 
known. Without the known kt(T) characteristic, 
it is not possible to determine the value of the ∆T 
interval by averaging the determined value a(T).

This problem was solved by the simultane-
ous measurement of E2(T) and E(T) and in both 

Fig. 2. Error made by replacing ∆Θ(t) by ∆Θn=1(t), temperature rise curves and change of 
temperature difference on the sample to determine thermal diffusivity by pulse method [28]

Fig. 3. Principle of the temperature measurement Q2(t) [=T2(t≤0)-T0] and the difference of temperature ΔQ(t) 
[=Q1(t)-Q2(t)] between the extreme surfaces of the sample: kt – the constant coefficient of the thermocouple 
“CuNi–the material of the investigated sample”; k – the constant coefficient of the thermocouple “Fe - CuNi”[30]
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cases the Thermo-Electric Force, in the assumed 
ranges of temperature changes, are linear func-
tions of Θ2(t) and ∆Θ(t), respectively. In both 
cases, after the heat transfer process in the sample 
has been established. Hence, the following equa-
tion is obtained: 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 0) = �
=

𝑄𝑄𝑄𝑄
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑔𝑔𝑔𝑔

,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑔𝑔𝑔𝑔 

= 0,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔 < 𝑥𝑥𝑥𝑥 ≤ 𝑑𝑑𝑑𝑑
 

𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕2𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2 =

𝜕𝜕𝜕𝜕𝛩𝛩𝛩𝛩(𝜏𝜏𝜏𝜏, 𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =
1
𝑑𝑑𝑑𝑑
�

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′ +

+
2
𝑑𝑑𝑑𝑑
� 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 �−

𝑛𝑛𝑛𝑛2𝜋𝜋𝜋𝜋2

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑

∞

𝑛𝑛𝑛𝑛=1

� 𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥′ , 0)
𝑑𝑑𝑑𝑑

0
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥′

𝑑𝑑𝑑𝑑

0
 

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝛩𝛩𝛩𝛩∞ �1 + 2 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑
�

∞

𝑛𝑛𝑛𝑛=1

exp �−𝑛𝑛𝑛𝑛2 𝜕𝜕𝜕𝜕
𝜏𝜏𝜏𝜏
�� 

𝜏𝜏𝜏𝜏 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝑑𝑑𝑑𝑑
 

Θ∞ = Θ(x = l, t = ∞) =
Q
ρcp l

 

𝑑𝑑𝑑𝑑 =
1.368 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕0,5
 

𝑑𝑑𝑑𝑑 =
0.48 𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
 

𝜏𝜏𝜏𝜏 = (𝜕𝜕𝜕𝜕2 − 𝜕𝜕𝜕𝜕1) �𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕1)
∆𝛩𝛩𝛩𝛩′(𝜕𝜕𝜕𝜕2)�

−1

 

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑2

𝜋𝜋𝜋𝜋2𝜏𝜏𝜏𝜏
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where: kt – the constant coefficient of the thermo-
couple “CuNi - the material of the inves-
tigated sample”.

During the measurements (Fig. 3), the signals 
Eth,2(t) and ∆Eth,2(t) were amplified, and the 
amplification factor in both cases was K = 10000.

METROLOGICAL CONDITIONS 

The correct determination of thermal diffusiv-
ity by the modified pulse method requires meet-
ing several requirements imposed both by the 
heat transfer model on which the given method 
is based and by the measurement data acquisition 
and processing system. The most important of 
them are listed below:
 • Starting from the generation of a surface heat 

source, the condition of the adiabaticity of the 
sample must be met on the front surface. It is 
met when the measurement is carried out in a 
vacuum (p ≤ 2 ∙ 10-4 Pa) and the heat dissipa-
tion through the elements fixing the sample in 
the furnace is minimal (conical ceramic ele-
ments were used).

 • Fulfillment of the condition of one-dimension-
ality of heat exchange in the sample is ensured 
by the appropriate selection of the ratio of its 
diameter d to thickness l, and its value should 
be greater than d/l ≥ 6. Also, the local val-
ues of the surface density of the created heat 
source should be the same.

 • To eliminate the influence of the duration 
of the laser radiation pulse on the course of 
changes in the measurement signal ΔΘ(t), 
the limit value on the time axis should be  
t = tg = t0 + 0.2τ.

 • An unfavorable factor affecting the correctness 
of determining the thermal diffusivity a(T) 
by the modified pulse method is the possibil-
ity of initial temperature polarization of the 
tested sample (i.e. if T(x,t = 0) ≠ T0 = idem  
just before the formation of a surface heat 

source on the front surface). This type of phe-
nomenon can occur in a sample when its ex-
treme surfaces are asymmetrically heated in a 
vacuum furnace. In practice, if the condition 
∆Θ(t < 0) ≠ ∆Θ(t = 7τ) is met, it can be as-
sumed that there is no initial polarization of 
the sample. 

 • The influence of the measurement system 
noise depends on the frequency response and 
the spectral density of the noise generated in 
the signal source and the measurement ampli-
fier. Noise generated in the signal source –in 
this case in thermocouples –can be neglected 
due to the negligible value of their resistance 
(a few Ω). To minimize the noise of the mea-
surement system, the frequency response of 
the amplifier should be limited to a value that 
does not cause significant distortion of the sig-
nal. Limiting the frequency response distorts 
the signal that grows rapidly (immediately 
after the laser shot). However, since only a 
portion of the waveform can be used for the 
calculation (for t ≥ 0.58τ), the distortion of the 
initial portion of the waveform does not affect 
the measurement result.

 • From the point of view of the experiment, the 
characteristic time of the thermoelectrode ma-
terials, welded to the extreme surfaces of the 
samples, is also important. In this case, the 
materials of the test sample are Ni, and ther-
moelectrodes of constantan (CuNi) and iron 
(Fe) were used to measure the temperature 
(Fig. 5). Taking into account that: ≅ 50 μm  
aCuNi = 11.4 ∙ 10−6 m2/s, and aFe = 22.2 ∙ 10−6 m2/s  
received: τCuNi = 22.3 μs and τFe = 11.43 μs.  
That is, the time ti ≅ 7τi, necessary to equalize 
the temperature in the volume of thermoelec-
trodes made of constantan and iron is in both 
cases at least 7 times shorter than the conven-
tional duration of the laser pulse ti ≅ 1 ms.

 • During the experiment, the temperature inter-
val of averaging the thermal diffusivity value, 
determined based on the course of the ΔΘ(t) 
curve, can be influenced in two ways:

 ο moving the interval (t2-t1) of determin-
ing the characteristic time t to the right 
on the time axis; 

 ο by the surface density of the beam of the 
radiation flux incident on the test sample 
generated by the laser. The temperature 
range within which the averaging of the 
thermal diffusivity values takes place is:
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wherein: T̅ = T0 + Θ∞;   
∆T1 = [T0 + Θ1(t)] – T̅ = Θ1(t) – Θ∞  
and ∆T2 = T̅ – [T0 + Θ1(t)] = Θ∞  – Θ2(t).

Where possible, the value ∆T = T1 − T2 
should be chosen in such a way that the condition 
is met ∆T = ∆T1 − ∆T2 (Fig.2), then:
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where: T – Temperature;   
T0 –Thermostating temperature;   
T̅ – Average temperature.

 • In the range of temperature changes higher 
than 400 K, an important factor was the con-
sideration of heat losses by the tested sample.

EXPERIMENTAL RESEARCH

The thermocouple wires were attached to a 
sample with a thickness of l = 1.43 mm Figure 4a.  
The test sample, which is placed on a special 
boom in the central zone of the vacuum furnace, 
is shown in Figure 4b. The special structure of 
the boom and the created vacuum is designed to 

Fig. 4. The test sample and the same sample fixed in the support before being placed in the vacuum oven

Fig. 5. An example of the final printout of the process of processing measurement data of thermal 
diffusivity of a nickel sample (Ni 999) with a thickness of l = 1.43 mm, at a temperature T0 = 341.1 ℃
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minimize heat loss from the sample to the envi-
ronment by conduction and convection.

Examples of studies on the thermal diffusivity 
of nickel 999 for the sampling temperature in the 
vicinity of the Curie point.

Following the procedure described earlier and 
observing the metrological conditions that deter-
mine the correct conduct of the experiment speci-
fied in chapter "Metrological conditions…”, the 
thermal diffusivity was determined from the ex-
perimental run at the set temperature of thermo-
stating, with the values T0 = 341.1 °C of a nickel 
sample with a thickness of l = 1.43 mm (Fig. 5). 
Also, for this measurement a(T) = T0 + Θ∞), 

corresponding to a discrete value of the thermo-
stating temperature T = T0 + Θ∞, a discrete value 
of the Seebeck coefficient was determined kT=T0. 

Sample final printouts of the measurement 
data processing process for determining thermal 
diffusivity are shown in Figure 5 (Modified meth-
od) and Figure 6 (Classic method). The method 
of determining the Seebeck coefficient is shown 
in Figure 7 with the most important values neces-
sary for its calculation.

In addition, the most important parameter 
values identified were tabulated and presented 
in Table 1. Different values of thermal diffusiv-
ity can be observed for a given material at the 

Fig. 6. Typical record of the final stage of numerical processing of the recorded temperature changes Θ(l,t) on 
the back surface of a nickel sample, after a laser shot at its front surface, during the determination of the thermal 
diffusivity of the sample using the classic (Parker) method

Fig. 7. Final printout of the experimental data based on which the Seebeck 
coefficient kT was determined "CuNi–material of the tested sample"
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same temperature, determined by two methods 
in one measurement. This difference is about 
2.2%, partly related to the different temperature 
ranges of thermal diffusivity averaging in these 
methods.

RESULTS

The numerical model was developed and nu-
merical simulations were carried out in the COM-
SOL 3.5a environment by COMSOL MULTIPHI-
SICS. The heat transfer was analyzed using the 
Heat transfer module. In this module, the physical 
process of heat conduction was simulated.

The following simplifications were intro-
duced in the numerical analysis:
 • in the heat transfer model, the condition of 

adiabaticity of the tested sample was assumed 
(during experimental tests, the vacuum is 
about 10-5 mbar) without any heat loss on the 
sample's fastening elements,

 • the surface heat source was generated with 
an even distribution of thermal energy on the 
front surface and with the duration of the pulse 
equal to 1ms,

 • the heat losses from the surface of the sample 
by radiation were not taken into account (how-
ever, the error that is made when determining 

the thermal diffusivity on this account at the set 
temperature of thermostating equal to 341 °C  
is less than 0.03 [26],

 • the entered thermophysical values of the 
materials are the values at the set thermo-
static temperature based on the material base 
MPDB v 7.49 [31].

The thermophysical properties of the tested 
sample and the most important values of the 
simulation of the numerical model were adopted 
based on scientific periodicals published in the 
literature (collected in the MPDB v 7.49 data-
base) and summarized in Table 2.

Following the procedure described earlier and 
the procedure described in the experimental ex-
ample and with the previously mentioned simpli-
fying assumptions introduced during the numeri-
cal simulation, the values of thermal diffusivity 
and the Seebeck coefficient at the set thermostat-
ing temperature were determined, with the values 
T0 = 341.1 °C of a nickel sample with a thick-
ness of l = 1.43 mm. The simulation was carried 
out with a different number of nodal points, and 
the values of the identified thermal diffusivity pa-
rameter as well as the half-time and characteristic 
time are tabulated below.

Assuming that the material is homogeneous, 
and that the experimental tests were carried out 

Table 1.The most important parameters identified from the experimental run
No. Parameter [unit] Classic method Modified method (MPM)

1 t0.5/τ [ms] 25.14 17.96

2 T̅ [°C] 342.6±1.5 341.8±0.37

3 a(T̅) [m2/s] 11.28 11.54

Parameters for calculating the Seebeck coefficient kT

4 E2(t→∞) [mV] 0.3634

5 ΔEn=1(t=0) [mV] 1.003

6 kTFe-CuNi [μV] 50.56

kT CuNi-sample = 34.88 [μV] 

Table 2. Properties of the tested material and simulation parameters
No. Thermophysical Parameter Parameter[unit] Value entered into COMSOL

1 Density ρ [kg/m3] 8774.4

2 Heat capacity at constant pressure cp [J/kg/K] 623.37

3 Thermal conductivity λ [W/m/K] 64.782

4 Time t [ms] 100

5 Thickness l [mm] 1.43

6 Diameter φ [mm] 12

7 Temperature T0 [°C] 341 

8 Inward heat flux [W/m2] 6·106
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for axially symmetrical samples, the model was 
assumed to have isothermal edges on the outer 
sides, and the laser pulse was simulated by re-
leasing energy onto the bottom surface. The read-
ing took place under ideal conditions in which no 
additional well-conductive layers were required. 
Geometric models were created in the manner 
previously described, and with test parameter set-
tings as below:
1. The subdomain settings were as follows:

− General equation of heat transfer used in the 
model in Comsol Multiphysics:

𝛩𝛩𝛩𝛩(𝑥𝑥𝑥𝑥, 0) = �
=
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− Thermophysical properties of the tested 
material (Table 2).

− Element settings for temperature: 
Lagrange–Quadratic.

2. The boundary settings were as follows – all 
planes were aligned symmetrically except for 
the bottom plane, where a laser pulse of less than 
1 ms with an inward heat flux of 6·106 W/m2  
was simulated (Fig 8).

Numerical tests were carried out for one 
model with pre-determined boundary and starting 
conditions but for 5 different degrees of density of 
computational nodes. The temperature waveform 
from the opposite surface to the surface of heat 

Table 3. Values of the identified thermal diffusivity parameter for the classic and modified method with various 
use of meshing during the simulation

No. The number of COMSOL 
nodes Parameter[unit] Classic method Modified method (MPM)

1
64

t0.5/τ [ms] 24.7 17.34

2 a(T̅) [m2/s] 11.48 11.95

1
254

t0.5/τ [ms] 24.36 17.48

2 a(T̅) [m2/s] 11.63 11.85

1
1054

t0.5/τ [ms] 24.35 17.49

2 a(T̅) [m2/s] 11.64 11.84

1
4224

t0.5/τ [ms] 24.32 17.49

2 a(T̅) [m2/s] 11.65 11.84

1
16896

t0.5/τ [ms] 24.30 17.49

2 a(T̅) [m2/s] 11.66 11.84

Identification of the Seebeck coefficient kT

4 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 � �∆Θ(𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚)− ΔΘ� (𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚)�
2

𝑚𝑚𝑚𝑚=900

𝑚𝑚𝑚𝑚=100

 0.1277

kT CuNi-sample=34.26 [μV]

Fig. 8. Setting the boundary conditions for an exemplary geometric model
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drying was read at 0.0001 s. Linear system solver 
“Direct (UMFPACK)” was used. Figure 9a shows 
the dependence of the thermal diffusivity value 
on the number of nodal points.

Computational grid settings

A calculation grid with triangular elements was 
used (Fig. 9b). It is reasonable to introduce nodal 
points in the number of at least 256 (in Fig. 9b), 
for the number of points = 4224 due to the stability 
of the solution to the problem of heat conduction 
during the simulation. Calculations of the tem-
perature field for the introduced numerical model 
with previous assumptions confirm that the tem-
perature difference between the extreme surfaces 
of the sample after 0.1 seconds is about 0.01 °C  
and during the experiment 0.012 °C, which is 
shown in Figure 9b (temperature field).

The Seebeck coefficient was determined based 
on fitting the experimental curve to the simulation 

curve of the change in the temperature differ-
ence of the extreme surfaces of the sample. This 
identification was possible to determine from the 
known course of the thermoelectric force differ-
ence between the extreme surfaces of the tested 
sample for the CuNi-sample thermocouple and 
the simulation course of the temperature differ-
ence. The approximation interval was determined 
from about 0.6 t to 90 ms (where t ≈ 17 ms for a 
given experimental run). This was caused by the 
desire to avoid adjusting the beginning of the ex-
perimental run, where there may be disturbances 
in the uneven distribution of laser radiation energy 
on the front surface of the sample. The Seebeck 
coefficient of 34.26 μV was determined and the 
waveform fit for this value is shown in Figure 10b.

The values of the Seebeck coefficient were 
determined using the analytical method based 
on the experimental run as well as the second 
method supported by simulation. The difference 
between these values from the two methods is 

Fig. 9. a) The dependence of thermal diffusivity determined by two methods as a function of the 
number of points of the numerical grid, b) temperature field and grid in the COMSOL software

Fig. 10. a) Visualization of the change in the temperature difference between the extreme surfaces of the sample 
and the temperature increase on the back surface after a laser shot at the front surface from the experimental and 
numerical run; b) temperature distribution inside the sample after 0.1 s and calculation grid b)
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about 1.8%. Owing to such precise identification 
of this coefficient, it is possible to precisely deter-
mine the thermal diffusivity averaging range. Fig-
ure 10 presents the values of thermal diffusivity, 
using the previously presented assumptions and 
set values necessary for identification, in relation 
to the set based on the Cindas and MPDB data-
bases [31]. The Cindas material base is based on 
the measurement of thermal diffusivity using the 
Ångstream method, therefore a small number of 
points on the characteristics, the MPDB v 7.49 
base is based on measurements of intermediate 
thermophysical values of materials, and the value 

of thermal diffusivity is determined based on the 
relationship a = λ/ρcp, where: λ – thermal con-
ductivity, ρ – Density. When declaring the values 
of thermophysical parameters of nickel, MPDB 
was used and for these values, the value of ther-
mal diffusivity was determined using two meth-
ods. Various numbers of nodal points were gen-
erated in the computational grids (discussed ear-
lier); however, with very large numbers of these 
points, the thermal diffusivity value stabilizes at 
the level of 11.66·10-6 m2/s for the classic method 
and 11.85·10-6 m2/s for the modified method, as 
shown in Figure 11.

Fig. 11. Comparison of the thermal diffusivity of nickel l = 1.43 mm at T0 = 341.1 °C obtained during the simulation 
with the values from the characteristics in the range of 300 – 400 °C obtained using the modified pulse method 
from experimental runs

Fig. 12. Temperature changes on the boundary surfaces of the investigated specimen and 
the difference between them with the values characteristic of those changes
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Having measured only the difference of ther-
moelectric forces on the extreme surfaces of the 
sample and simulation tests, the Seebeck coef-
ficient necessary to determine the thermal dif-
fusivity averaging temperature can be clearly 
determined.

When carrying out numerical simulations, it 
is also important, despite such a simple model, 
to select the appropriate number of nodal points, 
because, as shown in Figure 9, it is of reasonable 
importance. For a detailed discussion of the issue, 
the above work presents the procedure for de-
termining thermal diffusivity and the exact tem-
perature range of diffusivity averaging. Figure 
11 shows the full temperature characteristics of 
this parameter and the value of the thermostating 
temperature was chosen so that its value was be-
fore the second type phase transition temperature. 
This is of significant metrological importance due 
to the dynamics of changes in thermal diffusivity 
and the related measurement problems, which is 
noticeable in significant discrepancies in deter-
mining thermal diffusivity in the immediate vi-
cinity of the Curie point. 

The above work presents the results of the 
numerical analysis of heat transfer for nickel and 
the determination of thermal diffusivity for this 
material by using both classic and modified meth-
ods. The results above were compared with the 
values obtained experimentally. When assessing 
the analysis, attention should be paid to discrep-
ancies in the results of the same parameter from 
one parallel measurement, both numerically and 
experimentally, and this may be primarily due to 
the fact that the range of averaging thermal diffu-
sivity determined by the classic method is much 
wider and ranges from T0 to T0 + 4Θ∞ compared 
to the modified method where this range varies 
from T0 + 0.56Θ∞ to T0 + 1.44Θ∞, which is shown 
and marked in Figure12.

CONCLUSIONS

Due to the complexity of the problem, it is 
planned to repeat the measurements at tempera-
tures slightly lower than the second-order phase 
transition temperature, so that the averaging tem-
perature range covers both the steam and the fer-
romagnet during one measurement.

The heat transfer model used in the classic 
Parker method was subsequently used by other 
authors in various variations. Among other things, 

it was also used in the modified pulse method, the 
general outline of which is presented in this paper.

Using the developed and experimentally test-
ed modified pulse method of diffusivity testing 
a(T) of solids, it is possible to determine the val-
ues of this quantity in the temperature averaging 
range of less than 1 K and the estimated measure-
ment error of less than 3%. In addition, a numeri-
cal simulation was carried out, based on which 
it is possible to determine the above coefficient 
using both the classic and modified methods. Sig-
nificant discrepancies can be observed between 
the two methods resulting from a large change in 
thermal diffusivity as a function of temperature in 
the immediate vicinity of the Curie point.

The differences obtained between the values 
determined experimentally and numerically us-
ing the inverse problem are 3.3% for the classi-
cal method and 3.5% for the method modified in 
relation to the values obtained experimentally, 
respectively.

However, the influence of the number of com-
puting nodes had a smaller impact and amounted 
to only 1.1% for the values obtained with 66 nodes 
and the values obtained with almost 17 thousand 
nodes. Owing to this analysis, the authors were 
able to present a combination of numerical and 
experimental research as well as present the 
methodological conditions of the study. In the 
next stage of numerical research, it is necessary 
to take into account the dependence of individual 
parameters as a function of temperature, which 
at the same time complicates the solution of the 
inverse problem, especially near the Curie point 
where the parameters change significantly with a 
small increase in temperature in the sample.
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