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INTRODUCTION 

In the production environment, searching for 
new essential elements of technology develop-
ment is often necessary. Technological improve-
ment leads to an increase in the production ca-
pacity of companies, giving new opportunities 
to meet future ’challenges from clients. These 
challenges include, above all, a higher quality 
of products obtained in the production process. 
However, these activities require resources, 

which in the case of enterprises include human 
and financial capital, but above all, know-how, 
i.e., knowledge, ideas, and innovative solutions. 
Therefore, commercialisation processes should 
be modelled and analysed from the point of view 
of implementing activities within individual stag-
es [1]. Such an example of industrial challenges 
is sheet metal forming, one of the most common-
ly used production processes. It is expected that 
shortly, this manufacturing process will be effec-
tively improved thanks to the achievements of the 
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ABSTRACT
The sheet metal surface crack detection during manufacturing is an essential issue because of both the product 
quality and process productivity. Development of solutions to eliminate defective products during the metal form-
ing process is crucial for the smooth production and for developing an appropriate tool geometry in the initial 
phase of the process. Currently, the methods of surface crack detection used in the industry are mostly related to 
visual inspection. These are methods that require operators of industrial facilities considerable attention and effort 
to capture emerging discontinuities on the sheet metal surface. Also, this situation results increase in the duration 
of the specific operations of stamping and significantly reduces productivity. Therefore, an industrial application 
of a non-contact laser technique that simultaneously provides the results of the speckle imaging is presented. The 
authors demonstrate a specially designed machine vision system along with experimental tools for the stamping 
operation. Proposed solution uses the phenomenon of speckle pattern that appears in the image of the investigated 
sheet surface produced by the laser beam emission. In this method, coherent laser light is emitted to the surface, 
where a speckle pattern is generated due to scatter reflection from the sheet metal surface and then, shift-and-add 
technique and image processing is applied. The proposed measurement technique consists, initially, of making a 
sequence of images of the tested object for the moving surface of the sheet. Secondly, the object’s displacement 
quantity in each image is determined, and the position is corrected. The test object in each image is moved to the 
starting position, and all images are superimposed. It allows to obtain a high-quality image with visible surface 
defects. Finally, the dynamically changing speckle pattern intensity is evaluated using Gaussian-of-Laplacian edge 
detection to investigate a surface crack location due to the surface discontinues and light scattering. This process 
is recommended for machine vision imaging of distant objects, which works well in industrial conditions as well 
as online analysis. Also, from the speckle size measurement, an experimental procedure is employed to verify the 
best condition for vision system resolution.
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industrial revolution at every stage of manufactur-
ing technology, including in particular in the field 
of quality control [2]. The stamping process is a 
metal forming technology that includes bending 
and stretching the metal using presses and dies 
(Figure 1a,b). The authors propose a technique 
for surface crack inspection using an automated 
vision system during industrial auto body sheet 
stamping (Figure 1c). Compared to casting, forg-
ing, or machining, stamping allows one to shape 
light products with complex shapes quickly. In 
the case of mass production, formed components, 
such as car body panels, can be produced at high 
speed and low cost. Each part is made by placing 
a metal sheet between the upper die (or stamp) 
and the lower die, which are the geometric nega-
tives of each other. The press pushes the two dies 
together, forming the metal sheet into shape (Fig-
ure 2a). The essential elements are a stamp, a die, 
and a set of clamping fixtures (blank holders). 
The stamp presses the initial sheet, forming the 
desired shape, while the blank holders control the 
delivery of sheet metal to the die area [3]. The 
two main qualitative factors in the sheet forming 
process are formability (e.g., wrinkling caused by 
excessive local compression and cracking caused 
by undue local stress see Figure 2b) and dimen-
sional accuracy (e.g., spring-back caused by re-
generation of elasticity) – see Figure 2b.

In addition, consistency (i.e., minimizing di-
mensional changes caused by lubrication, mate-
rial properties or thickness changes) is a crucial 
requirement in mass production. Therefore, this 
technology is in widespread industrial use, espe-
cially in the automotive industry [4]. However, 
stamping is restricted by the risk of defective 
products being formed due to an incorrect form-
ing mechanism. This mechanism is based on the 
concept of forming, which follows the so-called 
forming limit diagram [5]. Very narrow toler-
ances imposed by contractors (caused by a highly 
complex product geometry) can make the occur-
rence of slight changes in tool geometry, lubrica-
tion conditions, or process parameters lead to sur-
face defects, such as cracking or wrinkling (Fig-
ure 2). Therefore, the problem of detecting defec-
tive products is a critical issue for maintaining 
the quality and performance of the industrial pro-
cesses being conducted. The proper development 
of a solution enabling the elimination of faulty 
products during the shape forming process seems 
crucial not only for the efficient running of the 
production process but also for the development 

of correct tool geometries in the development 
phase of the technological process. Currently, vi-
sual inspection is one of the main methods used in 
industry for surface crack detection. Such meth-
ods require operators of industrial facilities to pay 
considerable attention and effort to detect emerg-
ing discontinuities on the surface of the sheet 
metal. Also, this process increases the duration 
of stamping operations and significantly reduces 
productivity. Therefore, the authors of this paper 
present an industrial application of the proposed 
non-contact measurement method, which would 
provide simultaneous results for surface cracks 
during the sheet metal stamping process. 

The developed solution concerns using co-
herent light instead of white light to illuminate 

Fig. 1. Sheet metal forming; (a) forming components, 
(b) the concept of the sheet metal forming inspection

Fig. 2. Typical sheet metal defects: (a) schematic 
drawing, (b) cracking and wrinkling (own elaboration)
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the tested surface, which works well in industrial 
conditions. The lack of space around the devices 
and difficult production conditions are a big chal-
lenge for today’s vision devices. However, laser 
light allows for operating at a considerable dis-
tance from the tested product without significant 
influence of external lighting. However, the pro-
posed lighting has its limitations. A speckle pat-
tern consisting of light and dark fields is created 
by illuminating a metallic surface with a coher-
ent laser light source. It significantly reduces 
(compared to traditional lighting) the legibility 
of the surface. The process of coherent light il-
lumination results from interference and signifi-
cant laser light scattering. The speckle phenom-
enon is known in astronomy, where layers of the 
atmosphere distort images of distant stars. This 
phenomenon is used in the mechanics of testing 
materials to study defects and surface quality due 
to the non-uniform refractive index of light inci-
dent on a metallic surface [6]. In order to increase 
the effect of speckle formation, the test surface 
is given movement. During this movement, the 
so-called dynamic speckle effect arises, caused by 
changing the configuration of the rough surface 
settings relative to the incident coherent light. 
Through such particle scattering, the interference 
caused by the coherent light will lead to changes 
in intensity, and the areas with scattered particles 
will appear blurry, which increases the readability 
of the recorded image. Using this phenomenon in 
a mathematical sense allows a statistical method 
to process many images of speckle patterns. By 
averaging individual values, it is possible to re-
duce the variability in the sample. As a result of 
averaging the values for individual pixels, the fi-
nal signal-to-noise ratio should be increased by 
the square root of the number of images. The 
presented solution requires an effective packing 
of images algorithm, commonly called “image-
stacking” [7]. Completing this process, image 
analysis for edge detection begins. The effec-
tiveness of edge recognition is closely related to 
image quality and determines the final effective-
ness, accuracy and quality of crack detection of 
the proposed numerical method. Therefore, apart 
from the utilitarian goal, which is to run a vision 
system to control cracks in the stamping technol-
ogy, it is also planned to determine the effective-
ness of the proposed numerical solutions.

The presented research is laid out over four 
sections in this paper. First, a quick literature re-
view of developments in sheet stamping process 

control methods to identify defects is presented. 
A broad overview of the current measurement 
technologies, contact and non-contact, is take 
into account. Next, a simple overview of indus-
trial stamping characteristics, including a short 
description of inspected cracks and mechanisms 
for sheet metal forming is shown. Finally, the au-
thors present the proposed concept of measure-
ment using vision technology. Detailed informa-
tion about the apparatus is given and the laser 
speckle procedure and digital image processing 
analysis are demonstrated. Calculations were pre-
sented to check the effectiveness of the proposed 
algorithms, both in terms of the image assembly 
method and edge detection.

LITERATURE REVIEW

Due to the substantial importance of forming 
stampings, several authors are currently doing in-
creasing work to develop industrial applications 
to analyse the components. One of these meth-
ods is to measure the height of wrinkles, which is 
achieved by pressing in a closed loop by using a 
combination of two opposing displacement con-
verters placed in the upper and lower dies. The 
displacement of two transducers can be used to 
measure the actual height of wrinkles. This type 
of contact wrinkle measurement, which uses sen-
sors, has its limitations in industrial applications 
due to the endurance of the devices. This is due 
to friction at the end of the sensor, which is in 
contact with the sheet, and because the locations 
of wrinkles cannot be known a priori [8].

The most well-known methods include mea-
suring and analysing acoustic signals generated 
during cracking [9]. This approach uses acous-
tic emissions and is a comparative method that 
uses amplitude distribution between cracked and 
non-cracked parts. Since broken parts from the 
stamping process in the automotive industry re-
lease low elasticity energy, a filter set to a specific 
frequency adjustment range were used. The first 
sound appears when the sheet is attached to the 
die. The second sound appears when the press ap-
plies pressure to the sheet. The third sound oc-
curs when the press stops and the sheet panel is 
released. In this process, it was possible to clearly 
distinguish between a cracked state and a normal 
state without much data processing. However, no 
parameters for the detected cracks were given, 
which may determine the usable range of the 
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solution. The varied nature of the emerging sur-
face defects should be noted. This variety includes 
all deficiency levels from roughness through local 
sheet thinning and microcracks up to long tears 
in the material [9]. Defect detection with the use 
of neural networks is an increasingly common 
method in the identification of incorrect courses 
of product manufacturing technology. The pre-
sented solution shows the computational process 
carried out in off-line mode, not only detecting 
defects but also indicating potential causes of 
their formation. The approach is original because 
it assumes the use of data related to the product 
manufacturing process, i.e. measurement signals 
from devices, and not data describing the finished 
product, i.e. images [10].

Another group of techniques already allows 
identifying strictly defined types of defects, such 
as cracks above 5 mm long [11]. Induction ther-
mography (or induction heating) is based on the 
induction of eddy currents from an Energy source, 
such as an examination probe. An induction coil 
with a short electrical pulse (usually from 50 ms 
to 1 s) is used without contact with the object, 
thus generating eddy currents on the surface. Ac-
tive thermography with induction excitation is a 
reliable method of controlling magnetic particles 
on steel car parts. Ferreira’s research concerns the 
control of components in which typical superfi-
cial cracks (with a length > 5 mm) and specific 
orientations are detected using induction ther-
mography. Various sequences of thermal images 
are analysed and processed to obtain a base image 
for detecting cracks. Image acquisition begins be-
fore induction excitation (cold image), then an 
induction impulse is generated, and an increase 
in the temperature in the crack is immediately 
observed. However, this technique requires ad-
ditional steps, which can include heating, which 
may affect the material’s properties. In addition, 
a big challenge is for the operator to detect actual 
crack locations while dealing with the numerous 
temperature changes in the image [11]. 

More optimised and efficient methods using 
eddy current testing were used to detect structural 
faults in formed body components. In conjunc-
tion with multivariate analysis methods, eddy cur-
rent techniques have been used to detect cracks 
and thinning material during deep drawing pro-
cesses. The procedure was successfully used for 
offline crack detection. Also, the results show 
(in some cases) a significant correlation between 
electromagnetic signals and material thinning. 

Furthermore, different materials will cause differ-
ent responses. Therefore, an advanced learning al-
gorithm must provide the right self-fitting system 
[12]. Non-destructive magnetic research methods 
include the magnetic flux leakage (MFL) method 
and the residual magnetic field technique [13], us-
ing a magnetic sensor based on a new generation 
of magneto resistors. The magnetic flux leakage 
method [14] is the most common and cost-effective 
non-destructive magnetic testing technique. This 
method is based on measuring the magnetic leak-
age field on the surface of the test sample near mi-
nor defects, such as cracks. In MFL measurement, 
it is necessary to visualise the magnetic fields of 
surfaces being tested with high precision and care.

Another group of methods are based on vision 
measurements using additional lighting sources. 
The first is infrared lighting, which due to bet-
ter reliability, can be used for automatic control 
of defect recognition thanks to numerous images 
for each lighting zone taken from different direc-
tions [15]. This allows increased reliability when 
assessing detection results. In addition, for bet-
ter penetration of the examined area, the vision 
system can be mounted on a robotic arm, which 
moves over the parts produced on the sheet metal 
production line [16]. The second group of solu-
tions includes many methods that use the dynam-
ic spots effect. This group uses the dynamic la-
ser speckle phenomenon method to analyse laser 
speckles registered on images captured by a cam-
era. Dynamic laser speckle is called laser speckle 
imaging and refers to the digital image process-
ing of the scatter pattern applied to a rough sur-
face, usually under deformation. After numerical 
analysis using autocorrelation, complete charac-
teristic scatter points on the laser speckle activ-
ity graph can be plotted. Therefore, it is possible 
to indicate the moment of cracking and fracture 
[17]. Jasinski’s method involved the analysis of 
images of the speckle effect caused by the emis-
sion of coherent light onto the surface of the sheet 
metal being examined. The phenomenon of the 
speckle effect is commonly associated with the 
invention of the laser (in the early 1960s). How-
ever, the first mention of this topic was recorded 
more than 100 years earlier [18]. Contemporary 
speckle metrology plays an important role in op-
tical measurements categorised as direct speckle 
photography (DSP) and spot interferometry [19]. 
The numerous applications for the measurements 
and analysis of phenomena in mechanics include 
the possibility of measuring the roughness of 
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metal surfaces (first concept [20]), the measure-
ment of displacements and deformations [21], 
surface geometry [22] and recently, study of sur-
face roughness [23]. More recently, advanced 
measurement of surface defects detection under 
deformation, including crack propagation, has 
been conducted [24]. Another work also obtained 
displacement and deformation fields by analys-
ing the development of a random pattern of spots 
captured in the images of the samples subjected 
to stretching. Numerical image processing in the 
form of DIC (correlation) was ultimately used to 
determine the displacement [25].

As for vision studies based on the analysis of 
the image of the examined surface [26], indus-
trial conditions mean that the proposed solutions 
must take into account the unstable nature of the 
measurement environment, such as noise, limited 
measuring space, the need to make inline mea-
surements, dynamically changing lighting con-
ditions, etc. Therefore, the constantly occurring 
restrictions in the proposed solutions, such as the 
appearance of disturbances as a result of micro-
cracks caused by small particles located on the 
surface between the sheet and the die (tool), the 
emission of a wave of similar frequency to the 
material, or the loss of images as a result of light 
reflections on the sheet surface of the sheet [27] 
or difficulties in accessing the measurement space 
due to the limited operation of research devices. 
This means that more perfect solutions are con-
stantly sought after.

The methods currently used by the industry 
for identifying cracks appearing on the compo-
nent’s surface can be boiled down to the visual 
verification of defective products. These solu-
tions require industrial operators to pay signifi-
cant attention and effort in capturing the resulting 
discontinuities on the sheet’s surface. However, 
in some cases, defective sheet metal components 
might be recognised using light passing through 
or visible through cracks [27]. Therefore, visual 
observation of a component could be accom-
plished with additional, automatically running 
notifications, relieving the user. That system au-
tomatically detects cracks in the components 
produced by a stamping process using uniform 
backlighting. In this solution, the master image 
is compared to the pictures taken for the inline 
measurement. In addition, the growing expecta-
tions of improving quality leads to quality control 
on every element taken from the machine. This 
increases the implementation time of individual 

forming operations and reduces performance. 
Newman and Jain [28] proposed a solution us-
ing a vision system to control stamped products’ 
quality. Recently, these techniques are rapidly en-
tering the automotive industry, making them the 
most valuable implementation among all sectors, 
confirmed by statistical market analysis. In turn, 
among a large group of vision technology, qual-
ity control is the second most crucial factor in the 
growth of vision innovation.

From the perspective of the descriptions pre-
sented above, the authors propose a solution to 
inline measurement of defects that will allow a 
complete 100% control of flaws and full assess-
ment of the manufacturing technology. At the 
same time, industrial process tasks are carried 
out, which enters the contemporary concept of 
industry 4.0.

EXPERIMENTAL APPARATUS 
AND PROCEDURE 

Typical defects during the industrial stamping 
process include cracks resulting from material 
hardening due to exceeding strain limits. The less 
visible effects of reaching the material’s critical 
deformation phase can be the location of the de-
formations, which takes the form of local sheet 
thinning (Figure 3). This leads to the phenomenon 
of microcracks immediately preceding the mo-
ment of the material’s final separation. In turn, the 
formation of microcracks takes three forms: the 
formation of new microcracks (as the initial stage 
of the agglomeration of a phenomenon), the mi-
crocracks (creation of clusters), and the growth of 
individual microcracks. As seen from the above-
simplified description, the cracking phenomenon 
results from a growing front of deformation. It 
isn’t straightforward to predict in real time be-
cause of its local nature and development speed. 
Therefore, in industrial practice, a typical defect 
is assumed to be the condition of the sheet, where 
the resulting discontinuity of the material can be 
seen, even though local thinning itself in the form 
of advanced clusters of microcracks disqualifies 
the usefulness of the drawpiece for further tech-
nological operations. Figure 3 presents the image 
of the surface crack that has been investigated. 
The crack’s geometrical topography has been 
measured using a 3D laser scanning microscope, 
where the width and depth are approximately 100 
mm, and the length is 1 mm.
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Another group of factors that hinder the detec-
tion of defects is the difficulty accessing the sur-
face of the sheet to be tested due to the die geom-
etry in industrial conditions. Therefore, the typical 
methods of component quality control proposed in 
this area are carried out after forming operations 
have ended, outside the working space, often for 
a selected statistical group of parts, leading to sig-
nificant material losses. However, assuming the 
possibility of implementing measurements in the 
functional space of the press, the essential factors 
delaying measures include short measurement 
time (about 3 seconds), demanding access to the 
examined surface due to the working space, and 
unfavourable environment (noise, vibrations, un-
stable lighting, human interference).

The solution proposed by the authors is based 
on the images captured and their numerical analy-
sis. As lighting, a laser light source was present-
ed in the infrared wave. Combining these two 

automatic measuring techniques allows for real-
time measurements, away from the press, without 
concern for the negative impact of external light-
ing. The limitation of the proposed solution is the 
need to determine the examined area, which in 
the case of the industrial forming of body compo-
nents is the corners of the stamping. That is why 
the proposed number of vision systems is ulti-
mately the same as the number of potential places 
for cracks. Also, it needs to be point out that at 
this level of investigation, the proposed method is 
limited to the surface crack detection only. 

The proposed measuring system is an integrat-
ed vision system and a lighting system mounted 
on a tripod using fastening components (Figure 
4). The vision system consists of two cameras and 
prisms set in a special housing. Cameras allow 
the capture of two images of the same area simul-
taneously. The lighting system consists of a laser 
device emitting infrared light (not visible to the 
human eye) and a lens that increases the diameter 
of the beam falling on the test surface, as seen in 
Figure 4. In addition; the camera system uses a 
filter system that allows observation of the image 
in daylight and in infrared. For camera no. 1, a 
wavelength filter above 815 nm was used, permit-
ting only daylight observation of the test surface. 
In turn, camera no. 2 uses a filter that only allows 
infrared light emitted by the laser to pass through. 
The vision part of the measuring system sends the 
received images to the computer’s memory via the 
Gigabit-Ethernet interface, where they are saved 
and subjected to further numerical analysis. The 
implementation of control and communication 
tasks between the computer and the vision sys-
tem is provided by the Matlab/Simulink environ-
ment. The proposed solution allows simultaneous 

Fig. 3. Sheet metal crack characteristics: 
(a) surface crack, (b) 3D crack identification, 

(c) crack measurement profile

Fig. 4. View of the experimental apparatus
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observation and recording of selected (closely 
related to the research methodology) areas of the 
inspected stamping image. 

The following step must be performed to 
complete the proposed measurement procedure. 
First, the laser light should be pointed at the po-
tential crack area. One measuring system should 
be assigned to one measuring area. There are no 
restrictions on the distance between the measur-
ing system and the component. The properties of 
laser light and vision system let the user adjust a 
considerable distance from the sheet metal part 
that must be tested (since laser light is highly 
directional). Also, the visible light conditions in 
the measurement area do not affect the final re-
sults (since infrared light has wavelengths longer 
than those of visible light). Secondly, capturing 
the last few seconds of the final product reloca-
tion and generating laser speckle imaging should 
be possible. After the acquisition, the cumulative 
image is computed for the dynamically changing 
speckles. Further calculations take place automat-
ically and include digital image processing. The 
advantage of this measurement system is that the 
user can easily verify the results generated imme-
diately after finishing loading images. Therefore, 
for the possible errors (e.i. recalibration of the op-
tical system), it is possible to adjust the measure-
ment system quickly. Figure 5 shows a schematic 
of obtaining laser scatter patterns resulting from 
the dispersion of the incident coherent laser beam 
irradiating the test surface. For the static system, 
this image does not change. Only during changes 
in surface geometry, a dynamic effect of change 
in intensity appears. The solution proposed by the 
authors improve upon their ’earlier solution [29] 
for static measurements of laser spots. In the new 
approach, the dynamic spotting effect is analysed. 
During the inline industrial part of the process 
(immediately after the stamping process), when 
the die reveals the surface of the sheet, images of 
the surface illuminated by the laser are captured. 
Then a set of speckle images are recorded (dur-
ing a slight movement of the surface of the sheet 
being tested) and finally accumulated into one 
image. A phenomenon was used here, in which 
changes such as cracks on the sheet’s surface re-
flect laser spots back with poor intensity or not at 
all. The dynamic laser speckle effect, which pro-
vides many images with variable intensity of the 
same area, is the key to obtaining a better contrast 
of defects against the background of the rest of 
the surface. In the next step, a fundamental digital 

image processing procedure is demonstrated to 
characterize automatic surface crack. The pro-
posed solution includes edge detection that iden-
tify pixels location at which the speckle image 
brightness changes sharply.

SHIFT-AND-ADD SPECKLE 
IMAGING ALGORITHMS

The proposed method to improve the image 
quality has been utilised in astronomy since the 
middle of the last century when the CCD was first 
developed [30]. Therefore, this method is often 
called Shift-and-Add (SAA). This solution cap-
tures several images of the dynamically chang-
ing speckle with short exposure times and vary-
ing image shifts. Finally, a single image output 
is generated with high quality as a result of com-
piled images. It has been shown that the quality of 
images reconstructed using SAA with which they 
are created depends on the algorithm by which 
the images are shifted and added [31].

Therefore, these activities have been given 
numerous solutions determining the final results, 
among which we can distinguish [32]: central-of 
mass, iterative weighted, self-deconvolution, con-
tinuous convolution, and cross-correlation. How-
ever, incorrect shifting of the images or their sum-
ming can lead to numerous changes in the spatial 
reconstruction, significantly increasing the back-
ground noise in the image. Therefore, concerning 

Fig. 5. Schematic of the concept for 
the laser speckle investigation
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the calculation of shifts between the images, a 
different method was used, based on edge detec-
tion (described in detail in the literature [33] and 
implemented in the Matlab environment under 
the name “image stabilization”). For this purpose, 
the camera’s movement was removed by locat-
ing a characteristic point (arbitrarily selected) and 
moving it relative to the first image. Tracking a 
defined object allows one to determine in each 
subsequent video stream frame how much the 
target has moved relative to the previous frame. 
Based on this information, the program calculates 
the displacement vector Vt between the target ob-
ject and its original position (Fig. 6). 

As a result of the measurements of displace-
ments, a vector of displacements of individual 
frames of the recorded animation was obtained. 
The authors have described and compared two 
image composition algorithms in detail, i.e., av-
eraging and maximizing pixel values. In the first 
algorithm, the displacement vector represents the 
following form:

	 𝑉𝑉𝑡𝑡 = (𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡)             (1) 
 
 
𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦) = 1

𝑁𝑁 ∑ 𝐼𝐼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑡𝑡, 𝑦𝑦 − 𝑦𝑦𝑡𝑡)𝑁𝑁
𝑖𝑖=1      (2) 

 
 
𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦) = max 

𝑖𝑖∈𝑁𝑁
𝐼𝐼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑡𝑡, 𝑦𝑦 − 𝑦𝑦𝑡𝑡)    (3)    

 
 
𝑆𝑆𝑆𝑆𝑆𝑆 = 10 log(𝜎𝜎𝑔𝑔

2/𝜎𝜎𝑒𝑒
2)        (4) 

 
 

𝐼𝐼′′(𝑥𝑥) ⃡         = 𝜕𝜕2𝐼𝐼
𝜕𝜕𝜕𝜕2 ≈ 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑) = 
 

𝑑𝑑 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑)

𝑑𝑑𝑑𝑑 = 𝐼𝐼′(𝑥𝑥)          − 𝐼𝐼′(𝑥𝑥) ⃡        
𝑑𝑑𝑑𝑑  

 
(5) 

 
 
𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = 1 ∙ 𝐼𝐼(𝑥𝑥 + 1) − 2 ∙ 𝐼𝐼(𝑥𝑥) + 1 ∙ 𝐼𝐼(𝑥𝑥 − 1)        (6) 
 
 
𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = [1 −2 1] ∗ [𝐼𝐼(𝑥𝑥 + 1) 𝐼𝐼(𝑥𝑥) 𝐼𝐼(𝑥𝑥 − 1)]     (7) 
 
 
𝛻𝛻2 = 𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 + 𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2      (8) 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝜎𝜎) = 1
2𝜋𝜋𝜎𝜎2 𝑒𝑒

−(𝑥𝑥2+𝑦𝑦2)
2𝜎𝜎2                         (9) 

 
 

∇𝑔𝑔2(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 
 

𝑥𝑥2 + 𝑦𝑦2 − 2𝜎𝜎2

2𝜋𝜋𝜋𝜋6 𝑒𝑒𝑒𝑒𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2  
(10) 
 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 1
𝜋𝜋𝜎𝜎4 [1 − 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2 ] 𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2             (11)  
 
 
 

𝑦𝑦[𝑛𝑛] = ∑ 𝑥𝑥[𝑖𝑖] ∙ ℎ[𝑖𝑖 − 1] =
∑ ℎ[𝑖𝑖] ∙ 𝑥𝑥[𝑛𝑛 − 1]𝑁𝑁−1

𝑖𝑖=0
𝑀𝑀−1
𝑖𝑖=0               (12) 

 
 

	 (1)

This information was then used to remove 
camera movement and generate stabilized video, 
i.e., shifting each frame to remove camera move-
ment from the video stream. Hence, the cumula-
tive image resulting from summing the intensity 
values of individual pixels (averaging) for indi-
vidual frames of the movie will be represented by 
the following form:

	

𝑉𝑉𝑡𝑡 = (𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡)             (1) 
 
 
𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦) = 1

𝑁𝑁 ∑ 𝐼𝐼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑡𝑡, 𝑦𝑦 − 𝑦𝑦𝑡𝑡)𝑁𝑁
𝑖𝑖=1      (2) 

 
 
𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦) = max 

𝑖𝑖∈𝑁𝑁
𝐼𝐼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑡𝑡, 𝑦𝑦 − 𝑦𝑦𝑡𝑡)    (3)    

 
 
𝑆𝑆𝑆𝑆𝑆𝑆 = 10 log(𝜎𝜎𝑔𝑔

2/𝜎𝜎𝑒𝑒
2)        (4) 

 
 

𝐼𝐼′′(𝑥𝑥) ⃡         = 𝜕𝜕2𝐼𝐼
𝜕𝜕𝜕𝜕2 ≈ 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑) = 
 

𝑑𝑑 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑)

𝑑𝑑𝑑𝑑 = 𝐼𝐼′(𝑥𝑥)          − 𝐼𝐼′(𝑥𝑥) ⃡        
𝑑𝑑𝑑𝑑  

 
(5) 

 
 
𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = 1 ∙ 𝐼𝐼(𝑥𝑥 + 1) − 2 ∙ 𝐼𝐼(𝑥𝑥) + 1 ∙ 𝐼𝐼(𝑥𝑥 − 1)        (6) 
 
 
𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = [1 −2 1] ∗ [𝐼𝐼(𝑥𝑥 + 1) 𝐼𝐼(𝑥𝑥) 𝐼𝐼(𝑥𝑥 − 1)]     (7) 
 
 
𝛻𝛻2 = 𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 + 𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2      (8) 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝜎𝜎) = 1
2𝜋𝜋𝜎𝜎2 𝑒𝑒

−(𝑥𝑥2+𝑦𝑦2)
2𝜎𝜎2                         (9) 

 
 

∇𝑔𝑔2(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 
 

𝑥𝑥2 + 𝑦𝑦2 − 2𝜎𝜎2

2𝜋𝜋𝜋𝜋6 𝑒𝑒𝑒𝑒𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2  
(10) 
 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 1
𝜋𝜋𝜎𝜎4 [1 − 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2 ] 𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2             (11)  
 
 
 

𝑦𝑦[𝑛𝑛] = ∑ 𝑥𝑥[𝑖𝑖] ∙ ℎ[𝑖𝑖 − 1] =
∑ ℎ[𝑖𝑖] ∙ 𝑥𝑥[𝑛𝑛 − 1]𝑁𝑁−1

𝑖𝑖=0
𝑀𝑀−1
𝑖𝑖=0               (12) 

 
 

	 (2)

where: Ii(x,y) is a ith speckle image and N repre-
sent the number of images.

The summary of the averaging results shows 
the final image in the enlarged crack area (Figure 7). 
In addition, to better illustrate the averaging effect, 
the result of a single cross-section (2D) is shown 
in the zoomed image as a white line. The averag-
ing results (green line) indicate the flattening of the 
intensity values, leading to their averaging relative 
to the initial image (red line). 

Fig. 6. Shift calculation: (a) first image of the movie, (b) cumulative spackle images without shifting
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In the second algorithm, the process of replac-
ing pixels with a lower intensity value was pro-
vided according to the mathematical description:

	

𝑉𝑉𝑡𝑡 = (𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡)             (1) 
 
 
𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦) = 1

𝑁𝑁 ∑ 𝐼𝐼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑡𝑡, 𝑦𝑦 − 𝑦𝑦𝑡𝑡)𝑁𝑁
𝑖𝑖=1      (2) 

 
 
𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦) = max 

𝑖𝑖∈𝑁𝑁
𝐼𝐼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑡𝑡, 𝑦𝑦 − 𝑦𝑦𝑡𝑡)    (3)    

 
 
𝑆𝑆𝑆𝑆𝑆𝑆 = 10 log(𝜎𝜎𝑔𝑔

2/𝜎𝜎𝑒𝑒
2)        (4) 

 
 

𝐼𝐼′′(𝑥𝑥) ⃡         = 𝜕𝜕2𝐼𝐼
𝜕𝜕𝜕𝜕2 ≈ 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑) = 
 

𝑑𝑑 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑)

𝑑𝑑𝑑𝑑 = 𝐼𝐼′(𝑥𝑥)          − 𝐼𝐼′(𝑥𝑥) ⃡        
𝑑𝑑𝑑𝑑  

 
(5) 

 
 
𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = 1 ∙ 𝐼𝐼(𝑥𝑥 + 1) − 2 ∙ 𝐼𝐼(𝑥𝑥) + 1 ∙ 𝐼𝐼(𝑥𝑥 − 1)        (6) 
 
 
𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = [1 −2 1] ∗ [𝐼𝐼(𝑥𝑥 + 1) 𝐼𝐼(𝑥𝑥) 𝐼𝐼(𝑥𝑥 − 1)]     (7) 
 
 
𝛻𝛻2 = 𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 + 𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2      (8) 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝜎𝜎) = 1
2𝜋𝜋𝜎𝜎2 𝑒𝑒

−(𝑥𝑥2+𝑦𝑦2)
2𝜎𝜎2                         (9) 

 
 

∇𝑔𝑔2(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 
 

𝑥𝑥2 + 𝑦𝑦2 − 2𝜎𝜎2

2𝜋𝜋𝜋𝜋6 𝑒𝑒𝑒𝑒𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2  
(10) 
 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 1
𝜋𝜋𝜎𝜎4 [1 − 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2 ] 𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2             (11)  
 
 
 

𝑦𝑦[𝑛𝑛] = ∑ 𝑥𝑥[𝑖𝑖] ∙ ℎ[𝑖𝑖 − 1] =
∑ ℎ[𝑖𝑖] ∙ 𝑥𝑥[𝑛𝑛 − 1]𝑁𝑁−1

𝑖𝑖=0
𝑀𝑀−1
𝑖𝑖=0               (12) 

 
 

	 (3)

Figure 8 demonstrates the original (red line) 
and the improved data (green data) together with 
of the surface view and zoomed area of the crack.

ESTIMATION OF STATISTICAL 
PARAMETER

In order to quantitatively assess the quality 
of the images obtained using the SAA technique 
(before the filtering process), supplementary cal-
culations were performed for the two proposed 
algorithms for image assembly, i.e. averaged and 
pixel maximised. For comparison, the calcula-
tions were also performed for a series of recorded 
images without any displacements or assembly. 
The image quality index was assumed to be the 
signal-to-noise ratio (SNR) in the calculations. 
The estimation of this coefficient shows the noise 
level, where the size of the coefficient is inversely 
proportional to the amount of noise [34]. Brighter 
areas have a stronger signal due to more light, 

resulting in a higher overall SNR. The SNR is ex-
pressed in decibels and is defined as follows:

	

𝑉𝑉𝑡𝑡 = (𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡)             (1) 
 
 
𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦) = 1

𝑁𝑁 ∑ 𝐼𝐼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑡𝑡, 𝑦𝑦 − 𝑦𝑦𝑡𝑡)𝑁𝑁
𝑖𝑖=1      (2) 

 
 
𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦) = max 

𝑖𝑖∈𝑁𝑁
𝐼𝐼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑡𝑡, 𝑦𝑦 − 𝑦𝑦𝑡𝑡)    (3)    

 
 
𝑆𝑆𝑆𝑆𝑆𝑆 = 10 log(𝜎𝜎𝑔𝑔

2/𝜎𝜎𝑒𝑒
2)        (4) 

 
 

𝐼𝐼′′(𝑥𝑥) ⃡         = 𝜕𝜕2𝐼𝐼
𝜕𝜕𝜕𝜕2 ≈ 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑) = 
 

𝑑𝑑 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑)

𝑑𝑑𝑑𝑑 = 𝐼𝐼′(𝑥𝑥)          − 𝐼𝐼′(𝑥𝑥) ⃡        
𝑑𝑑𝑑𝑑  

 
(5) 

 
 
𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = 1 ∙ 𝐼𝐼(𝑥𝑥 + 1) − 2 ∙ 𝐼𝐼(𝑥𝑥) + 1 ∙ 𝐼𝐼(𝑥𝑥 − 1)        (6) 
 
 
𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = [1 −2 1] ∗ [𝐼𝐼(𝑥𝑥 + 1) 𝐼𝐼(𝑥𝑥) 𝐼𝐼(𝑥𝑥 − 1)]     (7) 
 
 
𝛻𝛻2 = 𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 + 𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2      (8) 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝜎𝜎) = 1
2𝜋𝜋𝜎𝜎2 𝑒𝑒

−(𝑥𝑥2+𝑦𝑦2)
2𝜎𝜎2                         (9) 

 
 

∇𝑔𝑔2(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 
 

𝑥𝑥2 + 𝑦𝑦2 − 2𝜎𝜎2

2𝜋𝜋𝜋𝜋6 𝑒𝑒𝑒𝑒𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2  
(10) 
 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 1
𝜋𝜋𝜎𝜎4 [1 − 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2 ] 𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2             (11)  
 
 
 

𝑦𝑦[𝑛𝑛] = ∑ 𝑥𝑥[𝑖𝑖] ∙ ℎ[𝑖𝑖 − 1] =
∑ ℎ[𝑖𝑖] ∙ 𝑥𝑥[𝑛𝑛 − 1]𝑁𝑁−1

𝑖𝑖=0
𝑀𝑀−1
𝑖𝑖=0               (12) 

 
 

	 (4)

where: σ2
g – the variance of the image relative to 

which the reference image is determined, 
σ2

e – the variance of the error (between the 
reference image and the noisy image). The 
composite of all images for two methods 
was taken as a reference image. Also giving 
SNR results for the originl images without 
any additional calculation (Figure 9).

The obtained two characteristics (blue – pixel 
maximization, green – averaging) illustrate the im-
pact of the image composition algorithms on the fi-
nal image quality. It can be seen that both methods 
lead to an increase in the final quality of images 
compared to the characteristic of single images 
(red line). Then, in order to select a better solution 
(algorithm) from the averaging and maximization 
method, the two images were compared with the 
image obtained in white light (Figure 9a). The 
calculations were carried out for the selected area 
covering the crack (Figure 9b,c,d) and after nor-
malizing the images to the same brightness level. 
The SNRave=8.3 was obtained for comparison of 
the original images with the averaging technique, 

Fig. 7. Shifting-and-add results: a) cumulative sum, b) intensity of the line 
section foe first image (red line), cumulative images (blue line)
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Fig. 8. Shifting-and-add results: (a) maximized pixels, (b) intensity of the line 
section foe first image (red line), cumulative images (blue line)

Fig. 9. Signal-to-noise evaluation for the maximized pixels (blue 
line), average (green line) and original images (red)



230

Advances in Science and Technology Research Journal 2023, 17(5), 220–235

and SNRmax=7.6, respectively, for comparison with 
the image obtained from maximization. Therefore, 
finally an averaging algorithm was used for further 
calculations, due to smaller fluctuations in bright-
ness levels (as shown in the Figure 10)

IMAGING FILTERING

A less noisy image still reduces contrast and 
leads to difficulties performing image processing 
operations such as edge detection and segmenta-
tion. Difficult-to-detect details (cracks) require 
further processing. For this purpose, band-pass 
filtering and edge-detection procedure was uti-
lised spatially. Its isotropy allows the adoption 
of the same edge detection criteria regardless of 
the direction. Unlike other operators, it does not 
require the creation of an algorithm for connect-
ing pixels forming the edge of the so-called chain 
code. It only requires action to determine the lo-
cation of pixels, the so-called zero-crossing [36] 
(Figure 11). In order to present the second deriva-
tive, the discrete interpretation of the first deriva-
tive and its differential form were used:

	

𝑉𝑉𝑡𝑡 = (𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡)             (1) 
 
 
𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦) = 1

𝑁𝑁 ∑ 𝐼𝐼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑡𝑡, 𝑦𝑦 − 𝑦𝑦𝑡𝑡)𝑁𝑁
𝑖𝑖=1      (2) 

 
 
𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦) = max 

𝑖𝑖∈𝑁𝑁
𝐼𝐼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑡𝑡, 𝑦𝑦 − 𝑦𝑦𝑡𝑡)    (3)    

 
 
𝑆𝑆𝑆𝑆𝑆𝑆 = 10 log(𝜎𝜎𝑔𝑔

2/𝜎𝜎𝑒𝑒
2)        (4) 

 
 

𝐼𝐼′′(𝑥𝑥) ⃡         = 𝜕𝜕2𝐼𝐼
𝜕𝜕𝜕𝜕2 ≈ 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑) = 
 

𝑑𝑑 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑)

𝑑𝑑𝑑𝑑 = 𝐼𝐼′(𝑥𝑥)          − 𝐼𝐼′(𝑥𝑥) ⃡        
𝑑𝑑𝑑𝑑  

 
(5) 

 
 
𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = 1 ∙ 𝐼𝐼(𝑥𝑥 + 1) − 2 ∙ 𝐼𝐼(𝑥𝑥) + 1 ∙ 𝐼𝐼(𝑥𝑥 − 1)        (6) 
 
 
𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = [1 −2 1] ∗ [𝐼𝐼(𝑥𝑥 + 1) 𝐼𝐼(𝑥𝑥) 𝐼𝐼(𝑥𝑥 − 1)]     (7) 
 
 
𝛻𝛻2 = 𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 + 𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2      (8) 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝜎𝜎) = 1
2𝜋𝜋𝜎𝜎2 𝑒𝑒

−(𝑥𝑥2+𝑦𝑦2)
2𝜎𝜎2                         (9) 

 
 

∇𝑔𝑔2(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 
 

𝑥𝑥2 + 𝑦𝑦2 − 2𝜎𝜎2

2𝜋𝜋𝜋𝜋6 𝑒𝑒𝑒𝑒𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2  
(10) 
 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 1
𝜋𝜋𝜎𝜎4 [1 − 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2 ] 𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2             (11)  
 
 
 

𝑦𝑦[𝑛𝑛] = ∑ 𝑥𝑥[𝑖𝑖] ∙ ℎ[𝑖𝑖 − 1] =
∑ ℎ[𝑖𝑖] ∙ 𝑥𝑥[𝑛𝑛 − 1]𝑁𝑁−1

𝑖𝑖=0
𝑀𝑀−1
𝑖𝑖=0               (12) 

 
 

	 (5)

Hence, based on the graphical description 
(Figure 11), it can be written:

	

𝑉𝑉𝑡𝑡 = (𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡)             (1) 
 
 
𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦) = 1

𝑁𝑁 ∑ 𝐼𝐼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑡𝑡, 𝑦𝑦 − 𝑦𝑦𝑡𝑡)𝑁𝑁
𝑖𝑖=1      (2) 

 
 
𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦) = max 

𝑖𝑖∈𝑁𝑁
𝐼𝐼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑡𝑡, 𝑦𝑦 − 𝑦𝑦𝑡𝑡)    (3)    

 
 
𝑆𝑆𝑆𝑆𝑆𝑆 = 10 log(𝜎𝜎𝑔𝑔

2/𝜎𝜎𝑒𝑒
2)        (4) 

 
 

𝐼𝐼′′(𝑥𝑥) ⃡         = 𝜕𝜕2𝐼𝐼
𝜕𝜕𝜕𝜕2 ≈ 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑) = 
 

𝑑𝑑 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑)

𝑑𝑑𝑑𝑑 = 𝐼𝐼′(𝑥𝑥)          − 𝐼𝐼′(𝑥𝑥) ⃡        
𝑑𝑑𝑑𝑑  

 
(5) 

 
 
𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = 1 ∙ 𝐼𝐼(𝑥𝑥 + 1) − 2 ∙ 𝐼𝐼(𝑥𝑥) + 1 ∙ 𝐼𝐼(𝑥𝑥 − 1)        (6) 
 
 
𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = [1 −2 1] ∗ [𝐼𝐼(𝑥𝑥 + 1) 𝐼𝐼(𝑥𝑥) 𝐼𝐼(𝑥𝑥 − 1)]     (7) 
 
 
𝛻𝛻2 = 𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 + 𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2      (8) 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝜎𝜎) = 1
2𝜋𝜋𝜎𝜎2 𝑒𝑒

−(𝑥𝑥2+𝑦𝑦2)
2𝜎𝜎2                         (9) 

 
 

∇𝑔𝑔2(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 
 

𝑥𝑥2 + 𝑦𝑦2 − 2𝜎𝜎2

2𝜋𝜋𝜋𝜋6 𝑒𝑒𝑒𝑒𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2  
(10) 
 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 1
𝜋𝜋𝜎𝜎4 [1 − 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2 ] 𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2             (11)  
 
 
 

𝑦𝑦[𝑛𝑛] = ∑ 𝑥𝑥[𝑖𝑖] ∙ ℎ[𝑖𝑖 − 1] =
∑ ℎ[𝑖𝑖] ∙ 𝑥𝑥[𝑛𝑛 − 1]𝑁𝑁−1

𝑖𝑖=0
𝑀𝑀−1
𝑖𝑖=0               (12) 

 
 

	 (6)

finally obtaining the following form:

	

 
 

𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = [1 −2 1] ∗ 

[𝐼𝐼(𝑥𝑥 + 1) 𝐼𝐼(𝑥𝑥) 𝐼𝐼(𝑥𝑥 − 1)]  
 

(7) 
 
 
𝛻𝛻2 = 𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 + 𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2      (8) 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝜎𝜎) = 1
2𝜋𝜋𝜎𝜎2 𝑒𝑒

−(𝑥𝑥2+𝑦𝑦2)
2𝜎𝜎2                         (9) 

 
 

∇𝑔𝑔2(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 
 

𝑥𝑥2 + 𝑦𝑦2 − 2𝜎𝜎2

2𝜋𝜋𝜋𝜋6 𝑒𝑒𝑒𝑒𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2  
(10) 
 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 1
𝜋𝜋𝜎𝜎4 [1 − 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2 ] 𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2             (11)  
 
 
 

𝑦𝑦[𝑛𝑛] = ∑ 𝑥𝑥[𝑖𝑖] ∙ ℎ[𝑖𝑖 − 1] =
∑ ℎ[𝑖𝑖] ∙ 𝑥𝑥[𝑛𝑛 − 1]𝑁𝑁−1

𝑖𝑖=0
𝑀𝑀−1
𝑖𝑖=0               (12) 

 
 
 

𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1) = {
1,     𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 > 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖+1 < 𝑇𝑇
     𝑜𝑜𝑜𝑜 𝑥𝑥𝑖𝑖 < 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖+1 > 𝑇𝑇
0,                           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

           (13) 

 
 
𝑐𝑐𝐼𝐼(𝑥𝑥, 𝑦𝑦) =  𝐹𝐹𝐹𝐹−1[|𝐹𝐹𝐹𝐹[𝐼𝐼(𝑥𝑥,𝑦𝑦)]|2]−〈𝐼𝐼(𝑥𝑥,𝑦𝑦)〉2

〈𝐼𝐼(𝑥𝑥,𝑦𝑦)2〉−〈𝐼𝐼(𝑥𝑥,𝑦𝑦)〉2          (14) 
 

	 (7)

So, one can use the simple operator [1, −2, 1] 
to approximate the second derivative in one di-
mension. In order to obtain a two-dimensional re-
cord, changes in the other direction must be taken 
into account:

	

 
 

𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = [1 −2 1] ∗ 

[𝐼𝐼(𝑥𝑥 + 1) 𝐼𝐼(𝑥𝑥) 𝐼𝐼(𝑥𝑥 − 1)]  
 

(7) 
 
 
𝛻𝛻2 = 𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 + 𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2      (8) 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝜎𝜎) = 1
2𝜋𝜋𝜎𝜎2 𝑒𝑒

−(𝑥𝑥2+𝑦𝑦2)
2𝜎𝜎2                         (9) 

 
 

∇𝑔𝑔2(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 
 

𝑥𝑥2 + 𝑦𝑦2 − 2𝜎𝜎2

2𝜋𝜋𝜋𝜋6 𝑒𝑒𝑒𝑒𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2  
(10) 
 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 1
𝜋𝜋𝜎𝜎4 [1 − 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2 ] 𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2             (11)  
 
 
 

𝑦𝑦[𝑛𝑛] = ∑ 𝑥𝑥[𝑖𝑖] ∙ ℎ[𝑖𝑖 − 1] =
∑ ℎ[𝑖𝑖] ∙ 𝑥𝑥[𝑛𝑛 − 1]𝑁𝑁−1

𝑖𝑖=0
𝑀𝑀−1
𝑖𝑖=0               (12) 

 
 
 

𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1) = {
1,     𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 > 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖+1 < 𝑇𝑇
     𝑜𝑜𝑜𝑜 𝑥𝑥𝑖𝑖 < 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖+1 > 𝑇𝑇
0,                           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

           (13) 

 
 
𝑐𝑐𝐼𝐼(𝑥𝑥, 𝑦𝑦) =  𝐹𝐹𝐹𝐹−1[|𝐹𝐹𝐹𝐹[𝐼𝐼(𝑥𝑥,𝑦𝑦)]|2]−〈𝐼𝐼(𝑥𝑥,𝑦𝑦)〉2

〈𝐼𝐼(𝑥𝑥,𝑦𝑦)2〉−〈𝐼𝐼(𝑥𝑥,𝑦𝑦)〉2          (14) 
 

	 (8)

which is an operator realizing changes of the 
second derivative in two directions, leading to the 
following discrete form.

Zero-level image binarization can be used to 
find edges. However, keep in mind that the Lapla-
cian operator is sensitive to noise. This sensitiv-
ity of the operator is due to the sensitivity of the 
zero crossings and the differentiation method. In 
general, the higher the derivative, the more sensi-
tive the operator. However, using a second filter 
(Gaussian smoothing) can avoid such problems, 
which leads to a complex form of notation. Hence 
finally the basis of the proposed cracks detection 
method is a modified filter called Laplacian of 
Gaussian (LoG). However, to approximate the 
results of LoG and reduce the computational 
costs Difference of Gaussians function (DoG) is 
commonly used [35]. This valuable numerical 

Fig. 10. (a) Image under regular lighting (reference image – white light), (b) selected crack for reference 
image, (c) selected crack for averaging algorithm, (d) select crack for maximized pixel algorithm
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tool recognises areas with rapid changes in edge 
contrast. The LOG filter is characterised by high 
sensitivity, hence its two-step creation process. 
First, the effect of Gaussian smoothing is applied 
to blur an image in the following form:

	

 
 

𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = [1 −2 1] ∗ 

[𝐼𝐼(𝑥𝑥 + 1) 𝐼𝐼(𝑥𝑥) 𝐼𝐼(𝑥𝑥 − 1)]  
 

(7) 
 
 
𝛻𝛻2 = 𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 + 𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2      (8) 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝜎𝜎) = 1
2𝜋𝜋𝜎𝜎2 𝑒𝑒

−(𝑥𝑥2+𝑦𝑦2)
2𝜎𝜎2                         (9) 

 
 

∇𝑔𝑔2(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 
 

𝑥𝑥2 + 𝑦𝑦2 − 2𝜎𝜎2

2𝜋𝜋𝜋𝜋6 𝑒𝑒𝑒𝑒𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2  
(10) 
 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 1
𝜋𝜋𝜎𝜎4 [1 − 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2 ] 𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2             (11)  
 
 
 

𝑦𝑦[𝑛𝑛] = ∑ 𝑥𝑥[𝑖𝑖] ∙ ℎ[𝑖𝑖 − 1] =
∑ ℎ[𝑖𝑖] ∙ 𝑥𝑥[𝑛𝑛 − 1]𝑁𝑁−1

𝑖𝑖=0
𝑀𝑀−1
𝑖𝑖=0               (12) 

 
 
 

𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1) = {
1,     𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 > 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖+1 < 𝑇𝑇
     𝑜𝑜𝑜𝑜 𝑥𝑥𝑖𝑖 < 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖+1 > 𝑇𝑇
0,                           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

           (13) 

 
 
𝑐𝑐𝐼𝐼(𝑥𝑥, 𝑦𝑦) =  𝐹𝐹𝐹𝐹−1[|𝐹𝐹𝐹𝐹[𝐼𝐼(𝑥𝑥,𝑦𝑦)]|2]−〈𝐼𝐼(𝑥𝑥,𝑦𝑦)〉2

〈𝐼𝐼(𝑥𝑥,𝑦𝑦)2〉−〈𝐼𝐼(𝑥𝑥,𝑦𝑦)〉2          (14) 
 

	 (9)

with: -∞ < x,y < , and σ > 0; where: σ – the stan-
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The filter characteristic (3) is mainly defined 
by the size of the sigma factor (σ). Therefore, it 
is possible to smoothly adjust the sensitivity of 
defect detection and let the user determine the 
level of sensitivity at which he accepts defects. 
Next, spatial filtering was used in the edge de-
tection calculations, which involves the discrete 
convolution operation typical of image process-
ing operations [32].

	

 
 

𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2 = [1 −2 1] ∗ 

[𝐼𝐼(𝑥𝑥 + 1) 𝐼𝐼(𝑥𝑥) 𝐼𝐼(𝑥𝑥 − 1)]  
 

(7) 
 
 
𝛻𝛻2 = 𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2𝐼𝐼

𝑑𝑑𝑑𝑑2 + 𝑑𝑑2𝐼𝐼
𝑑𝑑𝑑𝑑2      (8) 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝜎𝜎) = 1
2𝜋𝜋𝜎𝜎2 𝑒𝑒

−(𝑥𝑥2+𝑦𝑦2)
2𝜎𝜎2                         (9) 

 
 

∇𝑔𝑔2(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 
 

𝑥𝑥2 + 𝑦𝑦2 − 2𝜎𝜎2

2𝜋𝜋𝜋𝜋6 𝑒𝑒𝑒𝑒𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2  
(10) 
 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 1
𝜋𝜋𝜎𝜎4 [1 − 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2 ] 𝑒𝑒
−(𝑥𝑥2+𝑦𝑦2)

2𝜎𝜎2             (11)  
 
 
 

𝑦𝑦[𝑛𝑛] = ∑ 𝑥𝑥[𝑖𝑖] ∙ ℎ[𝑖𝑖 − 1] =
∑ ℎ[𝑖𝑖] ∙ 𝑥𝑥[𝑛𝑛 − 1]𝑁𝑁−1

𝑖𝑖=0
𝑀𝑀−1
𝑖𝑖=0               (12) 

 
 
 

𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1) = {
1,     𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 > 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖+1 < 𝑇𝑇
     𝑜𝑜𝑜𝑜 𝑥𝑥𝑖𝑖 < 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖+1 > 𝑇𝑇
0,                           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

           (13) 

 
 
𝑐𝑐𝐼𝐼(𝑥𝑥, 𝑦𝑦) =  𝐹𝐹𝐹𝐹−1[|𝐹𝐹𝐹𝐹[𝐼𝐼(𝑥𝑥,𝑦𝑦)]|2]−〈𝐼𝐼(𝑥𝑥,𝑦𝑦)〉2

〈𝐼𝐼(𝑥𝑥,𝑦𝑦)2〉−〈𝐼𝐼(𝑥𝑥,𝑦𝑦)〉2          (14) 
 

	 (12)

with 0 ≤ n ≤ M + N - 1, and σ > 0; where: x[n] 
is the input value and y[n] is the output 
value known as the impulse response of 
the filter.

In this calculation, three design parameters 
are chosen experimentally (sigma values, the ac-
curacy of defect determination – first parameter, 
kernel interval – second parameter and grid step 
– third parameter), as shown in Figure 12. Final-
ly, after the convolution computation, the edge of 
the defect is recognised by using the “zero cross” 
detector [37]. In this calculation, in contrast to 
the commonly used solution, it was proposed to 
increase the cut-off level to an experimentally 
determined value other than zero, referred to as 
the sensitivity of the method. This modification 
of the above filter (3) introducing an additional 
parameter (T) to the numerical procedure. The 
parameter (T) let the user to change the sensitiv-
ity of defect detection. In this method two con-
tinuous samples are compared to see if there is a 
(T) level, as describe:

Fig. 12. Laplacian of Gaussian function: (a) 2D kernel of the LoG, (b) 1D kernel LoG

Fig. 11. 1-D graphical interpretation 
for the second derivative
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Fig. 14. The value of the coefficient C 
for the measurement image and images 

with a lower magnification

Fig. 15. Courses of the crack cross-section for two 
smaller magnifications with Gaussian smoothing

Fig. 13. Results of the digital image processing: a) lower-pass filter (smoothing), 
(b) high-pass filter (Laplacian), (c) zero crossing edge detection
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	(13)

The (T) parameter is consider as amplitude 
high of the zero-crossing line level. The advan-
tage of this solution is to save a computation time, 
less sensitive to the noise and most important, 
additional parameter, that is rresponsible for the 
sensitivity of defect detection. 

The presented result of the image process-
ing for the analysed defective part demonstrates 
a recognised crack. First, the captured image was 
denoised through the lower-pass filter smoothing 
the original image (Figure 13a). In contrast, the 

edges of the cracks are strengthened through the 
high-pass filter (Figure 13b). An additional effect 
of strengthening the rupture edge line in a filtered 
image was obtained through multiplication with 
the original image. The final stage of numerical 
processing of the image includes zero-crossing 
edge detection. Finally, morphological opera-
tions carried out on the binary image were used to 
graphically present the geometric features of the 
resulting rupture (Figure 13c).
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IMAGE RESOLUTION 

The method’s sensitivity can be considered in 
two ways: physical (resulting from the resolution 
of the measurement system, including optics and 
CCD) and technological (resulting from the type 
or size of the crack. Concerning resolution, the 
limit will be the number of pixels per speckle and 
pixels per crack. In the first case, it is directly re-
lated to the type of lighting and the measurement 
technique that uses the dynamic speckle effect to 
recognize a crack when assembling the images, 
and in the second case, to the static visibility of 
the crack (the slightest crack visible in the image 
should be at least the size of a speck). 

For this purpose, speckle size was calculated 
by determining the normalized autocovariance 
function obtained in the observation plane, cor-
responding to the intensity autocorrelation func-
tion. It has a zero base, and its width allows the 
measurement of the “average width” of the cl spot 
[38]. The cI(x, y) value is calculated from the in-
tensity distribution of the recorded image or se-
ries of images (average value) according to the 
following relationship:
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𝑖𝑖=0
𝑀𝑀−1
𝑖𝑖=0               (12) 

 
 
 

𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1) = {
1,     𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 > 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖+1 < 𝑇𝑇
     𝑜𝑜𝑜𝑜 𝑥𝑥𝑖𝑖 < 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖+1 > 𝑇𝑇
0,                           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

           (13) 

 
 
𝑐𝑐𝐼𝐼(𝑥𝑥, 𝑦𝑦) =  𝐹𝐹𝐹𝐹−1[|𝐹𝐹𝐹𝐹[𝐼𝐼(𝑥𝑥,𝑦𝑦)]|2]−〈𝐼𝐼(𝑥𝑥,𝑦𝑦)〉2

〈𝐼𝐼(𝑥𝑥,𝑦𝑦)2〉−〈𝐼𝐼(𝑥𝑥,𝑦𝑦)〉2          (14) 
 

	 (14)

where: FT is the Fourier transform, FT-1 is the 
inverse Fourier transform, 〈I(x,y)〉 is 
the average image intensity, c_I (x,0) and 
c_I (0,y) are, respectively, horizontal and 
vertical profiles for the values c_I(x,y).

In the implementation of measurements, it is 
essential that the size of the spot is significant to 
the size of the pixels, which will enable the ob-
servation of appropriate intensity changes during 
dynamic image transitions [39]. As a result of the 
calculation of the 2-D Fourier transform of the 
image data and the normalization of the values 
with the shift of the zero frequency component to 
the centre of the graph, the waveform of changes 
in the average speckle sizes for different magni-
fications was obtained (Figure 14). The setting 
parameters in the calculations result in six pix-
els in speckle diameter. As the magnification is 
further reduced, this number decreases to four. In 
the calculations for smaller images, a significant 
effect of noise and difficulties in correct crack rec-
ognition was noticed (Fig. 1). Hence, a minimum 
speckle size and a minimum crack size of 6 pix-
els in both cases is prescribed. Determination of 

the speckle parameters (size, contrast, intensity) 
is also a valuable source of information about the 
scattering conditions, i.e. surface quality. The use 
of dynamic structure analysis becomes a valuable 
tool in the measurement of not only cracks but 
also the measurement of material roughness [40]. 
Therefore, the current limitation of measurements 
only in the field of cracks can be successfully ex-
tended. They use this technique to identify earlier 
stages of destruction, such as thinning or wrin-
kling of the surface.

CONCLUSIONS

A method of detecting surface cracks in in-
dustrial forming – stamping – of car body parts 
was presented in this paper. A unique research 
experiment was developed to verify the proposed 
algorithms, enabling real-time measurements. 
The Matlab/Simulink environment was used for 
the proposed solution to implement digital image 
analysis and control the vision system. For dynam-
ically changing speckle pattern were collected and 
analysed for images of surface crack. This analysis 
uses the fact that the geometric irregularities in the 
defect area are reflected in changes in the intensity 
of the spots. In the presented study, two SAA algo-
rithms were verified. The SNR statistical param-
eter of these solutions were measured (i.e. averag-
ing and maximizing pixel values) for a sequence of 
captured images. The calculations were compared 
with images without signal amplification, demon-
strating increased final image quality. Two types 
of filters have been applied: smoothing  and edge 
detection. As a result, the output is represented as 
two images: an actual image of the measured area 
and an analysed image for necessary verification. 
The performed calculations and experiments im-
ply certain conclusions depending on the adopted 
assumptions and analyzed lighting settings and 
conditions prevailing in the industrial process: the 
concept of coherent lighting at long measuring dis-
tances from the metal surface and difficult industri-
al conditions was verified. Where incoherent light 
does not work, laser lighting provides the oppor-
tunity to obtain sufficient image quality for further 
digital image analysis; the results indicate that the 
proposed solution allows the implementation of 
crack-detecting tasks in specific areas of the sheet 
metal, taking into account difficult industrial con-
ditions, impossible to achieve by other techniques; 
an important conclusion emerges from the analysis 
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of the sources dealing with defect detection. A vast 
majority of the systems applied these days possess 
many limitations when applied to automated mass 
production lines (e.g., fast production speeds, chal-
lenging lighting conditions, vibration and noise, 
pollution and dust or accessibility because of the 
nature of the closed shaping process); the vision 
system proposed by the authors and digital image 
processing based on laser speckle imaging is a 
simple, quick, and reliable solution. Application of 
the proposed method extends the traditional limita-
tion, which is a time-consuming computation that 
always leads to offline analysis.Since, for the in-
dustrial technology it’s also necessary to detect the 
initial phase of the sheet metal forming (such as 
necking or strain localization), it is planned to de-
velop additional computation algorithm to recog-
nized other levels of the final product quality using 
speckle size analysis. 
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