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INTRODUCTION

Additive manufacturing, also known as 3D 
printing, is a manufacturing process that builds 
three-dimensional objects by adding succes-
sive layers of material based on a digital design 
[1]. One of the varieties is selective laser melt-
ing (SLM) used to produce metal parts [2]. In 
this method, a thin layer of powdered material 
is spread across a build platform, and the object 
is formed by selectively fusing or solidifying the 
powder particles layer by layer. Among the fac-
tors that influence the quality of the final parts 
is the quality of the powder layer, specifically 
uniformity and powder packing [3]. The laser 
scanning parameters and thickness of the powder 
layer are linked via the volumetric energy density 
given by Equation (1):
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  (1)

where: P – output laser power (W), v – scan speed 
(mm/s), d – scan spacing (µm), t – powder 
layer height (µm) [4]. 

Inadequate powder spreading can result in in-
sufficient energy transfer, leading to incomplete 
melting or inadequate fusion between powder par-
ticles, resulting in higher porosity levels in the fi-
nal part [5]. The higher powder packing improves 
the heat conductivity of the powder bed and con-
tributes to the production of parts with improved 
surface roughness [5]. In summary, the ideal pow-
der layer should exhibit a consistent and uniform 
packing density across its surface, while ensuring 
a relatively smooth surface finish with minimized 
discrepancies between the actual and the intended 
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(theoretical) layer thickness [6]. Several studies 
have been conducted to optimize the spread of 
powder [7, 8]. External modules are also being 
developed to test the spreadability of the powder 
under different conditions [5, 9]. Recently, vi-
sion systems have been introduced to monitor the 
quality of powder layers. This approach might be 
helpful in the development of new powder coat-
ing strategies, especially in powder with low flow-
ability, such as small powder [10] or powder with 
magnetic properties [11]. The combination of vi-
sion systems with dedicated algorithms allows in 
situ detection of defects, including, among oth-
ers, recoater hopping, recoater striking, incom-
plete spreading, and superelevation [12]. Usually, 
some sophisticated algorithms based on machine 
learning or deep learning are applied [13]. Yin 
et al. [14] conducted research on identifying the 
defect known as recoater hopping, which appears 
as vertical lines in selective laser melting (SLM). 
This defect occurs when the recoater hits the part 
or experiences vibrations. The detection method 
used a camera and the local binary pattern (LBP) 
recognition algorithm and achieved a recognition 
rate of 98% [14]. Scime et al. [15] used a widely 
used machine learning technique, known as the 
bag-of-keypoints (or words) algorithm, to detect 
defects and categorize them during printing on 
the commercial EOS LPBF machine. The algo-
rithm was further developed to improve the preci-
sion of the location of the defect [12]. The men-
tioned approaches require a large number of clas-
sified images to train the algorithms and obtain 
satisfactory precision [16]. In this work, a much 
simpler solution has been proposed based on the 
so-called ‘line profile’ defined as the average of 
five. The Image Processing Module is respon-
sible for taking the image and processing it into 
a state that can be analyzed vertical lines in the 
image of a powder bed, as proposed by Craeghs 
et al. [17]. The algorithm was further developed 
and extended to include defects such as super-
elevation, blade scratch, local defect, or recoater 
hopping, which were not present in the [17]. The 
algorithm used to evaluate defects in the powder 
layer uses relatively simple operations on the im-
age. As a result, the processing and data analysis 
time is shorter than for the use of machine learn-
ing algorithms, for which a large learning data set 
is necessary. The proposed system might be used 
successfully to develop new feeding strategies, 
especially for powders with limited flowability, 
and to monitor the powder spreading process. 

Additionally, the implementation of online con-
trol systems provides the opportunity to identify 
deviations or anomalies as soon as they occur. 
This early detection allows prompt corrective ac-
tions to be taken, mitigating the risk of produc-
ing defective or substandard parts, and therefore, 
reducing material costs and printer depreciation. 
In addition, the use of a vision system coupled 
with an algorithm for recognizing irregularities 
will enable their direct identification and correc-
tion of the mechanical-technological parameters 
of the device. The designed and manufactured 3D 
metal printer is an original project made by the 
research team of Wroclaw University of Technol-
ogy. To validate the powder feeding system, hun-
dreds of trials and tests, based on which it would 
be possible to identify potential defects that occur 
during metal powder distribution. For this reason, 
it was decided to develop a vision system and 
implement an algorithm for quick and efficient 
evaluation of the powder distribution system.

MATERIALS AND METHODS

Powder-feeding platform 

To perform the powder spreading and testing 
the algorithm, a custom-build platform has been 
developed. The CAD module of the system is 
presented in Fig. 1a and 1c and the built proto-
type in Fig. 1b and 1d. The building platform has 
a diameter of 80 mm and a usable length of 95 
mm The powder might be supplied based on two 
principles: 1) the vertical feeding platform with a 
diameter of 100 mm and usable length of 95 mm, 
2) the powder hopper with vibrating motors and 
a rotating textured roller. The spreading system 
might be adjusted according to needs by apply-
ing two of the most popular solutions: a blade 
and a roller. The recoater carriage is mounted 
on the belt drive (ZLW-1040-02-S-100-L-400, 
Igus) powered by a stepper motor (MOT-AN-S-
060-035-060-M-C-AAAC, Igus). The platforms 
are driven using a ball screw with a 5 mm lead 
(EBB1605-4RR, THK), a hollow rotary reducer 
(LiMing GT-60C-25, LiMing) and a stepper mo-
tor with brake and encoder (MOT-AN-S-060-
020-056-M-D-AAAD, Igus). The theoretical 
resolution is ~1 µm. The all-mentioned stepper 
motors are controlled with a dedicated controller 
(Dryve D1, Igus). 
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Depending on the chosen version of powder 
feeder, the course of powder spreading is as fol-
lows (Fig. 1):

 • Vertical powder feeding platform.
The powder platform slides out at a specified 

height, the build platform is lowered, and the re-
coater carriage is passed. The carriage might be 
equipped with a stationary blade or rotating shaft 
responsible for spreading the powder. The shaft 
is powered by a stepper motor (MOT-AN-S-060-
005-042-L-A-AAAA, Igus) and controlled with 
a dedicated stepper motor controller (D8, Igus). 

 • The powder hopper.
The build platform lowers. The powder is sup-

plied from hopper with vibrating motors to the re-
coater carriage and its amount is regulated through 
a textured rotating roller powered with a stepper 
motor (MOT-AN-S-060-001-028-L-A-AAAA, 
Igus) controlled by a dedicating stepper motor con-
troller (D7-1, Igus). The recoater carriage passes 
to spread the powder on the build platform. The 
whole system is controlled by PLC (S7-1200, 
6ES7215-1AG40-0XB0, Siemens) using a TIA 
system environment and an HMI control panel 

(HMI KTP700 BASIC COLOR PN-6AV2123-
2GB03-0AX0, Siemens). In automatic run mode, 
the following variable might be controlled: thick-
ness of the layer, the rotation angle and the veloc-
ity of the textured shaft in the powder hopper, the 
velocity of the recoater carriage, the direction and 
rotation speed of the roller in the carriage, number 
of loops. The panel also allows for monitoring of 
current positions and axis statuses, along with error 
indicators (Fig. 2). The last element of the panel 
are five buttons enabling: starting sequence, stop-
ping sequence, changing from manual to automatic 
mode, reset, and configuring vibrating motors. Ad-
ditionally, each axis might be independently con-
trolled via a dedicated screen assigned to it.

The powder spreading for the tests 

The set-up with a powder feeding platform 
and a stationary blade was used for the purpose 
of the tests of the developed algorithm to detect 
defects in powder bed (Fig. 1b, c). The powder 
spreading was performed by the procedure de-
scribed in ‘The vertical powder feeding platform’. 

Fig. 1. CAD model of the powder feeding and spreading system, version with powder 
hopper, CAD model (a) and its physical realization (b), the set-up used for the test of the 

algorithm detecting powder layer defects, CAD model (c), physical set-up (d)

a) b)

c) d)
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Image acquisition of the deposited powder 
layer

The video system used for testing consisted 
of the following:

− Balluff BVS002C industrial camera, 
− C-mount KOWA HR964SR lens with a fo-

cal length of 35mm,
− Balluff BAE000K ring LED illuminator. 

The undoubted advantage of the Balluff 
BVS002C camera is its built-in graphics proces-
sor, operating RT system and BALLUFF Cockpit 
2.0 software, with which it is possible to commu-
nicate via a webserver. Once the programming 
stage is completed, the camera becomes an inde-
pendent device that does not require connection 
to a PC or industrial computer. In Table 1 techni-
cal parameters of the Balluff BVS002C industrial 
camera are presented.

The camera’s development environment al-
lows image capturing, region of interest (ROI) 
definition, and implementation of image process-
ing operations including filtering, geometric mea-
surements, and barcode reading. Due to the built-
in graphic processor, it is also possible to apply 
and implement classification algorithms. As stan-
dard, the camera is equipped with Profinet, Eth-
ernetIP, IO-link communication interfaces, and 
classic digital IO-ports in 0-24V logic. One of 
the available ports is configured as a trigger so 
that the camera does not operate in continuous 
mode, but captures images off at a hardware- and 
software-defined moment (the corresponding po-
sition of the powder feeder). The digital signal 
can be generated directly from the limit switch 
or controller. In addition, the camera software al-
lows communication with an FTP server to which 
images captured from the camera are automati-
cally sent. Using the described configuration, it 

was possible to capture a large amount of data 
(images) without the presence of an operator. The 
resulting data were used to test algorithms for 
classifying potential defects during the process of 
spreading metal powder on the printer’s working 

Table 1. Technical parameters of the Balluff BVS002C 
industrial camera

Parameter Description

Image resolution 1280 × 1024 px

Shutter CMOS 1/1.8’’, monochrome 
sensor (global shutter)

Pixel size 5.3 × 5.3 μm

Maximum acquisition rate 60 fps

Interface Gigabit ethernet, Profinet/
ethernet IP, IO-Link,

Digital IO 2×IO configurable

Software BVS cockpit software

Fig. 3. Vision system for assessment of 
powder distribution quality (a), vision 

system over the working field (b)

a)

b)
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field. Figure 3 shows the complete vision system 
equipped with Balluff BVS002C industrial cam-
era, C -mount KOWA HR964SR lens with a fo-
cal length of 35mm, Balluff BAE000K ring LED 
illuminator (a) and its position over the working 
field of thedeveloped 3D printer (b).

EXEMPLARY IMAGES OF THE POWDER 
LAYER DEFECTS AND THE REFERENCE 
POWDER LAYER 

Figures 4-7 show the three types of defects 
that were analyzed in this work and examples 
of the correct powder layer. The first defect was 

super-elevation, which is sticking out of the part 
above the powder level. This is usually caused by 
the detachment of the part due to residual thermal 
stresses [18] or swelling of the part caused by ex-
cessive energy input [19], as a consequence the 
part can lose its intended shape and elevate above 
the powder bed surface. This is considered a seri-
ous defect that directly influences the geometry of 
the final part geometry [12].

The second analysed defect was recoater 
streaking, characterized by the presence of a dis-
tinct line, running parallel to the direction of the 
recoater movement, which occurs when the blade 
is either damaged or the recoater drags a relative-
ly large contaminant across the powder bed [17].

Fig. 4. The images showing a super-elevation defect in the powder layer

Fig. 5. The exemplary images showing a recoater streaking defect in the powder layer
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Fig. 6. The exemplary images showing a recoater hopping defect in the powder layer

Fig. 7. Examples of reference powder’s layers images without defects

The last defect appeared during research was 
the recoater hopping observed when a rigid re-
coater blade makes contact with a part positioned 
just below the surface of the powder bed. This 
phenomenon is visible in the form of repeated 
lines that are perpendicular to the direction of 
recoater travel [12]. The reference powder layers 
without defects are given in Figure 7.

INITIAL TEST OF ALGORITHM

The purpose of the designed vision system is 
to determine whether the metal powder has been 
properly distributed in the printer’s work area. 

Figure 8 shows a diagram of how the developed 
system works in practice.

Once the powder is distributed through the 
recoater, the printer’s PLC sends a signal (trig-
ger) to the vision system and then can determine 
the quality of the powder distribution. In practice, 
this means that a photo is taken, processed, and 
analyzed. On the basis of the analysis and speci-
fied parameters, an evaluation algorithm decides 
whether the surface quality of the distributed 
powder is adequate. If so, the printing process 
continues, and then more layers of powder are 
distributed. If a defect is detected on the surface 
of the powder, actions specified by the station op-
erator are taken (e.g., an alarm is triggered, the 
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powder is redistributed, or the printing process is 
stopped). 

The class diagram of the Unified Modeling 
Language (UML) of the considered algorithms has 
been presented in Figure 9. The overall software 
of the vision system consists of several classes: 
Program, Communication Module, Image Pro-
cessing Module, and Graphical User Interface. 
The Program class aggregates the other classes 
completely. This means that it owns and manages 
the objects of the other classes. The Communica-
tion Module is used to exchange information and 
defines communication channels. Its functions 
include accepting information about the possi-
bility of inspecting the surface of the distributed 
powder, as well as sending information about 
image processing and the result of the analysis 

performed. The User’s Graphical Interface has 
been used for the ability to display the image and 
to retrieve the data needed for calibration. 

The Image Processing Module [20] is respon-
sible for taking the image and processing it into a 
state that can be analyzed, and on it a decision can 
be made about whether the quality of the powder 
distribution is good enough.

In a given vision system, it is important for the 
operator to be able to calibrate it. It is necessary be-
cause of the use of powders of different materials 
and gradations, as well as other variables present 
in the printer environment, such as lighting or the 
possibility of changing the position of the camera 
in relation to the working field. Correct calibration 
helps to make the system as effective as possible. 
During the calibration stage, the operator defines 

Fig. 8. Simplified algorithm of the vision system for quality assessment of the metal powder distribution

Fig. 9. UML class diagram of the developed vision system
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ROI and sets control parameters (e.g. brightness, 
contrast, mean of pixel brightness, standard devia-
tion of mean value of pixel brightness). The devel-
opment of the algorithm has been carried out on 
the basis of pictures of manually distributed pow-
der. The first step of the research was to create the 
initial evaluation algorithm, which has been pro-
totyped in the MatLab environment. At the begin-
ning, the images were processed by cropping them 
to the region of interest (called ROI) and increas-
ing the contrast, as shown in Figure 10.

First, the global evaluation parameters of im-
ages have been tested: standard deviation, mean 
gradient, and percentage of edges for different 
thresholds (Fig. 11). The threshold value was de-
termined based on the statistical parameters of 
the image, such as the mean value and standard 
deviation, which were calculated by histogram 
analysis. It has been investigated that the standard 
deviations calculated for the entire ROI do not 
allow one to satisfactorily separate the samples 
classified as OK and NOK. The other basic image 
processing operations, thresholding, and morpho-
logical operations have been applied. Threshold-
ing involves transforming an image so that pixels 
with values above or below a certain fixed thresh-
old (set by the user) are assigned to one of two 
categories. It is a popular method of image seg-
mentation that allows separation of objects from 
the background based on their intensity or pixel 
values. Morphological operations, on the other 
hand, modify the shape and structure of objects 
in an image on their geometric properties. Global 

methods based on the control of the parameters of 
the entire working area (limited by ROI) do not 
give a satisfactory evaluation efficiency. Adaptive 
selection on the basis of standard deviation and 
mean is not effective enough. There is a false pos-
itive problem presented in Figure 12 and a false 
negative problem shown in Figure 13.

In the second approach, an algorithm has been 
applied to assess local image properties. In this 
method, defect detection is carried out using im-
age profile analysis. For that reason, it is crucial to 
specify parameters for image processing: rotation 
angle, profile positions, profile lengths, number of 
profiles in a set, and the like. These parameters can 
be adjusted depending on the specific requirements 
of the application. Then the image is loaded and, 
based on the defined profile positions and other 
parameters, sets of profiles are extracted from the 
image. For each set, an average profile is calculat-
ed by averaging the pixel values along the profile 
lines. The resulting profiles are subjected to high-
pass filtering to remove waviness. The differences 
between the maximum and minimum values for 
each profile are then calculated. Based on these, 
detection thresholds are determined; If any of the 
values exceed the threshold, a defect is considered 
to have occurred, NOK; otherwise, OK.

Differences in the way each type of defect is 
detected are related to the arrangement of the pro-
files in the image:
 • Detecting defects related to a recoater streaking

To detect this defect, the image is rotated in 
parallel with the direction of powder distribution, 

Fig. 10. Initial image processing: increasing contrast, ROI definition
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which is important for the accuracy of defect 
detection.
 • Detection of defects related to the recoater 

hopping phenomenon
Detection of this defect is also done using 

image profile analysis. First, the image is rotated 
90°. Profiles are then extracted from the image 
in the same way as for detecting defects related 
to streak wear. 

 • Detection of non-directional defects like a 
super-elevation
This defect is detected by both previous algo-

rithms assuming that the profiles are sufficiently 
dense placed or where according to the CAD 
model the printing occurs.

It is possible to generate visualizations of the 
images and graphs obtained as a result of the pro-
cessing presented in Figure 14. 

Fig. 11. Assessment of powder distribution (images initially processed) - classified by operator

Fig. 12. Processed images classified by algorithm, threshold=avg-3σ, a) right 
assignment, b) incorrect assignment - false OK, c) right assignment

Fig. 13. Processed images classified by algorithm, threshold= avg-1σ, a) right 
assignment - NOK b) right assignment, c) incorrect assignment - false NOK

a) b) c)

a) b) c)

a) b) c)
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Figure 15, 16, and 17 show the profiles of 
pixel brightness (deviation from the mean), 
crossing the markers for selected images (Fig. 
14). 

It can be seen in Figure 15 that profiles cross-
ing red (1) and blue (5) markers show the higher 
deviation from mean pixel brightness, which 
corresponds to the super-elevation case.

It can be seen in Figure 16 that profiles 
crossing red (1), yellow (2) and green (3) mark-
ers show the much highest deviation which cor-
responds to the recoater streaking. 

Figure 17 presents profile lines for case 
where the powder layer has been distributed 
without defects. It can be noticed that each 
brightness profile (1–7) is similar to each other 
and that its deviation from the mean brightness 
is relatively low. 

Evaluation of algorithm effectiveness

After the algorithm its effectiveness has been 
analyzed. It can be seen in Table 2, the algorithm 
has the highest efficiency in detecting that the 
surface of the distributed powder is correct. For 
all images with defects, an efficiency of 88% was 
achieved for 600 selected images with 3 groups 
of NOK’s and OK (Table 2). Intensive work is 

Fig. 14. Example of profile set arrangement and image rotation for: super-
elevation (a), recoater streaking (b), powder layer without defects (c)

a) b) c)

Fig. 15. The pixel brightness profile curves indicating the difference from the mean for super-elevation case (Fig. 14a)

Table 2. Effectiveness of the algorithm based on local 
image properties assessment

Classification Effectiveness of the algorithm

OK 100%

Recoater streaking 93%

Recoater hopping 90%

Super-elevation 93%
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currently underway to improve the effectiveness 
of the algorithm and increase its efficiency.

CONCLUSIONS

In the process of 3D metal printing, there 
can be defects in the distribution of powder by 
the recoater. They have various forms and can be 
caused by recoater streaking, recoater hopping, 

super-elevation and other reasons (not researched 
in this study):
 • The study identified defects that occur dur-

ing the powder distribution process. These 
include: recoater streaking, recoater hopping, 
and super-elevation.

 • Global image processing algorithms, such as 
mean gradient and standard deviation, do not 
allow for effective image classification. 

Fig. 16. The pixel brightness profile curves, indicating the difference 
from the mean for the recoater streaking case (Fig. 14b)

Fig. 17. The pixel brightness profile curves, indicating the difference from the average - no defect case (Fig. 14c)
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 • The Algorithm involving profile analysis de-
veloped and implemented in the MatLab en-
vironment allows satisfactory performance in 
evaluating defects including: recoater streak-
ing, recoater hopping, and super-elevation. The 
advantage of the developed algorithm is that 
it uses the difference in shades of gray rather 
than the gray value itself, so that the algorithm 
is partly adaptive to lighting conditions (and 
does not depend so much on lighting).

 • The highest algorithm efficiency (100%) has 
been obtained for OK cases. In case of defects, 
efficiency drops slightly, however, it is still 
relatively high (93% for recoater streaking and 
super-elevation, 90% for recoater hopping)
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