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INTRODUCTION

Nowadays, there is a growing demand for 
precise data reflecting three-dimensional move-
ment, especially for the needs of biomechanics 
[1], medical applications, computer games, com-
puter animation [2, 3], sport, and activity recogni-
tion [4]. Data obtained from various motion cap-
ture systems (Mocap) contain the human and ob-
ject pose expressed as a multi-channel time-based 
data. In each frame sequences of corresponding 
3D points are stored [5]. Sophisticated equipment, 
like depth sensors or optical cameras operating in 
near infrared, allows to acquire the accurate data. 
Such precise 3D data represent variations in ac-
tions, and can further be applied in recognition, 
classification or animation. The skeleton-based 
action recognition is a challenging task. Its first 
step is to learn the sequences of the given points 

in 3D data and finally identify unique patterns 
[5]. From this type of feature detection, extracted 
e.g., the extraction process involves obtaining lo-
cal spatio-temporal occupancy patterns or a 3D 
scene flow from 3D skeletal joints, silhouettes, 
and body part locations [6, 7]. Based on them the 
classification process is performed.

Recognising individual or team actions in 
sport has an essential function in determining 
the players’ performance level as well as evalu-
ating training. Various deep neural classification 
methods have been applied in basketball [8], vol-
leyball [9], karate athletes [10] and watersports 
[11]. Based on the results obtained in [12], the 
temporal neural networks were deemed to be 
more appropriate for human action recognition. 
Graph convolutional neural networks have often 
been used in sport action recognition because of 
existing patterns and dependencies embedded in 
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spatial configuration of human joints [13-15]. In 
some sports, additional objects are helpful in rec-
ognising movements. An example of such a sport 
is tennis, where the arrangement of the tennis 
racket makes it easier to identify moves [16]. 

Tennis movement classification using motion 
capture data has been considered in many studies. 
Based on data recorded by Kinect, twelve ten-
nis strokes (various types of forehand, backhand, 
volley and serve) were recognized using the fol-
lowing approaches: Long Short Term Memory 
(LSTM) artificial model with 3 layers [17, 18] 
and five ones [20], SVM, and Conditional Ran-
dom Fields (CRF) with a linear chain [19]. An-
other study concerning tennis strokes, described 
in [21], is about temporal location extraction 
utilized cost-effective visual and inertial sens-
ing. The classification of tennis moves was per-
formed with the use of SVM and kNNs. Classi-
fication based on boost Hilbert using embedding 
approach with a cross-correlation operator based 
on Tennis-Mocap and HDM05 was proposed in 
[2]. Serve, forehand, backhand, volley, backhand 
volley and smash were recognized.

Spatial Temporal Graph Convolutional Net-
works were applied with great success for fore-
hand, backhand, and no-shot in [22, 23]. Another 
approach, reaching satisfactory results, involv-
ing the Attention Temporal Graph Convolution-
al Network (A3T-GCN) was proposed in [24].
Movements of various sports were animated for 
the purposes of teaching or verification. Anima-
tion performed on the basis of motion capture 
data to control virtual world was presented in 
[25]. A deep model, called Cool-TSN, was ap-
plied for action recognition. A 3D table tennis 
simulation animation for the purpose of teaching 
was described in [26, 27]. The animation of tennis 
moves of a professional player versus a trainee 
was presented in [28]. Eleven forehand strokes 
were compared. Computer graphics animation 
of a tennis serve involving a whole body and a 
racket based on video capturing for the purpose 
of judgement of ball direction was presented in 
[29]. In the study 15 professional and 15 amateur 
participants took part. 

Point-light motion animations of forehand 
groundstrokes, both for left-handed and right-
handed, based on a marker-based motion capture 
system was presented in [30]. Twenty professional 
and twenty non-players participated in the study. 
A VR system, in which the simulated player was 
rendered in a real time utilizing implementing 

artificial intelligence, dedicated for sport educa-
tion, was described in [31]. Various approaches 
were applied, such as intelligent animation con-
trol, stereoscopic display with high-definition, hy-
brid tracking, haptics feedback, skin deformation 
based on shades as well as VR immersive experi-
ence in a real time. The backward, forward, and 
sideways motions toward the ball were applied.

The main contribution of this paper is to pro-
pose a system for tennis motion capture data ani-
mation involving artificial intelligence. For human 
movement recognition, the Dual Attention Graph 
Convolutional Network (DA-GCN), was present-
ed. Its unique approach consists of two attention 
modules, one for body analysis and the other for 
tennis racket alignment. The network takes into 
account both spatial and temporal features. It in-
volves GCN and LSTM. The classifier is trained 
with a set of 3D data as input. The data are gener-
ated from the Mocap data and containing an object 
of a player holding a tennis racket. Based on this 
type of information, tennis backhand, forehand, 
and two types of volleys have been classified with 
great success. The recognised movements are fur-
ther processed using Autodesk’s MotionBuilder 
software. Movement sequences are assigned to 
the tennis player’s 3D digital model. In this way, 
realistic character animations were obtained that 
reflected the recognised moves. This allows to ex-
port them to various file formats compatible with 
various rendering programs. Therefore, they can 
be used in movies, video games and other visual 
projects. To the best to the author’s understanding 
this study presents the first attempt to create ani-
mation using c3d files for tennis data presenting a 
tennis player together with a racket.

MOCAP DATA

Data acquisition

The recordings were completed in an indoor 
laboratory. The experiment involved three fe-
male and seven male tennis players performing 
backhand, forehand, volley backhand and volley 
forehand strokes. The movements were recorded 
using an advanced eight-camera T40S optical 
Vicon motion capture system, operating at a fre-
quency of 100 Hz.

The recordings were completed in an in-
door laboratory. To add a natural element to the 
strokes, the backhand and forehand moves were 
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executed while the participants were running 
and navigating around an obstacle placed on the 
floor. This setup facilitated more realistic strokes 
compared to hitting the ball from a stationary 
position. Initially, each participant performed 
ten forehand strokes without a ball, followed by 
ten backhand strokes without a ball. These ex-
ercises were then repeated, incorporating a ball. 
At the end, the participants executed ten volleys 
forehand and ten volleys backhand in front of a 
tennis net, with tennis balls being thrown from 
both the right and left sides of the net. While 
standing parallel to the net, the players made 
short movements with their rackets in front of 
them, causing the balls to bounce and fall.

Participant preparation

The study involved a total of ten tennis 
players, each of them played as a profession-
al player at least 7 years. They were qualified 
based on their experience. They underwent 
preparation according to the Plug-in Gait spec-
ifications. To accurately capture their move-
ments, thirty-nine retroreflective markers were 
attached to the players’ bodies. Additionally, 
an extra tennis racket model was prepared spe-
cifically for registration purposes, and it was 
equipped with seven retroreflective markers. 
These markers were positioned on the top and 
bottom of the racket head, and at the bottom of 
the racket handle. Also two markers were at-
tached on both sides of the racket.

Data post-processing

All incorrectly-performed strokes were re-
jected. All other recordings were post-processed 
according to the following procedure. Firstly, 
each marker was labelled conforming to the Plug-
in Gait model or tennis racket model description. 
Secondly, all missing markers were interpolated 
in order to ensure the continuity of the trajectory. 
Thirdly, all recordings were cleaned so that there 
were only markers with label assigned. Finally, 
the Plug-in Gait model was applied for thirty-nine 
markers, reflecting a tennis player. The obtained 
data were exported using c3d format.

It should be noted that all registered data 
were carefully checked by a tennis specialist. 
Totally, the final dataset included: 212 back-
hand, 197 forehand, 180 forehand volley and 
180 backhand volley.

DA-GCN CLASSIFIER

In order to verify the study assumptions, a Dual 
Attention Graph Convolutional Neural Network 
(DA-GCN) was introduced. Its architecture was 
presented in Figure 1. Proposed DA-GCN consist-
ed of four main elements connected with: spatial 
and temporal features extraction, attention module 
as well as fully connected layers. Classifier input 
was presented in the form of a graph H=(Z,D), 
where Z indicates the graph vertices while D de-
notes its edges. The proposed input consisted of 
N nodes, connected with N skeleton joints and 
their altering in time t. The final structure of node 
could be defined as Z={zti|t=0,...,T, i=1,...,N-1}. 
Spatial and temporal features were obtained from 
the three-dimensional data in order to obtain the 
most accurate prediction of tennis movement. Two 
attention modules have been implemented to im-
prove the accuracy of tennis stroke classification. 
The first one was responsible for the unambiguous 
location of the player’s silhouette, while the sec-
ond for the position of the tennis racket. The ap-
plied classifier will enable the most accurate repre-
sentation of the tennis player’s realistic movement.

In the proposed solution, the graph convolu-
tion operation (Eq. 1) is applied directly to the 
input data. This allows the extraction of highly 
significant patterns and features in the space do-
main. The graph convolution operator "*G" is de-
fined as the multiplication of a signal X 
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where: U denotes the matrix of eigenvectors of 
the normalized graph Laplacian L, UTX is 
a Fourier Transform, Λ indicates the di-
agonal matrix of eigenvalues of L.

Following the completion of graph convolu-
tion operations that have harnessed neighboring 
information for each node within the spatial di-
mension of the graph, an additional standard con-
volution layer is sequentially applied along the 
temporal dimension. This layer serves to enhance 
the node’s signal by amalgamating the insights 
from adjacent time periods. The attention module 
comprises a basic 2D-convolutional layer, fol-
lowed by a sigmoid function that produces a mask 
for the input feature map. Operating on a three-
dimensional feature map input, it yields a X×Y×T 
attention map output. This resultant attention map 



316

Advances in Science and Technology Research Journal 2023, 17(5), 313–325

is subsequently multiplied with the input feature 
map through element-wise multiplication. 

Spatial features

To extract spatial features from the acquired 
tennis strokes, graph convolutional networks 
(GCNs) were applied. GCNs allow to determine 
the spatial relationship between individual graph 
nodes, described by Eq. (2), due to used Fourier 
filter [33]:
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To extract spatial features for series of input 
skeleton graphs a GCN consisting of 3 layers 
was applied. Mathematically, for feature input 
X, it could be expressed in a way provided by 
Eq. (3):
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𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (5) 
 

𝑓𝑓𝑜𝑜 = 𝜎𝜎(𝑤𝑤𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (6) 
 

𝑐𝑐𝑡̃𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑤𝑤𝑐𝑐[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (7) 
 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝑐𝑐𝑡̃𝑡 (8) 
 

𝑡𝑡ℎ = 𝑜𝑜𝑡𝑡 ∗ tanh(𝑐𝑐𝑡𝑡) (9) 
 
 

while 𝑐𝑐𝑡̃𝑡 
 

𝑂𝑂𝑛𝑛 = 𝛽𝛽 ∑(𝑖𝑖𝑛𝑛𝑛𝑛𝐼𝐼𝑘𝑘) + 𝐼𝐼𝑛𝑛

𝑋𝑋

𝑘𝑘=1
 (10) 

 

	 (3)

where:	 𝐴̂𝐴 = 𝑆𝑆𝐴̃𝐴
−12𝐴̃𝐴𝑆𝑆𝐴̃𝐴

−12
̃

  
 

indicates the pre-pro-
cessing stage, W0, W1, W2 – represents 
the weights for layers: input, hidden and 
output. Although the dimension of the 
weights layer is different, precisely W0 

where 𝐴̂𝐴 = 𝑆𝑆𝐴̃𝐴
−12𝐴̃𝐴𝑆𝑆𝐴̃𝐴

−12
̃

  
 
𝑊𝑊0 ∈ 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿, L  
 
 𝑊𝑊1,𝑊𝑊2 ∈ 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂, O 
 

 
RLxl, L – a feature matrix length and I – de-
notes number of inputs to the hidden layer 
W1, W2 

where 𝐴̂𝐴 = 𝑆𝑆𝐴̃𝐴
−12𝐴̃𝐴𝑆𝑆𝐴̃𝐴

−12
̃

  
 
𝑊𝑊0 ∈ 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿, L  
 
 𝑊𝑊1,𝑊𝑊2 ∈ 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂, O 
 

 R0xl, O – an output size. ReLU 
– stands for the Rectified Linear Unit ac-
tivation function.

Fig. 1. General scheme of DA-GCN classifier
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Temporal features

In order to designate temporal features, which 
were one of the most important issues to classify 
tennis strokes, RNN networks were applied. Un-
fortunately, their typical form turned out to be 
insufficient, therefore LSTM was used, which in 
this case processes information based on three 
items of data related to the strokes at times t, t-1, 
and t-2. It should be emphasized that in order to 
determine time dependences for tennis player 
model, the knowledge of both the current moment 
of data and the previous one are needed. The ap-
plied architecture of the LSTM network was con-
ditioned on the given Equations 4-6 [34]:

	

𝛩𝛩 ∗ G x =  𝛩𝛩(𝐿𝐿)𝑋𝑋 = 
 𝛩𝛩(𝑈𝑈Λ𝑈𝑈𝑇𝑇)𝑋𝑋 = 𝑈𝑈𝑈𝑈(Λ)𝑈𝑈𝑇𝑇𝑋𝑋 

(1) 
 

𝐵𝐵𝑘𝑘+1 = 𝜎𝜎 (𝑆𝑆𝐴̃𝐴
−1

2𝐴̃𝐴𝑆𝑆𝐴̃𝐴
−1

2𝐵𝐵(𝑘𝑘)𝜓𝜓(𝑘𝑘)) (2) 

 
 

𝑓𝑓(𝑋𝑋, 𝐴𝐴) = 
𝜎𝜎 (𝐴̂𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ((𝐴̂𝐴𝑋𝑋𝑊𝑊0)𝐴̂𝐴𝑋𝑋𝑊𝑊1) 𝑊𝑊2)  

(3) 
 
 

where 𝐴̂𝐴 = 𝑆𝑆𝐴̃𝐴
−1

2𝐴̃𝐴𝑆𝑆𝐴̃𝐴
−1

2
̃

 
 
 
 
 

𝑊𝑊0 ∈ 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿   , 
 

𝑊𝑊1, 𝑊𝑊2 ∈ 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂, 
 
 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (5) 
 

𝑓𝑓𝑜𝑜 = 𝜎𝜎(𝑤𝑤𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (6) 
 

𝑐𝑐𝑡̃𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑤𝑤𝑐𝑐[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (7) 
 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝑐𝑐𝑡̃𝑡 (8) 
 

𝑡𝑡ℎ = 𝑜𝑜𝑡𝑡 ∗ tanh(𝑐𝑐𝑡𝑡) (9) 
 
 

while 𝑐𝑐𝑡̃𝑡 
 

𝑂𝑂𝑛𝑛 = 𝛽𝛽 ∑(𝑖𝑖𝑛𝑛𝑛𝑛𝐼𝐼𝑘𝑘) + 𝐼𝐼𝑛𝑛

𝑋𝑋

𝑘𝑘=1
 (10) 

 

	 (4)

	

𝛩𝛩 ∗ G x =  𝛩𝛩(𝐿𝐿)𝑋𝑋 = 
 𝛩𝛩(𝑈𝑈Λ𝑈𝑈𝑇𝑇)𝑋𝑋 = 𝑈𝑈𝑈𝑈(Λ)𝑈𝑈𝑇𝑇𝑋𝑋 

(1) 
 

𝐵𝐵𝑘𝑘+1 = 𝜎𝜎 (𝑆𝑆𝐴̃𝐴
−1

2𝐴̃𝐴𝑆𝑆𝐴̃𝐴
−1

2𝐵𝐵(𝑘𝑘)𝜓𝜓(𝑘𝑘)) (2) 

 
 

𝑓𝑓(𝑋𝑋, 𝐴𝐴) = 
𝜎𝜎 (𝐴̂𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ((𝐴̂𝐴𝑋𝑋𝑊𝑊0)𝐴̂𝐴𝑋𝑋𝑊𝑊1) 𝑊𝑊2)  

(3) 
 
 

where 𝐴̂𝐴 = 𝑆𝑆𝐴̃𝐴
−1

2𝐴̃𝐴𝑆𝑆𝐴̃𝐴
−1

2
̃

 
 
 
 
 

𝑊𝑊0 ∈ 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿   , 
 

𝑊𝑊1, 𝑊𝑊2 ∈ 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂, 
 
 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (5) 
 

𝑓𝑓𝑜𝑜 = 𝜎𝜎(𝑤𝑤𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (6) 
 

𝑐𝑐𝑡̃𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑤𝑤𝑐𝑐[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (7) 
 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝑐𝑐𝑡̃𝑡 (8) 
 

𝑡𝑡ℎ = 𝑜𝑜𝑡𝑡 ∗ tanh(𝑐𝑐𝑡𝑡) (9) 
 
 

while 𝑐𝑐𝑡̃𝑡 
 

𝑂𝑂𝑛𝑛 = 𝛽𝛽 ∑(𝑖𝑖𝑛𝑛𝑛𝑛𝐼𝐼𝑘𝑘) + 𝐼𝐼𝑛𝑛

𝑋𝑋

𝑘𝑘=1
 (10) 

 

	 (5)

	

𝛩𝛩 ∗ G x =  𝛩𝛩(𝐿𝐿)𝑋𝑋 = 
 𝛩𝛩(𝑈𝑈Λ𝑈𝑈𝑇𝑇)𝑋𝑋 = 𝑈𝑈𝑈𝑈(Λ)𝑈𝑈𝑇𝑇𝑋𝑋 

(1) 
 

𝐵𝐵𝑘𝑘+1 = 𝜎𝜎 (𝑆𝑆𝐴̃𝐴
−1

2𝐴̃𝐴𝑆𝑆𝐴̃𝐴
−1

2𝐵𝐵(𝑘𝑘)𝜓𝜓(𝑘𝑘)) (2) 

 
 

𝑓𝑓(𝑋𝑋, 𝐴𝐴) = 
𝜎𝜎 (𝐴̂𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ((𝐴̂𝐴𝑋𝑋𝑊𝑊0)𝐴̂𝐴𝑋𝑋𝑊𝑊1) 𝑊𝑊2)  

(3) 
 
 

where 𝐴̂𝐴 = 𝑆𝑆𝐴̃𝐴
−1

2𝐴̃𝐴𝑆𝑆𝐴̃𝐴
−1

2
̃

 
 
 
 
 

𝑊𝑊0 ∈ 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿   , 
 

𝑊𝑊1, 𝑊𝑊2 ∈ 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂, 
 
 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (5) 
 

𝑓𝑓𝑜𝑜 = 𝜎𝜎(𝑤𝑤𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (6) 
 

𝑐𝑐𝑡̃𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑤𝑤𝑐𝑐[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (7) 
 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝑐𝑐𝑡̃𝑡 (8) 
 

𝑡𝑡ℎ = 𝑜𝑜𝑡𝑡 ∗ tanh(𝑐𝑐𝑡𝑡) (9) 
 
 

while 𝑐𝑐𝑡̃𝑡 
 

𝑂𝑂𝑛𝑛 = 𝛽𝛽 ∑(𝑖𝑖𝑛𝑛𝑛𝑛𝐼𝐼𝑘𝑘) + 𝐼𝐼𝑛𝑛

𝑋𝑋

𝑘𝑘=1
 (10) 

 

	 (6)

where:	 it, fo, ft represented the gates: input, output 
and forget, wi, wf, wo were weights indi-
cating individual gates, bi, bf, bo denotes 
bias values for them, ht-1 was the value 
of the result of the earlier LSTM block at 
moment t-1, while xt dentoted an input at 
present moment, and  indicated the sig-
miodal function. Furthermore, the formu-
las for the gate state could be described by 
Eq. 7– 9 [34]:

	

𝛩𝛩 ∗ G x =  𝛩𝛩(𝐿𝐿)𝑋𝑋 = 
 𝛩𝛩(𝑈𝑈Λ𝑈𝑈𝑇𝑇)𝑋𝑋 = 𝑈𝑈𝑈𝑈(Λ)𝑈𝑈𝑇𝑇𝑋𝑋 

(1) 
 

𝐵𝐵𝑘𝑘+1 = 𝜎𝜎 (𝑆𝑆𝐴̃𝐴
−1

2𝐴̃𝐴𝑆𝑆𝐴̃𝐴
−1

2𝐵𝐵(𝑘𝑘)𝜓𝜓(𝑘𝑘)) (2) 

 
 

𝑓𝑓(𝑋𝑋, 𝐴𝐴) = 
𝜎𝜎 (𝐴̂𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ((𝐴̂𝐴𝑋𝑋𝑊𝑊0)𝐴̂𝐴𝑋𝑋𝑊𝑊1) 𝑊𝑊2)  

(3) 
 
 

where 𝐴̂𝐴 = 𝑆𝑆𝐴̃𝐴
−1

2𝐴̃𝐴𝑆𝑆𝐴̃𝐴
−1

2
̃

 
 
 
 
 

𝑊𝑊0 ∈ 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿   , 
 

𝑊𝑊1, 𝑊𝑊2 ∈ 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂, 
 
 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (5) 
 

𝑓𝑓𝑜𝑜 = 𝜎𝜎(𝑤𝑤𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (6) 
 

𝑐𝑐𝑡̃𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑤𝑤𝑐𝑐[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (7) 
 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝑐𝑐𝑡̃𝑡 (8) 
 

𝑡𝑡ℎ = 𝑜𝑜𝑡𝑡 ∗ tanh(𝑐𝑐𝑡𝑡) (9) 
 
 

while 𝑐𝑐𝑡̃𝑡 
 

𝑂𝑂𝑛𝑛 = 𝛽𝛽 ∑(𝑖𝑖𝑛𝑛𝑛𝑛𝐼𝐼𝑘𝑘) + 𝐼𝐼𝑛𝑛

𝑋𝑋

𝑘𝑘=1
 (10) 

 

	 (7)

	

𝛩𝛩 ∗ G x =  𝛩𝛩(𝐿𝐿)𝑋𝑋 = 
 𝛩𝛩(𝑈𝑈Λ𝑈𝑈𝑇𝑇)𝑋𝑋 = 𝑈𝑈𝑈𝑈(Λ)𝑈𝑈𝑇𝑇𝑋𝑋 

(1) 
 

𝐵𝐵𝑘𝑘+1 = 𝜎𝜎 (𝑆𝑆𝐴̃𝐴
−1

2𝐴̃𝐴𝑆𝑆𝐴̃𝐴
−1

2𝐵𝐵(𝑘𝑘)𝜓𝜓(𝑘𝑘)) (2) 

 
 

𝑓𝑓(𝑋𝑋, 𝐴𝐴) = 
𝜎𝜎 (𝐴̂𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ((𝐴̂𝐴𝑋𝑋𝑊𝑊0)𝐴̂𝐴𝑋𝑋𝑊𝑊1) 𝑊𝑊2)  

(3) 
 
 

where 𝐴̂𝐴 = 𝑆𝑆𝐴̃𝐴
−1

2𝐴̃𝐴𝑆𝑆𝐴̃𝐴
−1

2
̃

 
 
 
 
 

𝑊𝑊0 ∈ 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿   , 
 

𝑊𝑊1, 𝑊𝑊2 ∈ 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂, 
 
 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (5) 
 

𝑓𝑓𝑜𝑜 = 𝜎𝜎(𝑤𝑤𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (6) 
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where: ct denoted the gate state at timestamp t, 

while ct ̃ represented the pretender for the 
gate state at the moment t.

Attention module

Extraction of discriminant features is neces-
sary to capture contextual information. For this 
purpose, two attention modules have been pro-
posed. They were used to capture information 
involving the tennis moves of both the player 
and the racket in the form of feature attention 
matrices. These elements were necessary to pre-
dict their future position. In Figure 2 the general 
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where: O – represents the output value, ink – an 
impact of the kth feature on nth, In – de-
notes the input parameters and β is a 
weight parameter.

CLASSIFIER EVALUATION

In order to check the advisability of using 
classifier consisting of two attention models, pre-
liminary tests were carried out. In this study, the 
fragments responsible for recognizing the silhou-
ette and the racket (Fig. 1), was removed from 
proposed model, respectively. Two studies were 
conducted: one for the silhouette itself and the 
other for the racket itself. In Tables 1-2 the results 
of the obtained Accuracy measures are gathered.

Analyzing the results, it is obvious that the 
achieved results of individual components are far 
from acceptable. Due to it, the double attention 
classifier has been verified by the following mea-
sures: Accuracy, Precision, Recall and F1 score 
(see Tables 3-6). The confusion matrix for the ana-
lysed tennis strokes was calculated for indicating 
the misleading classification (Fig. 3). The learning 
curve and the loss function are shown in Figure 4.

The summary of the works concerning tennis 
strokes recognition is presented in Table 7. These 
state-of-the-art studies involve many various ac-
quisition technique, including sensors, video and 
motion capture systems. A great number of the re-
search in this domain has been conducted on the 
widely recognized THETIS database. Both video 
data and images derived from the Kinect motion 
capture system have been employed to analyze and 
identify tennis movements. Additionally, real match 
broadcasts have frequently been incorporated into 
the research. Various neural network approaches 
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Fig. 2. General scheme of attention module. RS represents matrix reshaping, TP matrix transposition

Table 1. Obtained accuracy for forehand (F), backhand (B), volley forehand (VF) and volley backhand (VB) (only 
silhouette)

Stroke Mean Max Min ±SD

F 70.94% 74.86% 65.51% 4.54%

B 70.13% 74.29% 65.38% 5.57%

VF 70.73% 76.20% 63.23% 5.35%

VB 71.41% 78.96% 63.21% 5.44%

Table 2. Obtained Accuracy for Forehand (F), Backhand (B), Volley Forehand (VF) and Volley Backhand (VB) 
(only racket)

Stroke Mean Max Min ±SD

F 67.25% 72.89% 60.94% 7.03%

B 66.94% 72.96% 60.11% 6.35%

VF 67.03% 72.83% 60.53% 4.95%

VB 66.19% 72.20% 60.45% 7.39%

Fig. 3. Confusion matrix (in %) for 
forehand (F), backhand (B), volley forehand 

(VF) and volley backhand (VB)

have been utilized to achieve these objectives. No-
tably, graph neural networks, have been deployed 
to identify tennis movements using motion capture 
data. This type of network stems from the distinc-
tive characteristics of the recorded data. In this 

approach, a human model is created with markers 
affixed to specific locations on the body. Based on 
this data a graph is created, which accurately repre-
sents the character of the human body.

TENNIS STROKES ANIMATION

Animating a digital 3D model using Au-
todesk’s MotionBuilder software is one of the 
popular ways to create realistic animations of 
human figures and objects. Due to this soft-
ware, it is possible to precisely reproduce the 
movements and behavior of the characters, 
which is especially useful in various areas in-
cluding sports. In the described process, the 
data reflecting the movement of a real ten-
nis player was saved in a file in .c3d format. 
Moreover, it was possible to import the data 
into the MotionBuilder software, in which the 
data could be used to animate the characters. 
The sequence of movement in the 3D scene 
was presented as a cloud of distinguishable 
animated points (Figure 5) which correspond 



319

Advances in Science and Technology Research Journal 2023, 17(5), 313–325

Fig. 4. Selected learning parameter

a)

b)

Table 3. Obtained accuracy for forehand (F), backhand (B), volley forehand (VF) and volley backhand (VB)
Stroke Mean Max Min ±SD

F 91.38% 96.17% 86.00% 3.19%

B 91.13% 95.98% 85.01% 3.40%

VF 89.79% 95.48% 85.63% 3.31%

VB 90.41% 96.91% 86.74% 3.61%

Table 4. Obtained Precision for Forehand (F), Backhand (B), Volley Forehand (VF) and Volley Backhand (VB)
Stroke Mean Max Min ±SD

F 97.63% 98.97% 89.58% 2.73%

B 94.34% 98.97% 87.76% 3.40%

VF 92.40% 97.96% 85.15% 3.80%

VB 92.01% 95.05% 86.74% 2.47%

Table 5. Obtained recall for forehand (F), backhand (B), volley forehand (VF) and volley backhand (VB)
Stroke Mean Max Min ±SD

F 91.82% 96.97% 85.15% 3.45%

B 93.04% 96.94% 86.87% 3.06%

VF 97.60% 98.97% 90.53% 2.47%

VB 93.91% 98.97% 86.73% 3.26%
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to the positions of the markers on the real ten-
nis player. In order to create a realistic anima-
tion, anatomically matched virtual actor must 
be added to the point cloud, which will be set 
in motion (Figure 6a). For this purpose, it is 
necessary to create the so-called performer rig, 
i.e., an auxiliary skeleton that will be moved by 
a cloud of points. The rig consists of properly 
arranged bones that will control the character’s 

movements. Based on it, the skeleton of the 
animated character will be created and coupled 
with the performer skeleton (Figure 6b). The 
last stage is the verification of the correctness 
of the animation and its fixation on the skele-
ton of the character (Figure 7). Due to this, the 
model will be able to move in the desired way 
without the participation of performer skeleton 
and markers.

Table 6. Obtained F1 for forehand (F), backhand (B), volley forehand (VF) and volley backhand (VB)
Stroke Mean Max Min ±SD

F 94.62% 97.96% 87.31% 2.93%

B 93.69% 97.36% 87.31% 3.20%

VF 94.92% 98.49% 87.76% 3.02%

VB 92.95% 96.97% 86.74% 2.83%

Table 7. The comparison of tennis movement classification (NH – no hit, VB – volley backhand, VF – volley 
forehand, B – backhand, F – forehand, H – hit, BS – backspin, SM – smash, S – serve, V – volley)

Name of dataset/ 
type of data Source input Tennis moves Neural 

approaches Accuracy Study

SensorTile Signal F, B, S DNN 94.00-97.00% [35]

IMU Signal F, B, S, BS, SM

SVM 90.85-98.86%

[36]

NN 98.76-100.00%

DT 84.69-95.54%

RF 93.75-98.96%

kNN 87.76-99.44%

THETIS Video B, V, F, S, SM
LSTM 81.23-89.42% [37]

SVM 51.20%
[19]

CRF 86.44%

THETIS
Video B, V, F, S, SM Deep Historical 

LSTM
62.00%

[20]
HMDB51 54.00%

THETIS
Video B, V, F, S, SM LSTM 70.17-97.67% [38]

KTH

THETIS
Video B, V, F, S, SM SVM

53.08-60.23% [39]

KTH 90.65

KTH Video S, H, NH KLDA 73.34-92.29% [40]

Broadcast Video F, B SVM
90.21% [41]

87.10% [42, 43]

mix signal, video F, B, S
SVM 82.43-97.02%

[21]
kNN 84.73-100.00%

Vicon with fuzzy 
input

Images F, B, NH

ST-GCN 86.30-87.30% [22]

A3T-GCN 86.90-93.82% [24]

Vicon without 
fuzzy input

ST-GCN 64.10-74.30% [22]

A3T-GCN 74.22-81.95% [24]

Vicon
3D silhouette

F, B, V A3T-GCN
78.33-85.54% [16]

3D silhouette & racket 85.62-93.98% [16]

Vicon .c3d F, B, VF, VB DA-GCN 85.01-96.91% This work
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Fig. 6. (a) 3D model of an actor, (b) 3D model of an actor with markers

Fig. 5. Animated point cloud based on .c3d data

DISSCUSION

The DA-GCN classifier for tennis moves, like 
backhand, forehand, volleys (backand and fore-
hand) recognition was proposed with great suc-
cess. In order to verify its effectiveness, measures 

like Accuracy, Precision, Recall and F1 score were 
computed (Tables 3-6). The Accuracy obtained for 
all tennis moves was higher than 89.7%, which 
confirms the high efficiency of the suggested rec-
ognition model. The highest accuracy was reached 
for volley backhand – 91.41%. For forehand and 
backhand the accuracy is also very high, at the 
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Fig. 7. Tennis player model based on .c3d data

level of 91%. It should also be indicated that all ob-
tained maximum values exceeded 95.4%. Due to 
the unbalanced number of elements in the classes, 
Precision and Recall measures were calculated. 
They indicate classifier output quality. Precision 
determines the result relevance, while Recall 
informs about the number of truly returned rel-
evant results. High results obtained for these two 
measures (average Precision higher than 92% and 
average Recall higher than 91.8%) indicate that 
classifier gains both accurate as well as positive 
results. F1 score is a measure for the model’s ac-
curacy evaluation. It specifies how often a correct 
prediction is performed taking into consideration 
the whole dataset. In this study the obtained aver-
age F1 score (Table 6) exceeds 92.9%, while the 
maximum value is higher than 96.9%. Analysing 
the confusion matrix, it can be observed that there 
is a tiny percentage of incorrectly classified data. 
The highest quantity of misrecognised strokes 
were for backhand instead of volley backhand 
(only 8.15%) and for forehand instead of volley 
forehand (only 7.75%). The confusion matrix also 
confirms that the proposed classification method 
is accurate for Mocap data.

Analyzing the state-of-the-art tennis move-
ment recognition (Table 7), one can notice a limit-
ed number of studies based on optical motion cap-
ture systems [16, 22, 24]. It should be emphasized 

that the proposed solution, with its maximum ef-
fectiveness, exceeds the results obtained in other 
works [16, 22, 24]. One of the reasons for the clas-
sifier’s behavior may be the use of a different type 
of input data extracted from the Vicon system. It 
should also be emphasized that the input data used 
in other works, such as: signals [35, 36], video ob-
tained from the following databases: THETIS [19, 
37, 38], KTH [38-40], HMD51 [20] whether the 
images [22, 24] are not as accurate as those used 
in this work. Furthermore deep neural networks 
[20] as well as less sophisticated [39-41] were also 
compared with proposed solution. Moreover, the 
proposed solution contains two models of attention 
that allow the extraction of features for the move-
ment of the player and the tennis racket, separately. 
The structures used within the convolutional neu-
ral network (GCN and LSTM) enable independent 
separation of spatial and temporal features, which 
also affects the final classification efficiency. Now-
adays, much attention is paid to the accuracy of 
mapping athletes’ movements for the purpose of 
their analysis or the production of systems sup-
porting novice athletes or coaches [26]. In order 
to reflect movements, spatial coordinates as well 
as the positions of the subject are needed. For this 
reason, more and more precise data are obtained 
from motion capture systems [27-28]. On the basis 
of the received trajectories, a data simulation may 
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be created. Various animation techniques have 
been presented, such as Adobe Flash professional 
CS programming software [26], OpenGL [31] or 
CAD programs [44]. It is worth mentioning that 
in the group of racket sports simulations for table 
tennis [26-27] as well as solutions for tennis [28-
30] have been developed. In the field of the last 
sport, the serving animation was developed, as 
well as the detection of the position of the tennis 
ball [29]. Selected tennis moves with a marked tra-
jectory are presented in [28]. They did not contain 
a tennis racket, only the silhouette of a player. In 
[30], the visit of tennis players in the position of 
opponent was examined. The system presents an 
animation of right- and left-handed players in the 
form of markers reproducing the shape of the sil-
houette and the racket. This paper presents a novel 
system that combines the use of artificial intelli-
gence to classify moves such as forehand, back-
hand, forehand volley and backhand volley. The 
modern techniques were involved. The new clas-
sification method was based on accurate 3D data 
recorded using the Vicon motion capture system. 
MotionBuilder was utilized for animation based on 
three-dimensional data. Whole body together with 
tennis racket was animated. Based on the literature 
review, it can be noticed that such a combination 
of data analysis and animation tools is a kind of 
novelty in scientific work. 

CONCLUSIONS

The main purpose of the study was to create a 
software for the animation of classified basic ten-
nis strokes. The experiment consists of two stag-
es. Firstly, the classifier was proposed for tennis 
movement recognition. Secondly, the animation 
for these moves was applied. For the purposes of 
this study, a new model was built, consisting of 
graph convolutional neural networks as well as 
LSTM networks along with two attention mecha-
nisms, allowing to clearly classify tennis strokes 
with accuracy exceeding other tools operating on 
similar data. The process of animating a 3D digi-
tal model using Autodesk’s MotionBuilder soft-
ware is a complex and requires precision as well 
as virtual character animation skills. However, this 
process allows one to create realistic character ani-
mation, which is applicable in many sport fields. 
In this study an animation using c3d Mocap data 
was performed for recognised tennis strokes. It 
presents the movements of a tennis player together 

with associated racket. The created system is a 
first attempt to build a sophisticated tool for virtual 
movement analysis as well as a learning software. 
Directions for future research may include extend-
ing the Mocap data with other tennis strokes, as 
well as the use of other animation methods.
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