INTRODUCTION

In the modern world, space structures have a large free column span and a low weight ratio to the covered area. Other purposes of building such systems are their aesthetic view and use as a storage [1]. Space structures can be found in several tourist cities, such as Pavilion and Science Museum (Nur Alem) in Kazakhstan [2, 3], MSG Sphere in Las Vegas in the US [4], and Ericsson Globe in Stockholm, Sweden [5, 6]. Due to loadings, the structural shape can be disturbed, and the internal bending moment, torsion, and axial forces can pass the allowable limits.

In general, the bending moment is the critical internal force in moment frames that causes noticeable deformation and sometimes failure in frame structures [7, 8]. Chen and Lui [9] discussed the types of space frames and several analysis methods. Researchers used different methods to analyze space frames, for example, the modified arch length method [10], Euler’s finite rotation formula [11], and the stiffness matrix method [12]. Regarding minimizing bending moments in simple frames, Wang [13] suggested a computational technique to reduce flexural moments in frame members. Moreover, the shape disturbance of some types of space structures was reformed after deformation, for instance, double-layer domes [14, 15] and egg-shaped single-layer frames [16]. Moreover, the internal bar force is also reduced in the members with high-stress levels by prestressing some active members [17].
Finding the optimum solution for a given problem is essential for cost-effectiveness. Structural optimization opened a new chapter in structural engineering [18]. Structural optimization is defined as the process of finding the best solution for a particular concern [19-21] in systems. Bar size optimization was performed for truss [22-28], dome [29-31], and frame [32, 33] structures. Furthermore, the optimum location of different types of shear walls for various buildings [34] on several soil types [35] was investigated. The optimal design was done for I- and H-shaped crane bridge girders [36], reinforced concrete sections [37], and steel moment frames [38]. Moreover, the significance of the most active members’ location to change the bars’ lengths to reshape and redistribute stress in members was also studied [39-43]. So far, studies have not been carried out either to control bending moment in beams or to beam size optimization for space frames.

Moreover, Saeed et al. [16] added extra members to a single-layer egg-shaped frame; they were not interested in finding the best places for the extra bars to reduce the structural deformation and bar internal forces. They arbitrarily put eight members in two different places to change the length of the additional bars to investigate the effect of the added members on the end moments and nodal displacements. For example, maximum absolute moment about the X-axis (max(abs(mx1)) max(abs(mx2))), the Y-axis (max(abs(my1)) max(abs(my2))), maximum absolute nodal displacements in X-direction (max(abs(dx))), Y-directions (max(abs(dy))), and Z-direction (max(abs(dz)))).

METHODS

Numerical modeling

The numerical model is 5000 mm high and 4000 mm wide. The model is formed by eleven circles of eight joints on top of each other. Additionally, the numerical model is supported at the nine bottom joints. The ninety joints were connected with 176 bars, as illustrated in Figure 1b. The members are made of steel, with Young’s modulus of 200 GPa; the bars’ diameter depends on the members’ maximum bending moment.

Eight members are attached to different levels of the structure to investigate the effect of the added members on the end moments and nodal displacements. For example, maximum absolute moment about the X-axis (max(abs(mx1)) max(abs(mx2))), the Y-axis (max(abs(my1)) max(abs(my2))), maximum absolute nodal displacements in X-direction (max(abs(dx))), Y-directions (max(abs(dy))), and Z-direction (max(abs(dz)))).

Figure 1. Single-layer egg-shaped frame: (a) joint labeling, and (b) member labeling
Optimization calculation

The area of the bars is selected based on the maximum moment in members, and the shape modulus is found as presented in Equation (1):

\[s_x = \frac{M_{\text{max}}}{f_y} \]
(1)

where: \(i \) is the case number, \(s_x \) is the required shape modules, \(M_{\text{max}} \) is the yield moment, and \(f_y \) is the materials yield strength.

\[D_i = \frac{2f_y}{s_x} \]
(2)

where: \(D_i \) is the required bar’s diameter to resist the maximum moment, and \(f_y \) is the moment of inertia.

The area and the volume for each case is calculated as Equations 3 and 4:

\[A_i = \frac{\pi}{4} D_i^2 \]
(3)

where: \(A_i \) is the required area for each case based on the maximum bending moment.

\[W_i = A_i \times \text{sum}(L) \times \gamma \]
(4)

where: \(W_i \) is the total weight of the structure bars for each case, and \(\text{sum}(L) \) is the summation of the length of the bars, and \(\gamma \) is the density of the material which 25 kN/m³.

It should be noted that the \(\text{sum}(L) \) of case 0 is less than that of the other cases since, for Case 0, there are no additional members. The optimization in the cross-sectional area and the total volume is based on Equations 5 and 6:

\[\text{Opt}_{\text{area}} = \frac{A_0 - A_i}{A_0} \times 100 \]
(5)

\[\text{Opt}_{\text{vol}} = \frac{W_0 - W_i}{W_0} \times 100 \]
(6)

RESULTS AND DISCUSSION

This section studies the significance of extra members’ locations. Aside from the original shape (case 0), ten other cases are evaluated. For each case, the additional members are added in different levels of the frame. Since the number of joints in each level is eight, the extra member’s number for each case is eight bars. In other words, the additional members are horizontal and connect the eight joints in ten various levels, as presented in Figure 2.

Horizontal loading

Two loading cases are investigated to understand the structure’s behavior for different horizontal loadings cases.

Loading Joints 18-21

In this loading case, joints 18-21 are loaded horizontally with 60N. The maximum induced

![Figure 2. Optimization of cross-sectional area and total volume of the structure in eleven cases](image)
bending moments for the original structure (Case 0) and the ten cases are illustrated in Figure 2. According to the data presented in Figure 3, the optimum location for placing the extra members for the given loading case is Case 9. Numerically speaking, the maximum bending moment for Case 9 is 9077 N·mm, while the maximum induced bending moment for Case 0 is 16249 N·mm. The optimization of beam cross-sectional area and material expenditure is illustrated in Figure 4. In terms of nodal displacements, the joints of the structure of Case 0 face larger movements than that of Case 9 (see Figure 5). This is because the bending moment is the substantial factor of deformation in moment frames. Furthermore, the bending moment in members for Case 0 is larger than that for Case 9, as presented in Figure 6.

Loading Joints 26-29

In this case, Joints 26-29 are loaded horizontally to see if still Case 9 is the optimum case. By changing the loading position, the amount of bending moment is changed; however, Case 9 is still the best-case scenario. Figure 7 shows the maximum absolute bending moments for eleven cases, including the original case (Case 0). It can be seen that the maximum induced moment for cases 0 and 9 is 13262 N·mm and 5543 N·mm, respectively. Based on the maximum bending moments, the optimization of the cross-sectional area and material expenditure is illustrated in Figure 4. In terms of nodal displacements, the joints of the structure of Case 0 face larger movements than that of Case 9 (see Figure 5). This is because the bending moment is the substantial factor of deformation in moment frames. Furthermore, the bending moment in members for Case 0 is larger than that for Case 9, as presented in Figure 6.

In this case, Joints 26-29 are loaded horizontally to see if still Case 9 is the optimum case. By changing the loading position, the amount of bending moment is changed; however, Case 9 is still the best-case scenario. Figure 7 shows the maximum absolute bending moments for eleven cases, including the original case (Case 0). It can be seen that the maximum induced moment for cases 0 and 9 is 13262 N·mm and 5543 N·mm, respectively. Based on the maximum bending moments, the optimization of the cross-sectional area and material expenditure is illustrated in Figure 4. In terms of nodal displacements, the joints of the structure of Case 0 face larger movements than that of Case 9 (see Figure 5). This is because the bending moment is the substantial factor of deformation in moment frames. Furthermore, the bending moment in members for Case 0 is larger than that for Case 9, as presented in Figure 6.

![Figure 3. Maximum absolute bending moments for eleven cases](image)

![Figure 4. Optimization of cross-sectional area and the total weight of the structure in eleven cases](image)
Vertical loading

This section studies two different cases of vertical loadings to investigate the effect of loading in bending moments and the place of additional members.

Loading Joints 1, 10-17

In this case, joints 1, 10-17 are loaded vertically with 180 N downward. The induced flexural moment in eleven cases is presented in Figure 9. The figure shows that the best-case scenario is Case 6, which provides with least bending moments. Case
6 provides bar size and structural total weight by 12 and 6%, respectively, as illustrated in Figure 10. Moreover, the states of the nodal displacements in X and Y directions of the optimal case (Case 6) and the original structure (Case 0) is presented in Figure 11. Despite of smaller size of beams in case 6 compared to case 0, the nodal displacements of case 6 are smaller than that of case 0. Similarly, the states of bending moments of all members about the X-axis for the optimal case and the original structure are illustrated in Figure 12. The figure shows that the induced bending moments in members for Case 0 are more prominent than that in case 6.

Loading Joints 1, 18-25

In this case, joints 1, 18-25 are loaded vertically with 180 N downward. The purpose of changing the loading joints is to see the behavior of the structure in eleven cases. Figure 13 shows the induced bending moments in all cases, and one can see that still Case 6 is the best-case scenario. Figure 14 shows the structure’s optimization in area and weight in Cases 1-10 based on Case 0. However, the beam cross-sectional area is minimized in Cases 5, 6, and 7, the total weight of Cases 5 and 7 is greater than that of Case 0. This is because Case 0 has only 176 beams, while other cases have 174 (176+8) beams. Moreover, the total weight optimization of Case 6 is just under 4%.

Horizontal and vertical loading simultaneously

In this loading case, Joints 1 to 9 are loaded vertically with -180 N, and joints 18-21 are loaded horizontally with 60 N. The induced bending moments in eleven cases are illustrated in Figure 15.
Figure 9. The maximum absolute bending moments of the egg-shaped single layer in eleven cases

Figure 10. Optimization of bar size and weight in eleven cases

Figure 11. X and Y displacements of nodes for Cases 0 and 6
Figure 12. The states of bending moments in members for cases 0 and 6

Figure 13. Maximum bending moments in eleven cases

Figure 14. Cross-sectional area and weight optimization of ten cases compared to Case 0
One can see that the best case scenario is case 7, with the maximum bending moment of 30597 N.mm. Regarding the bar size and weight optimization, Figure 16 shows that the beam size and weight optimization of case 7 are 14% and 8.5%, respectively. Regarding nodal displacements, the movements of the optimum case are smaller than that of the original case (Fig. 17). Furthermore, the states of the bending moments of each member for Cases 0 and 7 are illustrated in Figure 18. One can see that the optimum case’s bending moments are more miniature than Case 0.
CONCLUSION

In this study, the total structural weight of a space frame has been minimized; in addition, the significance of the location of the additional bars on the behavior of single-layer egg-shaped frames in several loading cases was investigated. The effectiveness of the location of the redundant on bending moment, beam size and total weight of the structure, and deformation of the structure has been extensively discussed. It was found that the place of the redundant is significant in the behaviors of the structure. The optimum location of the extra members depends on the loadings’ direction. The structure’s total weight optimization can be obtained up to 28%, 6%, and 8.5% for horizontally, vertically, and simultaneously horizontally and vertically loaded structures, respectively.

REFERENCES

10. Meek, J. and Tan, H.S., Geometrically nonlinear analysis of space frames by an incremental iterative technique. Computer methods in applied mechanics

32. Mojtabaei, S.M., Becque, J., and Hajirasouliha, I., Structural size optimization of single and built-up cold-formed steel beam-column members. Journal of Structural Engineering, 2021; 147(4).

