
207

INTRODUCTION

Modern railway vehicles are created with an
increasing emphasis on energy efficiency, both
due to requirements from the operators regarding
the operating costs as well as regulatory require-
ments caused by environmental issues. The EU
Directive on Energy Efficiency (EFD) forces the
EU Member States to provide low-energy means
of transport [1]. One way to ensure such a goal is
to support efficient rail transport, both with tradi-
tional electric or hydrogen power supply.

A wide range of energy-saving technolo-
gies are used to improve energy consumption,
but control software plays a key role in many of
them. One of the important parts of quality assur-
ance and risk management, in this case, is soft-
ware testing and the quality of the requirements.
Due to the increasing complexity, the number of
functions (and requirements) that require veri-
fication in the testing process can be as high as
several thousand. Since testing can be one of the
most time-consuming parts of the development

process (taking 40–70% of the total effort [2]),
the process must be as efficient as possible. An
important part of this effort is the creation of test
cases that require highly skilled engineers who
are familiar with the testing process, test envi-
ronment, and tested domain to be able to analyse
and understand the requirements for the system
under test. [3]

Most of the software requirements (79 %)
are written in the common natural language, such
as English, with only 21% using some kind of
formalism [4]. Despite many advantages, writ-
ing requirements in a common language gener-
ates many challenges. The requirement should be
precise, unambiguous and complete [5]. Those
characteristics are not always ensured when writ-
ing in natural languages. Due to this, preparing
test cases to verify if the tested software has been
properly developed according to requirements,
requires high skills, deep analysis and discussions
between system engineers, software engineers
and test engineers.

Ontology Extraction from Software Requirements Using
Named-Entity Recognition

Jerzy Kocerka1,2*, Michał Krześlak2, Adam Gałuszka1

1 Department of Automatic Control and Robotics, Silesian University of Technology, ul. Akademicka 2A,
44-100 Gliwice, Poland

2 Tritem Sp. z o.o., Ligocka 103/7, 40-568 Katowice, Poland
* Corresponding author’s e-mail: jerzy.kocerka@polsl.pl

ABSTRACT
With the software playing a key role in most of the modern, complex systems it is extremely important to create
and keep the software requirements precise and non-ambiguous. One of the key elements to achieve such a goal
is to define the terms used in a requirement in a precise way. The aim of this study is to verify if the commercially
available tools for natural language processing (NLP) can be used to create an automated process to identify
whether the term used in a requirement is linked with a proper definition. We found out, that with a relatively small
effort it is possible to create a model that detects the domain specific terms in the software requirements with a
precision of 87%. Using such model it is possible to determine if the term is followed by a link to a definition.

Keywords: requirements engineering; ontology extraction; named-entity recognition.

Advances in Science and Technology
Research Journal

Advances in Science and Technology Research Journal 2022, 16(3), 207–212
https://doi.org/10.12913/22998624/149941
ISSN 2299–8624, License CC-BY 4.0

Received: 2022.04.30
Accepted: 2022.05.14
Published: 2022.06.01

Advances in Science and Technology Research Journal 2022, 16(3), 207–212

208

The basic condition for a requirement to be
precise is the exact definition of the terms used in
it. This applies in particular to domains in which
specific, specialized terms are used. The railway
industry is one example of such an environment.
To ensure that terms are unambiguous in many
modern application lifecycle management (ALM)
tools, it is possible to combine text in require-
ments with other requirements or descriptions.

In this paper, we propose an automatic pro-
cess to identify the keywords(specific terms) in
software requirements written in natural language
to verify if the term is followed by the link to an-
other requirement with a precise definition of the
element.

MATERIALS AND METHODS

One of the aims of this study was to verify if
the industrial, open-source solutions for process-
ing natural language can be used to identify spe-
cific terms in software requirements. We decided
to use spaCy [6] – a free and open-source library
for advanced Natural Language Processing (NLP)
in Python. To identify the specific terms (train
elements) in the requirements we used Named-
entity recognition – a process that assigns labels
to contiguous spans of tokens using a statistical
entity recognition system. A named entity is a
“real-world object” that’s assigned a name – in
our case – a train element. SpaCy can recognize
various types of named entities in a document, by
asking the model for a prediction.

The library has several build-in models to
predict the most common named entities like lo-
cations, organizations or people, but to identify
different kinds of entities we had to teach our
model. We’ve created a set of more than 300 000
paragraphs extracted from project documents.
The whole data set was created completely au-
tomatically, without any manual intervention,
based on Microsoft Word files from the project
documentation. The documents were taken from
several projects closely related to the analysed
domain. Each paragraph, together with the origin
meta-data, was treated as a separate document. In
total, this gives more than 5 million words.

The set was extended with additional texts
from the English Wikipedia. 9219 articles were
extracted from Wikipedia, by traversing the cat-
egory “Rail Transport” [7]. We’ve selected ar-
ticles about rail transport in general (e.g. “Rail

transport”, “Glossary of rail transport terms”,
“Rolling stock”) or about railway vehicles. The
articles about the rail infrastructure, rail-related
companies or peoples were skipped, as the cor-
pora used in those articles weren’t useful for ana-
lysing the requirements.

Using both sources, we created a data-set
containing over 11 million words related to rail-
way technology, using the vocabulary used in the
analysed requirements.

The data was pre-processed to create “senses”
[8] and based on such data we trained the vec-
tor representation of senses that occur more than
20 times in our corpora. We used fasttext [9] due
to its approach, based on the skip-gram model,
where each word is represented as a bag of char-
acter n-grams. Such an approach should perform
better on the corpus with many rare words. As the
training data-set was relatively small, we decided
to use 100-dimensional vectors. The vector repre-
sentation was used to create a list of phrases de-
scribing train elements which were a basis for our
learning process. The list was created by feeding
10 different train elements as a seed and evalu-
ating the most similar phrases. Using this tech-
nique, with little effort, we managed to create a
list of over 300 train elements.

The annotations for model training were
done using Explosion Prodigy tool [10]. In this
process, each term was marked (beginning, end)
and labelled. Using the tool and the vector-based
list described above, we annotated 250 software
requirements, each with 0 to 12 different enti-
ties. In total, we marked 980 different terms. The
use of an items list for pre-selection significantly
speed up the process and allowed the annotators
to focus on the context of the requirement and on
capturing any missing objects. The annotated data
were used for model training using spaCy [6].
spaCy uses its own tokenizer to create a tokenized
“Doc” out of the raw text and a four-step process
[11], shown in Figure 1, to identify entities – non-
overlapping, labelled spans of tokens.

The process starts with embedding words
into word vectors using Bloom embeddings
[12]. Next, the word vectors are converted into
a sequence based on their order in the document.
Such sequence is an input to the 4-layer residual
convolutional neural network (CNN) generating
a sequence matrix, where the word meaning is
combined with the meaning of its neighbours. The
next step in the process (attend) is to reduce the
matrix into a single vector and use a feed-forward

209

Advances in Science and Technology Research Journal 2022, 16(3), 207–212

neural network to predict the action related to the
word. The possible actions are: beginning of the
named entity, inside the named entity, last word
of the named entity, outside of the named entity,
single word named entity.

As a basis for training, we used a large spaCy
model (en_core_web_lg) with embedded vec-
tors (685k unique vectors with 300 dimensions)
trained on several, publicly available datasets.
As the fi nal step of our analysis, we have created
a list of obvious terms that do not require refer-
ences to their defi nitions. Then we counted the
remaining expressions recognized by the model
and compared their number to the number of ref-
erences in the requirement.

RESULTS

Vector representation

We evaluated the vector representation us-
ing an informal qualitative review [13]. As we
trained the model to calculate vectors not only for
words but also for senses we were able to limit
our review to specifi c parts of speech (nouns,
proper nouns) and named entities. We focus on

the terms that are specifi c to railway technology.
Table 1 shows a few examples of the most similar
terms using the trained vector representation and
default, generic spaCy model. As can be seen in
Table 1, the vector representation of terms closely
related to the railway domain (e.g. “pantograph”)
indicates railway terms also using the general
model. The model learned by us, however, deals
much better with terms that also have a general
meaning (e.g. “eff ort”).

Using “senses” allowed us to fi nd a vector
representation of the items that were already rec-
ognized by the pre-processing step as named en-
tities. This approach was very valuable as most
of the expressions for elements of a train consist
of many words (e.g. brake pipe, pneumatic brake,
vehicle control unit).

The evaluation also shows, that with the mod-
el trained on our data it’s diffi cult to distinguish
between common abbreviations such as UDP,
FTP or UTF8 and the acronyms used as names
for the train elements such as DCU (Door Control
Unit) or ETCS (European Train Control System).
As a fi nal evaluation, we compared the output
from the trained model to the output of the spaCy
en_core_web_lg model. We found that we pre-
ferred the trained model output in 72% of cases.

Figu re 1. spaCy named entity recognition process

Advances in Science and Technology Research Journal 2022, 16(3), 207–212

210

Named entity recognition

To evaluate whether we generated a training
set suffi cient to teach the model we’ve started a
learning process for diff erent sizes of batches. In
each experiment, 20% of the data was used as an
evaluation example. Figure 2 shows the model
score depending on the size of the training dataset.

We used the F-measure [15] [16] as a way to
check the model accuracy. In general, the F mea-
sure is defi ned as:

𝐹𝐹𝛽𝛽 =
(𝛽𝛽2 + 1)𝑃𝑃𝑃𝑃

𝛽𝛽2𝑃𝑃 + 𝑃𝑃 (0 ≤ 𝛽𝛽 < +∞) (1)

where: P is a model precision,
R is a model recall and
β is a parameter that controls the balance
between precision and recall.

To evaluate the accuracy of the model predic-
tion we used β = 1, and defi ne our model score as:

𝐹𝐹1 =
2𝑃𝑃𝑃𝑃
𝑃𝑃 + 𝑃𝑃 (2)

By using the spaCy model with embedded
vectors we were able to further increase the over-
all score of the model. In the fi nal experiment, the
model achieved an F1 score of 76.50 % with a pre-
cision of 82.35% and a recall of 71.43%.

As the main purpose of our research was
to identify objects in requirements to validate,
whether they are properly linked with their defi -
nitions, we were more interested in high precision
as any false positive result may lead to a poten-
tial indication of an error where the error was not
present. If the term is not recognized by the sys-
tem (false negative) it will not have a signifi cant
infl uence on the requirement analysis. We con-
ducted a manual analysis of the model output for
the evaluation data set and found out that some
of the errors were irrelevant considering the pur-
pose. Table 2 shows examples of errors found in
model predictions.

More than 20% of the model predictions con-
sidered incorrect based on the evaluation data
are category 1 errors (incorrect span). Consider-
ing the purpose, such errors should be treated as
a proper prediction. Additionally, we found three
cases in which the model recognized an element
that was not marked by the annotator, but after

Tabl e 1. Similar terms for some railway-related termsDuring the review, we evaluated the 10 most similar items
for the selected term. We observed that the fi rst 3 to 5 matches were very similar to the query (with a similarity
score usually above 0.5), which was not always true for the rest of the items. This behaviour is probably due to
the limited amount of data on which the model was learned. General-purpose vector representations created from
publicly available data obtained from the Internet are often learned with several billion words [14].

Word Trained Vector representation en_core_web_lg
Brake Applied, emergency, braking Brakes, wheel, calliper

Pantograph Pantographs, raise, raised Pantographs, catenary, treadle
Eff ort Tractive, braking, eff orts Eff orts, attempt, helped

Brake pipe Brake cylinder, pressure, emergency brake module No vector representation

Figur e 2. Model F1 score as a function of training dataset sizeAs visible on the graph, further extension of the
training dataset does not improve the model score. Considering that each requirement from the dataset consists
of many “terms” the overall number of almost 1000 diff erent examples seems to be enough to teach the model.

211

Advances in Science and Technology Research Journal 2022, 16(3), 207–212

the revision of the requirement, it was found to
be a valid element of the train. Taking this into
account, the overall precision of the model pre-
condition was above 87%.

The last step in our analysis was to create a
list of all elements detected by the model with
the number of their occurrences. On its basis, we
manually selected elements that we considered
obvious and do not require explanation, e.g. cab-
in, TCMS etc. Then we counted the occurrences
of non-obvious elements in the requirement and
compared them with the number of references in
the text.

The result shows 3 groups of requirements:
 • Very good – number of references close to, or

above the number of found elements
 • Good – number of references between 30–70%

of the found elements
 • Insufficient – number of references below

30% of the found elements

In some cases, the score defined above was
not applicable, due to none or a very limited
number of train elements found by the model in
requirement.

CONCLUSIONS

The research has shown that by using pub-
licly available, production-ready tools for natural
language processing such as spaCy it is possible
to create the model recognising train elements
in software requirements written in natural lan-
guage. The precision of the prediction (above
87%) was high enough to use such a tool non only
in research but also in a production environment.
The process described in the article requires rela-
tively low effort, as most of the steps are done
automatically (generating word vectors, model
training) or semi-automatically (annotation with
the pre-defined list of items). It can be applied
to many different domains, especially if they use

their own, specific domain language. The model
created with such a process can be used not only
for measuring the quality of requirements but also
for other tasks (e.g. creating a project glossary).

Acknowledgements

This work has been supported by Department
of Automatic Control and Robotics funds for sci-
ence and development in the year 2022. The cal-
culations were performed with the use of the IT
infrastructure of GeCONiI Upper Silesian Cen-
tre for Computational Science and Engineering
(NCBiR grant no POIG.02.03.01–24–099/13).

Research co-founded by Ministy of Science
and Higher Education, agreement: 10/DW/2017.

REFERENCES

1. The European Parliament and The Council of the
European Union. Directive (EU) 2018/2002 of the
amending Directive 2012/27/EU on energy effi-
ciency, 2018.

2. Kosindrdec N., Daengdej J. A Test Case Genera-
tion Process and Technique. Journal of Software
Engineering. 2010; 4: 265–287.

3. Kocerka J., Krzeslak M., Galuszka A. Analysing
Quality of Textual Requirements Using Natural
Language Processing: A Literature Review. In:
2018 23rd International Conference on Methods &
Models in Automation & Robotics (MMAR) 2018.

4. Mich L., Franch M., Novi Inverardi P. Market re-
search for requirements analysis using linguistic
tools. Requirements Engineering. 2004; 9: 40–56.

5. International Council on Systems Engineering.
Guide for Writing Requirements, 2019.

6. Explosion. Spacy – Industrial-Strength Natural
Language Processing. [Online; accessed 25 No-
vember 2021]. Available: https://spacy.io/.

7. Wikipedia. Category:Rail transport – Wikipedia,
The Free Encyclopedia. [Online; accessed 12 De-
cember 2021]. Available: https://en.wikipedia.org/
wiki/Category:Rail_transport.

Table 2. False positive recognitions
No. Error type Example in the evaluation data set Model output
1. Incorrect span In an active cab by the relay k21 In an active cab by the relay k21
2. Wrong context Parking brake apply command Parking brake apply command
3. Element not part of a train Brake force applied to rail Brake force applied to rail
4. Wrong term The traction cut-off is not required The traction cut-off is not required
5. Missing annotation For any axle of the bogie For any axle of the bogie

Advances in Science and Technology Research Journal 2022, 16(3), 207–212

212

8. Trask A., Michalak P., Liu J. sense2vec – A Fast
and Accurate Method for Word Sense Disambigu-
ation In Neural Word Embeddings. CoRR 2015;
abs/1511.06388.

9. Bojanowski P., Grave E., Joulin A., Mikolov T. En-
riching Word Vectors with Subword Information.
CoRR 2016. abs/1607.04606.

10. Explosion. Prodigy – An annotation tool for AI,
Machine Learning and NLP. [Online; accessed 25
November 2021]. Available: https://prodi.gy/.

11. Lample G., Ballesteros M., Subramanian S.,
Kawakami K., Dyer C. Neural Architectures
for Named Entity Recognition. CoRR 2016;
abs/1603.01360.

12. Serrà J., Karatzoglou A. Getting deep recommend-
ers fit: Bloom embeddings for sparse binary input/
output networks. CoRR 2017; abs/1706.03993.

13. Denzin N.K., Lincoln Y.S. The SAGE Handbook
of Qualitative Research. 5 ed., Sage Publications
Ltd., 2017.

14. Pennington J., Socher R., Manning C.D. GloVe:
Global Vectors for Word Representation. In: Em-
pirical Methods in Natural Language Processing
(EMNLP) 2014.

15. Chinchor N. MUC-4 evaluation metrics. In: Pro-
ceedings of the 4th conference on Message under-
standing – MUC4 1992.

16. Sasaki Y. The truth of the F-measure. 2007.

