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INTRODUCTION

Variety of modern electronic packages and 
their parts such as circuit cards (CC) or case walls, 
etc. are very likely to be exposed to mechani-
cal impacts such as vibration and shocks during 
their operation. Large number of publications 
discussing problem of dynamic forces analysis 
in engineering [1–3] and in electronic equipment 
[4–7] subjected to vibrations, vibration reduc-
tion and suppression design [8, 9] testify of need 
for improving strength and providing reliability 
to electronics. Results of the previous research 
published in [10, 11] emphasized that mechanic 
impacts, and especially the dynamic forces in CC 

assemblies are likely to increase manifold so as to 
damage their bearing parts and electronic compo-
nents, to which these forces are transmitted espe-
cially in resonant oscillations.

The represented research is aimed at stress 
calculation in CCs with their representation as a 
type of mechanical oscillatory systems in purpose 
of their strength assessment. The most attention 
is drawn to oscillations in resonance conditions. 
In all representations of oscillatory systems the 
cylindrical bending of CCs is considered to be a 
set of beam-strips with rectangular cross-sections 
so their stress calculation is performed by con-
ventional methods applied in strength of materi-
als and civil engineering [12].
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ABSTRACT
The represented paper is aimed at stress calculation in circuit cards with their representation as a type of mechani-
cal oscillatory systems in purpose of their strength assessment especially in resonance conditions. Three types of 
oscillatory systems are researched: single-mass; multiple mass and oscillatory system with uniformly distributed 
mass. In all types the cylindrical bending of circuit cards is considered to be a set of beam-strips with rectangular 
cross-sections so their stress calculation is performed by conventional methods applied in strength of materials 
and civil engineering. Mathematical model has been developed for maximal dynamic stress and defl ection estima-
tion in circuit card assemblies represented by unique oscillatory system as prismatic beam set on two oscillating 
supports under inertial resonance excitation generated by constant dynamic force. Comparative analysis of math-
ematical modeling, MatLab simulation and experimental determination of maximal dynamic stress and defl ection 
accomplished for three types of oscillatory systems verifi ed proximity of obtained results. Single-mass oscillatory 
system is proposed as equivalent to multiple mass or uniformly distributed oscillatory systems on condition of 
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The advantage of the mathematical modeling 
and of analytical formulas would be in their abil-
ity to predict the dependence of the results on the 
parameters of the tested systems, and it has been 
successfully applied for the single-mass oscillato-
ry system. The attempts were also made to model 
multiple mass or even uniformly distributed os-
cillatory systems, however they did not result in 
analytical formulas capable to adequately calcu-
late stress and deflection because of complexity 
of considered systems. In order to replace and 
for the case of single-mass oscillatory system to 
verify analytical formulas the MatLab simulation 
and experimental tests were applied. 

Analytical estimation of stress and deflec-
tion conducted in the research was based on 
experimental verification of actual physical and 
mechanical parameters, which are likely to vary 
depending on technology, temperature, shape 
etc. For this purpose analytical and experimental 
method of sample parameters was applied. This 
method is based on identification of parameters 
by solving the reverse strength problems. In 
this method strain and displacement, which are 
traditionally estimated by calculations, are, in-
stead, measured experimentally and considered 
as given values for calculation of physical and 
mechanical parameters, which are then used in 
analytical modeling.

Single-mass oscillatory system

The single-mass oscillatory system is rep-
resented by the beam with concentrated mass m 
(Fig. 1). Weight of the beam is assumed negligi-
bly small in comparison with concentrated mass. 

Such representation is applicable for assembly 
where mass of electronic components exceeds 
mass of the substrate and therefore produces im-
balance in oscillatory system. The beam is sup-
ported by the pinned support O providing with 
one degree of freedom and roller O’ support pro-
viding two degrees of freedom. These supports 
transmit oscillation generated by the shaker. 

Mass m, receiving kinematic excitation, un-
dergoes acceleration z1′′ in the inertial frame of 
reference indicated by 0 (Fig. 1), which repre-
sents a support to the shaker generating accelera-
tion z0′′. Then equation of motion for the mass m:

𝑚𝑚𝑚𝑚 𝑧𝑧𝑧𝑧1′′ =  𝐹𝐹𝐹𝐹k  + 𝐹𝐹𝐹𝐹c 

 

𝑧𝑧𝑧𝑧1′′ = –  ∆𝑧𝑧𝑧𝑧′′ +  𝑧𝑧𝑧𝑧0′′ 

 

𝑚𝑚𝑚𝑚 ∆𝑧𝑧𝑧𝑧′′ +  𝐹𝐹𝐹𝐹k  +  𝐹𝐹𝐹𝐹c  =  𝑚𝑚𝑚𝑚 𝑧𝑧𝑧𝑧0′′ 

 

𝛥𝛥𝛥𝛥𝑧𝑧𝑧𝑧'' + 𝜔𝜔𝜔𝜔0
2𝛥𝛥𝛥𝛥𝑧𝑧𝑧𝑧 + 2𝑛𝑛𝑛𝑛𝛥𝛥𝛥𝛥𝑧𝑧𝑧𝑧' = 𝑧𝑧𝑧𝑧0'' 

 

𝑧𝑧𝑧𝑧0(𝑡𝑡𝑡𝑡)  =  𝑍𝑍𝑍𝑍0 sin (ω𝑡𝑡𝑡𝑡 +  ϕ) 

 

𝐴𝐴𝐴𝐴 = 𝑍𝑍𝑍𝑍0𝜔𝜔𝜔𝜔2((𝜔𝜔𝜔𝜔0
2 − 𝜔𝜔𝜔𝜔2)2 + (2𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔)2)−

1
2 

 

𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = Δ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠 𝛿𝛿𝛿𝛿−1 

 

𝛿𝛿𝛿𝛿 =
𝑥𝑥𝑥𝑥2(𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑙𝑙)2

3𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙
 

 

𝑃𝑃𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑍𝑍𝑍𝑍0𝜔𝜔𝜔𝜔2 ⋅
1
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+ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 

𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃0 ⋅ 𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

(1)

where: Fk – elastic force; Fc – damping force.

In inertial frame of reference absolute accel-
eration z1′′ may be expressed by relative ∆z′′ and 
fictitious z0′′ accelerations as: 

𝑚𝑚𝑚𝑚 𝑧𝑧𝑧𝑧1′′ =  𝐹𝐹𝐹𝐹k  + 𝐹𝐹𝐹𝐹c 

 

𝑧𝑧𝑧𝑧1′′ = –  ∆𝑧𝑧𝑧𝑧′′ +  𝑧𝑧𝑧𝑧0′′ 
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2𝛥𝛥𝛥𝛥𝑧𝑧𝑧𝑧 + 2𝑛𝑛𝑛𝑛𝛥𝛥𝛥𝛥𝑧𝑧𝑧𝑧' = 𝑧𝑧𝑧𝑧0'' 
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2 − 𝜔𝜔𝜔𝜔2)2 + (2𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔)2)−
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𝑠𝑠𝑠𝑠 𝛿𝛿𝛿𝛿−1 
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(2)

Thus, equation of motion in non-inertial 
frame of reference, represented by O and O’ sup-
ports, can be written as:

𝑚𝑚𝑚𝑚 𝑧𝑧𝑧𝑧1′′ =  𝐹𝐹𝐹𝐹k  + 𝐹𝐹𝐹𝐹c 

 

𝑧𝑧𝑧𝑧1′′ = –  ∆𝑧𝑧𝑧𝑧′′ +  𝑧𝑧𝑧𝑧0′′ 
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2 − 𝜔𝜔𝜔𝜔2)2 + (2𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔)2)−
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where:	m∆z′′ – relative and mz0′′ – fictitious forc-
es of inertia; Fk = k∆z; Fс = c⋅∆z′; k – stiff-
ness; c – damping coefficient. Equation 
(3) written in terms of function ∆z(t) is:

𝑚𝑚𝑚𝑚 𝑧𝑧𝑧𝑧1′′ =  𝐹𝐹𝐹𝐹k  + 𝐹𝐹𝐹𝐹c 

 

𝑧𝑧𝑧𝑧1′′ = –  ∆𝑧𝑧𝑧𝑧′′ +  𝑧𝑧𝑧𝑧0′′ 

 

𝑚𝑚𝑚𝑚 ∆𝑧𝑧𝑧𝑧′′ +  𝐹𝐹𝐹𝐹k  +  𝐹𝐹𝐹𝐹c  =  𝑚𝑚𝑚𝑚 𝑧𝑧𝑧𝑧0′′ 

 

𝛥𝛥𝛥𝛥𝑧𝑧𝑧𝑧'' + 𝜔𝜔𝜔𝜔0
2𝛥𝛥𝛥𝛥𝑧𝑧𝑧𝑧 + 2𝑛𝑛𝑛𝑛𝛥𝛥𝛥𝛥𝑧𝑧𝑧𝑧' = 𝑧𝑧𝑧𝑧0'' 

 

𝑧𝑧𝑧𝑧0(𝑡𝑡𝑡𝑡)  =  𝑍𝑍𝑍𝑍0 sin (ω𝑡𝑡𝑡𝑡 +  ϕ) 

 

𝐴𝐴𝐴𝐴 = 𝑍𝑍𝑍𝑍0𝜔𝜔𝜔𝜔2((𝜔𝜔𝜔𝜔0
2 − 𝜔𝜔𝜔𝜔2)2 + (2𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔)2)−

1
2 

 

𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = Δ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠 𝛿𝛿𝛿𝛿−1 

 

𝛿𝛿𝛿𝛿 =
𝑥𝑥𝑥𝑥2(𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑙𝑙)2

3𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙
 

 

𝑃𝑃𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑍𝑍𝑍𝑍0𝜔𝜔𝜔𝜔2 ⋅
1

��1 − 𝜔𝜔𝜔𝜔2

𝜔𝜔𝜔𝜔0
2�

2
+ 4𝑛𝑛𝑛𝑛2𝜔𝜔𝜔𝜔2

𝜔𝜔𝜔𝜔0
4

+ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 

𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃0 ⋅ 𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

(4)

where:	𝜔𝜔𝜔𝜔0 = �𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚

 

 

𝑛𝑛𝑛𝑛 =
𝑐𝑐𝑐𝑐

2𝑚𝑚𝑚𝑚
 

 – natural frequency; 

𝜔𝜔𝜔𝜔0 = �𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚

 

 

𝑛𝑛𝑛𝑛 =
𝑐𝑐𝑐𝑐

2𝑚𝑚𝑚𝑚
  – 

descent rate.

Fig. 1. Dynamic forces acting on the beam with concentrated mass
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Shaker generates harmonic oscillations along 
Z axis described as:
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where:	Z0 – amplitude; ω – angular frequency; t – 
time; ϕ – phase of oscillations. 

According to identical differential equation 
published in [10] the obtained equation (4) has 
identical solution that gives amplitude of forced 
oscillation:
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(6)

Function (6) expresses dynamic deflection ∆dyn 
of the beam with respect to static equilibrium po-
sition ∆st in the oscillatory system (Fig. 1), which 
sum expresses the total deflection Δt

max produced 
by the net force Р:
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where:	Pdyn = –Fk ; Pst = mg; δ – flexibility of the 
beam in direction of force P.

Flexibility of the beam where a single force is 
applied is defined by Mohr’s method:
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(8)

where:	x – linear coordinate of force application; 

E – Young’s modulus; 𝐽𝐽𝐽𝐽 =
𝑏𝑏𝑏𝑏ℎ3

12
  – moment 

of inertia in cross-sectional area of the 
beam; l, b and h – length, width and thick-
ness of the beam correspondently.

Formula (8) considers only internal bend-
ing moments while internal transverse forces 
can be neglected.

By using formulas (6–8) the expression for 
equivalent force is:
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where:	 P0 = mZ0ω2 – amplitude of dynamic force; 
kdyn – dynamic coefficient; Pst – gravity force.

Maximal total normal stress in the critical 
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where:	𝑊𝑊𝑊𝑊 =
𝑏𝑏𝑏𝑏ℎ2

6
  – section modulus in bending; l, 

b and h – length, width and thickness of 
the beam correspondently; x – linear co-
ordinate of m.

Maximal displacement (deflection) is consid-
ered as deflection of middle point of the beam:
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Such assumption results in negligible error in 
calculations that does not exceed 3%.

Mathematical modeling was conducted for 
parameters given in Table 1. Average values of 
physical and mechanical parameters were identi-
fied by method of sample parameters, in which 
physical and mechanical parameters were cal-
culated from experimentally measured values of 
strain and displacement. Method is described in 
section of experimental verification, the experi-
mental setup is shown in Figure 11.

The strength condition for CC was specified 
with respect to lowest ultimate strength in the CC 
assembly represented by soldered joints [11]: 
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(13)

where:	 s = 2.5 – safety factor compensating insta-
bility in design and technology.

In estimation model the dynamic force is 
applied with constant dynamic force amplitude 
P0  =  const provided by constant acceleration 
a0  =  Z0ω2 = 10 m/s2. Amplitude frequency re-
sponses of maximal stress and deflection given 
in Figure 2 indicate resonance at first critical 

Table 1. Parameters of circuit cards

Dimensions, mm Substrate 
material E, GPa r, kg/

m3
Substrate ultimate 

strength, MPa
Solder joint ultimate 

strength, MPa n, 1/s m, kg x

l = 180 mm; b = 50 mm; 
h = 1.5 mm

Fiberglass 
CAST-V 14 1600 160-300 40 5.48 0.05 l/2
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frequency ω0  =  180.02 rad/s (28.66 Hz) where 
σt

max = 20.91 MPa and Δt
max = 5.38 mm.

With no doubt the most attention is drawn to 
estimation of maximal stress and deflection, which 
appear in resonance conditions when ω = ω0:
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This formula is validated by relative differ-
ence ∆σ between (14) and (16) to comply with 
threshold tolerance of 15%. For this example 
(Fig. 3) lmin = 273 mm at ∆σ = 10.06%. Formula 
(14) could be used to increase accuracy if needed. 

Mathematical model (16) was initially de-
signed for maximal stress calculation in CC as-
semblies represented by single-mass oscillatory 
system with one concentrated mass, however real 
assemblies consist of multiple electronic compo-
nents and bearing parts and each of them repre-
sents an unique concentrated mass. Thus, such 
mechanical system subjected to vibration repre-
sents a multiple mass oscillatory system.

Multiple mass oscillatory system

Figure 4 illustrates a model of oscillatory sys-
tem that consists of 3 masses m1, m2, m3 and there-
fore has three dynamic degrees of freedom since 
three parameters ∆1, ∆2, ∆3 indicate position of all 
concentrated masses at their vertical displacements. 

According to principle of superposition of 
forces the displacement in specific direction i cor-
respondent to specific degree of freedom equals 

Fig. 2. Amplitude frequency responses of maximal 
total normal stress (a) and deflection (b) in CC

Fig. 3. Total and dynamic stresses depend-
ing on length of CC in resonance condition un-

der dynamic force with constant amplitude

a)

b)
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to the sum of all displacements in this direction (i 
= 1..3) produced by all forces acting in directions 
j (j = 1..3) and is defined by Mohr’s method: 
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According to equation of motion (3) and expres-
sion (18) equation of displacement for the mass mi: 
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Thus a system of differential equations (i = 
1..n) can be written and solution in the following 
form can be obtained:
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4[𝜎𝜎𝜎𝜎]2𝑛𝑛𝑛𝑛2𝑊𝑊𝑊𝑊2𝑚𝑚𝑚𝑚
 

 

Δ𝑚𝑚𝑚𝑚 = �𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖

 

 

Δ𝑚𝑚𝑚𝑚 −�𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖

�𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖Δ𝑖𝑖𝑖𝑖'' + 2𝑛𝑛𝑛𝑛Δ𝑖𝑖𝑖𝑖' −  𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎0� = 0 

 

Δ𝑚𝑚𝑚𝑚 = 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚sin(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 + 𝜑𝜑𝜑𝜑) (20)

For representation of only free oscillations 
where in (19) excitation force (fictitious forces of 
inertia in this case) and damping force are ignored 
and so are single displacements (flexibilities) δij 
(i ≠ j), then system of differential equation is fall-
ing apart for equations of single displacements δii 
with their natural frequencies:

𝜔𝜔𝜔𝜔0𝑖𝑖𝑖𝑖 = �
1

𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖
 

 

δ12  =  δ21  =  0; δ23  =  δ32  =  0 

 

𝛿𝛿𝛿𝛿11 =
𝑙𝑙𝑙𝑙3

24𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿13 = 𝛿𝛿𝛿𝛿31 =

0,0286𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  

𝛿𝛿𝛿𝛿22 =
0,0052𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿33 =

0,0208𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 

 

�
𝛿𝛿𝛿𝛿11

𝑚𝑚𝑚𝑚
2
−

1
𝜔𝜔𝜔𝜔2 𝛿𝛿𝛿𝛿13𝑚𝑚𝑚𝑚

𝛿𝛿𝛿𝛿31
𝑚𝑚𝑚𝑚
2

𝛿𝛿𝛿𝛿33𝑚𝑚𝑚𝑚 −
1
𝜔𝜔𝜔𝜔2

� = 0 

 

𝜆𝜆𝜆𝜆2𝑎𝑎𝑎𝑎 − 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 + 𝑑𝑑𝑑𝑑 = 0 

 

𝜔𝜔𝜔𝜔1 = �𝜆𝜆𝜆𝜆1;  𝜔𝜔𝜔𝜔3 = �𝜆𝜆𝜆𝜆2 

 

𝛿𝛿𝛿𝛿22
𝑚𝑚𝑚𝑚
2
−

1
𝜔𝜔𝜔𝜔2

2 = 0 

 

𝜔𝜔𝜔𝜔2 = �
2

𝛿𝛿𝛿𝛿22𝑚𝑚𝑚𝑚
 

 

𝜏𝜏𝜏𝜏 = 𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟𝛾𝛾𝛾𝛾 

 

𝑀𝑀𝑀𝑀 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑅𝑅𝑅𝑅

 

 

(21)

Nevertheless determining basic coordinates 
∆i for the system with more than 2 degrees of 
freedom encounters certain difficulties. 

Symmetric systems with masses symmetrical-
ly located may produce either directly or inversely 
symmetric oscillation forms, where acting forces 
will be correspondently either directly or inversely 
symmetrical. In this case single displacements will 
be calculated as for the group of either directly or 
inversely symmetric unique forces. 

Side single displacements which connect di-
rectly and inversely symmetric forces become 
equal zero:

𝜔𝜔𝜔𝜔0𝑖𝑖𝑖𝑖 = �
1

𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖
 

 

δ12  =  δ21  =  0; δ23  =  δ32  =  0 

 

𝛿𝛿𝛿𝛿11 =
𝑙𝑙𝑙𝑙3

24𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿13 = 𝛿𝛿𝛿𝛿31 =

0,0286𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  

𝛿𝛿𝛿𝛿22 =
0,0052𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿33 =

0,0208𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 

 

�
𝛿𝛿𝛿𝛿11

𝑚𝑚𝑚𝑚
2
−

1
𝜔𝜔𝜔𝜔2 𝛿𝛿𝛿𝛿13𝑚𝑚𝑚𝑚

𝛿𝛿𝛿𝛿31
𝑚𝑚𝑚𝑚
2

𝛿𝛿𝛿𝛿33𝑚𝑚𝑚𝑚 −
1
𝜔𝜔𝜔𝜔2

� = 0 

 

𝜆𝜆𝜆𝜆2𝑎𝑎𝑎𝑎 − 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 + 𝑑𝑑𝑑𝑑 = 0 

 

𝜔𝜔𝜔𝜔1 = �𝜆𝜆𝜆𝜆1;  𝜔𝜔𝜔𝜔3 = �𝜆𝜆𝜆𝜆2 

 

𝛿𝛿𝛿𝛿22
𝑚𝑚𝑚𝑚
2
−

1
𝜔𝜔𝜔𝜔2

2 = 0 

 

𝜔𝜔𝜔𝜔2 = �
2

𝛿𝛿𝛿𝛿22𝑚𝑚𝑚𝑚
 

 

𝜏𝜏𝜏𝜏 = 𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟𝛾𝛾𝛾𝛾 

 

𝑀𝑀𝑀𝑀 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑅𝑅𝑅𝑅

 

 

(22)

The single displacements defined by Mohr’s 
method are:

𝜔𝜔𝜔𝜔0𝑖𝑖𝑖𝑖 = �
1

𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖
 

 

δ12  =  δ21  =  0; δ23  =  δ32  =  0 

 

𝛿𝛿𝛿𝛿11 =
𝑙𝑙𝑙𝑙3

24𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿13 = 𝛿𝛿𝛿𝛿31 =

0,0286𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  

𝛿𝛿𝛿𝛿22 =
0,0052𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿33 =

0,0208𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 

 

�
𝛿𝛿𝛿𝛿11

𝑚𝑚𝑚𝑚
2
−

1
𝜔𝜔𝜔𝜔2 𝛿𝛿𝛿𝛿13𝑚𝑚𝑚𝑚

𝛿𝛿𝛿𝛿31
𝑚𝑚𝑚𝑚
2

𝛿𝛿𝛿𝛿33𝑚𝑚𝑚𝑚 −
1
𝜔𝜔𝜔𝜔2

� = 0 

 

𝜆𝜆𝜆𝜆2𝑎𝑎𝑎𝑎 − 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 + 𝑑𝑑𝑑𝑑 = 0 

 

𝜔𝜔𝜔𝜔1 = �𝜆𝜆𝜆𝜆1;  𝜔𝜔𝜔𝜔3 = �𝜆𝜆𝜆𝜆2 

 

𝛿𝛿𝛿𝛿22
𝑚𝑚𝑚𝑚
2
−

1
𝜔𝜔𝜔𝜔2

2 = 0 

 

𝜔𝜔𝜔𝜔2 = �
2

𝛿𝛿𝛿𝛿22𝑚𝑚𝑚𝑚
 

 

𝜏𝜏𝜏𝜏 = 𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟𝛾𝛾𝛾𝛾 

 

𝑀𝑀𝑀𝑀 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑅𝑅𝑅𝑅

 

 

(23)

Determinant for symmetric vibrations:

𝜔𝜔𝜔𝜔0𝑖𝑖𝑖𝑖 = �
1

𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖
 

 

δ12  =  δ21  =  0; δ23  =  δ32  =  0 

 

𝛿𝛿𝛿𝛿11 =
𝑙𝑙𝑙𝑙3

24𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿13 = 𝛿𝛿𝛿𝛿31 =

0,0286𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  

𝛿𝛿𝛿𝛿22 =
0,0052𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿33 =

0,0208𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 

 

�
𝛿𝛿𝛿𝛿11

𝑚𝑚𝑚𝑚
2
−

1
𝜔𝜔𝜔𝜔2 𝛿𝛿𝛿𝛿13𝑚𝑚𝑚𝑚

𝛿𝛿𝛿𝛿31
𝑚𝑚𝑚𝑚
2

𝛿𝛿𝛿𝛿33𝑚𝑚𝑚𝑚 −
1
𝜔𝜔𝜔𝜔2

� = 0 

 

𝜆𝜆𝜆𝜆2𝑎𝑎𝑎𝑎 − 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 + 𝑑𝑑𝑑𝑑 = 0 

 

𝜔𝜔𝜔𝜔1 = �𝜆𝜆𝜆𝜆1;  𝜔𝜔𝜔𝜔3 = �𝜆𝜆𝜆𝜆2 

 

𝛿𝛿𝛿𝛿22
𝑚𝑚𝑚𝑚
2
−

1
𝜔𝜔𝜔𝜔2

2 = 0 

 

𝜔𝜔𝜔𝜔2 = �
2

𝛿𝛿𝛿𝛿22𝑚𝑚𝑚𝑚
 

 

𝜏𝜏𝜏𝜏 = 𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟𝛾𝛾𝛾𝛾 

 

𝑀𝑀𝑀𝑀 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑅𝑅𝑅𝑅

 

 

(24)

The corresponding frequency equation is the 
quadratic equation:

𝜔𝜔𝜔𝜔0𝑖𝑖𝑖𝑖 = �
1

𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖
 

 

δ12  =  δ21  =  0; δ23  =  δ32  =  0 

 

𝛿𝛿𝛿𝛿11 =
𝑙𝑙𝑙𝑙3

24𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿13 = 𝛿𝛿𝛿𝛿31 =

0,0286𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  

𝛿𝛿𝛿𝛿22 =
0,0052𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿33 =

0,0208𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 

 

�
𝛿𝛿𝛿𝛿11

𝑚𝑚𝑚𝑚
2
−

1
𝜔𝜔𝜔𝜔2 𝛿𝛿𝛿𝛿13𝑚𝑚𝑚𝑚

𝛿𝛿𝛿𝛿31
𝑚𝑚𝑚𝑚
2

𝛿𝛿𝛿𝛿33𝑚𝑚𝑚𝑚 −
1
𝜔𝜔𝜔𝜔2

� = 0 

 

𝜆𝜆𝜆𝜆2𝑎𝑎𝑎𝑎 − 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 + 𝑑𝑑𝑑𝑑 = 0 

 

𝜔𝜔𝜔𝜔1 = �𝜆𝜆𝜆𝜆1;  𝜔𝜔𝜔𝜔3 = �𝜆𝜆𝜆𝜆2 

 

𝛿𝛿𝛿𝛿22
𝑚𝑚𝑚𝑚
2
−

1
𝜔𝜔𝜔𝜔2

2 = 0 

 

𝜔𝜔𝜔𝜔2 = �
2

𝛿𝛿𝛿𝛿22𝑚𝑚𝑚𝑚
 

 

𝜏𝜏𝜏𝜏 = 𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟𝛾𝛾𝛾𝛾 

 

𝑀𝑀𝑀𝑀 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑅𝑅𝑅𝑅

 

 

(25)

where:	 λ = ω2; a = m2(δ11δ33 − δ31δ13); b = 
m(δ11 + 2δ33); d = 2, which solution re-
sults in natural frequencies of symmetric 
oscillations: 

𝜔𝜔𝜔𝜔0𝑖𝑖𝑖𝑖 = �
1

𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖
 

 

δ12  =  δ21  =  0; δ23  =  δ32  =  0 

 

𝛿𝛿𝛿𝛿11 =
𝑙𝑙𝑙𝑙3

24𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿13 = 𝛿𝛿𝛿𝛿31 =

0,0286𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  

𝛿𝛿𝛿𝛿22 =
0,0052𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿33 =

0,0208𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 

 

�
𝛿𝛿𝛿𝛿11

𝑚𝑚𝑚𝑚
2
−

1
𝜔𝜔𝜔𝜔2 𝛿𝛿𝛿𝛿13𝑚𝑚𝑚𝑚

𝛿𝛿𝛿𝛿31
𝑚𝑚𝑚𝑚
2

𝛿𝛿𝛿𝛿33𝑚𝑚𝑚𝑚 −
1
𝜔𝜔𝜔𝜔2

� = 0 

 

𝜆𝜆𝜆𝜆2𝑎𝑎𝑎𝑎 − 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 + 𝑑𝑑𝑑𝑑 = 0 

 

𝜔𝜔𝜔𝜔1 = �𝜆𝜆𝜆𝜆1;  𝜔𝜔𝜔𝜔3 = �𝜆𝜆𝜆𝜆2 

 

𝛿𝛿𝛿𝛿22
𝑚𝑚𝑚𝑚
2
−

1
𝜔𝜔𝜔𝜔2

2 = 0 

 

𝜔𝜔𝜔𝜔2 = �
2

𝛿𝛿𝛿𝛿22𝑚𝑚𝑚𝑚
 

 

𝜏𝜏𝜏𝜏 = 𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟𝛾𝛾𝛾𝛾 

 

𝑀𝑀𝑀𝑀 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑅𝑅𝑅𝑅

 

 

(26)

Frequency equation for inversely symmetric 
oscillations expressed as:

𝜔𝜔𝜔𝜔0𝑖𝑖𝑖𝑖 = �
1

𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖
 

 

δ12  =  δ21  =  0; δ23  =  δ32  =  0 

 

𝛿𝛿𝛿𝛿11 =
𝑙𝑙𝑙𝑙3

24𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿13 = 𝛿𝛿𝛿𝛿31 =

0,0286𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  

𝛿𝛿𝛿𝛿22 =
0,0052𝑙𝑙𝑙𝑙3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
;  𝛿𝛿𝛿𝛿33 =
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When number of masses is higher than 3, 
then receiving solution may become impossible 
especially for the case of considering forced and 
damped oscillations. Therefore solution to the 
problem of finding natural frequencies, modes of 
oscillation and, what matters most, maximal total 
normal stress and deflection in oscillatory system 
was offered to obtain by numerical method of 
simulation by MatLab system.

Simulation conducted by visual programming 
system Simscape Multibody in Matlab represented 
PCB as a flexible beam performed by multi-body 
three-dimensional modeling environment of me-
chanical systems aimed at forming and solving 
equations of motion. Since stiffness of supports is 
considered significantly higher than stiffness of the 
board, supports are considered absolutely rigid. 

Fig. 4. Circuit card model as mul-
tiple mass oscillatory system
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Modeling flexible plate was performed by us-
ing method for approximating flexible body by 
the set of N solid bodies having concentrated pa-
rameters and connected with springs and damp-
ers [13]. Every concentrated mass has one degree 
of freedom – rotation in ZOX plane (Fig. 5). The 
mass, spring, and damper elements provide the in-
ertial, restorative, and dissipative forces that col-
lectively account for deformation. Linear spring 
and damper model was considered.

Stiffness and internal viscous friction are 
functions of material properties and geometry of 
flexible elements and are equal for all elements. 

The value of the stiffness follows from the 
equality between the spring torque at the joint 
and the bending moment on a continuous version 
of the flexible beam unit. Hooke’s law gives the 
spring torque at the joint:
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where:	kr – rotational spring stiffness; γ – deflec-
tion angle.

The bending moment on a continuous beam unit:
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where: R – the bending radius of curvature.

In the limit of very small deflections γ → l/R, 
where l is undeformed length of the elements, 
spring stiffness is:
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In the represented model kr = 12.03 N∙m.

Damping (viscous friction) b = 0.0037 for 
dampers in the joints was specified for experi-
mentally found free oscillations descent rate n = 
5.48 1/s (50) of the beam, as described further in 
the section of experimental verification. 

Figure 6 demonstrates simulative approxima-
tion of 5-mass oscillatory system. The force ap-
plication and parameters of oscillatory system 
were identical to single-mass model with the ex-
ception of using 5 symmetrically located masses 
mi = 0.01 kg. Modeling flexible beam (substrate) 
was performed by using method for approximating 
flexible body by the set of N = 21 solid bodies hav-
ing concentrated parameters and connected with 
springs and dampers [13, 14]. Deflections were 
measured in simulation by Joint Sensor. Maximal 
stresses were calculated by using bending formula 
[12], in which maximal bending moments were 
measured by Body Sensor. 6 pairs of sensors of 
both types were attached as shown in Figure 6.

Fig. 5. Flexible beam approximation with distributed mass by: a – set of flexible 
elements with concentrated masses; b – flexible element

Fig. 6. Simulative approximation of 5 mass oscillatory system

a) b)
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The simulation of oscillatory system has re-
sulted in amplitude frequency response graphs 
read by 6 sensors for maximal total normal stress 
(Fig. 7a) and deflection (Fig. 7b). Noteworthy is 
that highest levels of measured parameters are 
correspondent to the first critical frequency ω01 = 
237 rad/s for the main mode of oscillation. 

Obviously the more detailed model is the more 
accurate calculation results will be. Moreover con-
sideration of all masses in real CC assembly repre-
senting numerous electronic components and a sub-
strate laminated with conductive tracks, pads and 
other features and therefore having no-zero mass in-
troduces complex and cumbersome problem. Such 
multiple mass mechanical system with actually 
infinite number of degrees of freedom is desirable 
to study as a system with mass distributed over its 
volume and in case of a beam representation – over 
its length and consider this distribution as uniform.

Oscillatory system with uniformly 
distributed mass 

Equation of motion for the beam with uniform-
ly distributed mass is represented for infinitesimal 

element with length dx (Fig. 8) arbitrarily selected 
along the length l of the beam. Element dx under-
goes vertical displacement described by the function 
z(x,t) forced by uniformly distributed dynamic iner-
tial force f(x,t). In this case force f(x,t) is represented 
by fictitious forces of inertia (analogically to single 
mass oscillatory system described above in non-
inertial frame of reference) which is spent to over-
come uniformly distributed relative force of inertia 
dm⋅z(t)’’, damping force Fс, and concentrated elastic 
force Fk in cross-sections of the beam, which isolate 
element dx by the left and right faces where forces 
Fk(x,t), Fk(x+dx,t, and moments of internal resistance 
M(x,t), M(x+dx,t) appear as shown in Figure 8. 

The equation of motion for dx forced by all 
forces indicated in Figure 8:
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𝑧𝑧𝑧𝑧(𝜌𝜌𝜌𝜌, 𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 + 𝜑𝜑𝜑𝜑) 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂4𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥
∂𝜌𝜌𝜌𝜌4

− 𝜔𝜔𝜔𝜔2𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 = 0 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝛽𝛽𝛽𝛽4 − 𝜔𝜔𝜔𝜔2 = 0 

 

𝛽𝛽𝛽𝛽4 =
𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 

 

𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) = 𝐶𝐶𝐶𝐶1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶2 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 

+ 𝐶𝐶𝐶𝐶3 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶4 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) 

 

sin (β𝑙𝑙𝑙𝑙)  =  0 

 

𝜔𝜔𝜔𝜔0𝑗𝑗𝑗𝑗 =
𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋2

𝑙𝑙𝑙𝑙2
�
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 

(32)

where:	 ρ – density; s – cross-sectional area of the 
beam. 

Division by dx, substitution of 

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) =
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡)  and application of 

Fig. 7. Amplitude frequency responses of maximal total normal stress (a) 
and deflection (b) for multiple mass oscillatory system

b)

a)
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differential equation of bent axis of the beam 

𝑀𝑀𝑀𝑀 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜕𝜕𝜕𝜕2𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

  [12] gives the following expression: 

𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑙𝑙𝑙𝑙

 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+
∂𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
∂𝜌𝜌𝜌𝜌

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 𝑓𝑓𝑓𝑓𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∂4𝑧𝑧𝑧𝑧
∂𝜌𝜌𝜌𝜌4

= 𝑓𝑓𝑓𝑓 − 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐 

 

𝑧𝑧𝑧𝑧(𝜌𝜌𝜌𝜌, 𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 + 𝜑𝜑𝜑𝜑) 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂4𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥
∂𝜌𝜌𝜌𝜌4

− 𝜔𝜔𝜔𝜔2𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 = 0 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝛽𝛽𝛽𝛽4 − 𝜔𝜔𝜔𝜔2 = 0 

 

𝛽𝛽𝛽𝛽4 =
𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 

 

𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) = 𝐶𝐶𝐶𝐶1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶2 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 

+ 𝐶𝐶𝐶𝐶3 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶4 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) 

 

sin (β𝑙𝑙𝑙𝑙)  =  0 

 

𝜔𝜔𝜔𝜔0𝑗𝑗𝑗𝑗 =
𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋2

𝑙𝑙𝑙𝑙2
�
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 

(33)

Solution to the equation of free transverse 
periodic oscillations represented by equation 
(33), in which the right side of it equals zero, is 
considered to be the harmonic function of beam 
deflection:

𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑙𝑙𝑙𝑙

 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+
∂𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
∂𝜌𝜌𝜌𝜌

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 𝑓𝑓𝑓𝑓𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∂4𝑧𝑧𝑧𝑧
∂𝜌𝜌𝜌𝜌4

= 𝑓𝑓𝑓𝑓 − 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐 

 

𝑧𝑧𝑧𝑧(𝜌𝜌𝜌𝜌, 𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 + 𝜑𝜑𝜑𝜑) 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂4𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥
∂𝜌𝜌𝜌𝜌4

− 𝜔𝜔𝜔𝜔2𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 = 0 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝛽𝛽𝛽𝛽4 − 𝜔𝜔𝜔𝜔2 = 0 

 

𝛽𝛽𝛽𝛽4 =
𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 

 

𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) = 𝐶𝐶𝐶𝐶1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶2 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 

+ 𝐶𝐶𝐶𝐶3 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶4 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) 

 

sin (β𝑙𝑙𝑙𝑙)  =  0 

 

𝜔𝜔𝜔𝜔0𝑗𝑗𝑗𝑗 =
𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋2

𝑙𝑙𝑙𝑙2
�
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 

(34)

where:	Ax(x) – amplitude function of beam 
axis, which represents the main mode of 
oscillations.

Substituting (33) into (34) gives:

𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑙𝑙𝑙𝑙

 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+
∂𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
∂𝜌𝜌𝜌𝜌

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 𝑓𝑓𝑓𝑓𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∂4𝑧𝑧𝑧𝑧
∂𝜌𝜌𝜌𝜌4

= 𝑓𝑓𝑓𝑓 − 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐 

 

𝑧𝑧𝑧𝑧(𝜌𝜌𝜌𝜌, 𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 + 𝜑𝜑𝜑𝜑) 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂4𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥
∂𝜌𝜌𝜌𝜌4

− 𝜔𝜔𝜔𝜔2𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 = 0 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝛽𝛽𝛽𝛽4 − 𝜔𝜔𝜔𝜔2 = 0 

 

𝛽𝛽𝛽𝛽4 =
𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 

 

𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) = 𝐶𝐶𝐶𝐶1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶2 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 

+ 𝐶𝐶𝐶𝐶3 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶4 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) 

 

sin (β𝑙𝑙𝑙𝑙)  =  0 

 

𝜔𝜔𝜔𝜔0𝑗𝑗𝑗𝑗 =
𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋2

𝑙𝑙𝑙𝑙2
�
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 

(35)

Characteristic equation for (35) is:

𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑙𝑙𝑙𝑙

 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+
∂𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
∂𝜌𝜌𝜌𝜌

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 𝑓𝑓𝑓𝑓𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∂4𝑧𝑧𝑧𝑧
∂𝜌𝜌𝜌𝜌4

= 𝑓𝑓𝑓𝑓 − 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐 

 

𝑧𝑧𝑧𝑧(𝜌𝜌𝜌𝜌, 𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 + 𝜑𝜑𝜑𝜑) 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂4𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥
∂𝜌𝜌𝜌𝜌4

− 𝜔𝜔𝜔𝜔2𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 = 0 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝛽𝛽𝛽𝛽4 − 𝜔𝜔𝜔𝜔2 = 0 

 

𝛽𝛽𝛽𝛽4 =
𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 

 

𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) = 𝐶𝐶𝐶𝐶1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶2 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 

+ 𝐶𝐶𝐶𝐶3 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶4 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) 

 

sin (β𝑙𝑙𝑙𝑙)  =  0 

 

𝜔𝜔𝜔𝜔0𝑗𝑗𝑗𝑗 =
𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋2

𝑙𝑙𝑙𝑙2
�
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 

(36)

Whence: 

𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑙𝑙𝑙𝑙

 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+
∂𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
∂𝜌𝜌𝜌𝜌

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 𝑓𝑓𝑓𝑓𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∂4𝑧𝑧𝑧𝑧
∂𝜌𝜌𝜌𝜌4

= 𝑓𝑓𝑓𝑓 − 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐 

 

𝑧𝑧𝑧𝑧(𝜌𝜌𝜌𝜌, 𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 + 𝜑𝜑𝜑𝜑) 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂4𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥
∂𝜌𝜌𝜌𝜌4

− 𝜔𝜔𝜔𝜔2𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 = 0 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝛽𝛽𝛽𝛽4 − 𝜔𝜔𝜔𝜔2 = 0 

 

𝛽𝛽𝛽𝛽4 =
𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 

 

𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) = 𝐶𝐶𝐶𝐶1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶2 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 

+ 𝐶𝐶𝐶𝐶3 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶4 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) 

 

sin (β𝑙𝑙𝑙𝑙)  =  0 

 

𝜔𝜔𝜔𝜔0𝑗𝑗𝑗𝑗 =
𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋2

𝑙𝑙𝑙𝑙2
�
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 

(37)

Solutions to (37) are:

𝛽𝛽𝛽𝛽1,2 = ±�
𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

4
 ; 𝛽𝛽𝛽𝛽3,4 = ±𝑖𝑖𝑖𝑖�

𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

4
 .

Solution to (35) is:

𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑙𝑙𝑙𝑙

 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+
∂𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
∂𝜌𝜌𝜌𝜌

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 𝑓𝑓𝑓𝑓𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∂4𝑧𝑧𝑧𝑧
∂𝜌𝜌𝜌𝜌4

= 𝑓𝑓𝑓𝑓 − 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐 

 

𝑧𝑧𝑧𝑧(𝜌𝜌𝜌𝜌, 𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 + 𝜑𝜑𝜑𝜑) 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂4𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥
∂𝜌𝜌𝜌𝜌4

− 𝜔𝜔𝜔𝜔2𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 = 0 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝛽𝛽𝛽𝛽4 − 𝜔𝜔𝜔𝜔2 = 0 

 

𝛽𝛽𝛽𝛽4 =
𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 

 

𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) = 𝐶𝐶𝐶𝐶1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶2 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 

+ 𝐶𝐶𝐶𝐶3 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶4 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) 

 

sin (β𝑙𝑙𝑙𝑙)  =  0 

 

𝜔𝜔𝜔𝜔0𝑗𝑗𝑗𝑗 =
𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋2

𝑙𝑙𝑙𝑙2
�
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 

(38)

where: β = β1; С1 – С4 – constants, which depend 
on boundary conditions:

Ax(0) = 0; Ax’’(0) = 0; Ax(l) = 0; Ax’’(l) = 0.

Then С1 = С3 = С4 = 0; С2 sin (βl) = 0. When 
С2 = 0 solution to (38) is trivial, therefore when 
С2 ≠ 0 it is considered that: 

𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑙𝑙𝑙𝑙

 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+
∂𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
∂𝜌𝜌𝜌𝜌

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 𝑓𝑓𝑓𝑓𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∂4𝑧𝑧𝑧𝑧
∂𝜌𝜌𝜌𝜌4

= 𝑓𝑓𝑓𝑓 − 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐 

 

𝑧𝑧𝑧𝑧(𝜌𝜌𝜌𝜌, 𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 + 𝜑𝜑𝜑𝜑) 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂4𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥
∂𝜌𝜌𝜌𝜌4

− 𝜔𝜔𝜔𝜔2𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 = 0 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝛽𝛽𝛽𝛽4 − 𝜔𝜔𝜔𝜔2 = 0 

 

𝛽𝛽𝛽𝛽4 =
𝜔𝜔𝜔𝜔2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 

 

𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) = 𝐶𝐶𝐶𝐶1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶2 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 

+ 𝐶𝐶𝐶𝐶3 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) + 𝐶𝐶𝐶𝐶4 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌) 

 

sin (β𝑙𝑙𝑙𝑙)  =  0 

 

𝜔𝜔𝜔𝜔0𝑗𝑗𝑗𝑗 =
𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋2

𝑙𝑙𝑙𝑙2
�
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 

(39)

Whence:
βjl = jπ

where: j = 1,2… 

Considering (37) the natural frequencies of 
transverse periodic oscillations will be expressed as:

𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑙𝑙𝑙𝑙

 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+
∂𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
∂𝜌𝜌𝜌𝜌

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 𝑓𝑓𝑓𝑓𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 

 

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
∂2𝑧𝑧𝑧𝑧
∂𝑡𝑡𝑡𝑡2

+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∂4𝑧𝑧𝑧𝑧
∂𝜌𝜌𝜌𝜌4

= 𝑓𝑓𝑓𝑓 − 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐 

 

𝑧𝑧𝑧𝑧(𝜌𝜌𝜌𝜌, 𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝜌𝜌𝜌𝜌) 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡 + 𝜑𝜑𝜑𝜑) 
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Since strength and stiffness assessment is per-
formed in engineering calculations by maximal 
magnitudes of stress and deflection then consid-
eration of lower critical frequencies or even of the 
first one ω01, when j = 1, representing the main 
mode of oscillation is required. 

This statement was approved by MatLab sim-
ulation, in which flexible body of the beam (circuit 
card assembly) was approximated by the set of 21 
elements (solid bodies) joined in between them by 
springs and dampers. The total mass of the beam 
m = 0.05 kg was uniformly distributed over all el-
ements. 6 sensors attached as shown in Figure 6 
measured total normal stresses and deflections.

Simulation has resulted in amplitude frequen-
cy response graphs read by 6 sensors for maximal 
total normal stress (Fig. 9a) and deflection (Fig. 
9b). Noteworthy is that highest levels of mea-
sured parameters are correspondent to the first 
critical frequency ω01 = 255.3 rad/s for the main 
mode of oscillation.

Comparative analysis of stress and deflection 
diagrams obtained by the research of oscillatory sys-
tems of all mentioned types (Fig. 10) demonstrated 
that the main mode of oscillatory system with uni-
formly distributed mass is similar to multiple mass 

Fig. 8. Dynamic force application to infinitesimal element of the beam with uniformly distribute weight
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oscillatory system and moreover to the single-mass 
oscillatory system with concentrated mass, what al-
lows conjecture of their equivalence.

Analysis of equivalence for strength and 
stiffness assessment in oscillatory systems 

Similarity of main modes of oscillation in-
dicated by proximity of maximal total normal 

stresses and deflections obtained for three 
mentioned types of oscillatory systems, on 
condition of equal dynamic force applied and 
mass, geometric, elastic and dissipation char-
acteristics, allowed conjecture of representing 
these systems as equivalent for strength and 
stiffness assessment. 

There is known [15], that an oscillatory sys-
tem with uniformly distributed mass m can be 

Fig. 10. Diagrams of maximal total normal stress (a) and deflection (b) for main mode of oscillation 
correspondent to first oscillation mode for multiple mass (m = 5), uniformly distributed 

(weight distributed) and single-mass (m = 1) oscillatory systems

a) b)

Fig. 9. Amplitude frequency responses of maximal total normal stress (a) and deflection (b) 
for oscillatory system with uniformly distributed weight

b)

a)
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represented as oscillatory system with concen-
trated mass converted into reduced mass β⋅m and 
applied in a specific place on the beam, in this 
case in its center, to perform strength and deflec-
tion assessment by using mathematic model de-
signed for single-mass oscillatory system.

Equivalence of two systems can be reached 
by equality of their kinetic energies therefore the 
value of reduced mass β⋅m is assumed such that 
its kinetic energy:
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is equal to kinetic energy of mass distributed 
along the length l of the beam:
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where:	 z’ – displacement velocity of concentrated 
mass centered to the beam; zx’ – displace-
ment velocity of infinitesimal element, 
determined by its position on the axis x 
along the beam.

Whence:
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Hypothesis about similarity of displacement 
diagrams produced by the static action of weight 
of distributed mass m and concentrated mass β⋅m 
gives the relationship:

𝑇𝑇𝑇𝑇 ʹ = 𝛽𝛽𝛽𝛽 �
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌(𝑧𝑧𝑧𝑧ʹ)2

2 � 

 

𝑇𝑇𝑇𝑇 = ��
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌(𝑧𝑧𝑧𝑧𝑥𝑥𝑥𝑥 ʹ)2

2 �
𝑙𝑙𝑙𝑙

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

𝛽𝛽𝛽𝛽 =
∫

(𝑧𝑧𝑧𝑧𝑥𝑥𝑥𝑥′)2
𝑧𝑧𝑧𝑧2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙

𝜌𝜌𝜌𝜌
  

 

𝑧𝑧𝑧𝑧𝑥𝑥𝑥𝑥'
𝑧𝑧𝑧𝑧'

=
Δ𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
Δ𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

 

 

Δ𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑑𝑑𝑑𝑑 �
𝜌𝜌𝜌𝜌2

16
−
𝑑𝑑𝑑𝑑2

12�
 

 

Δ𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝜌𝜌𝜌𝜌3

48𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 

 

[𝑃𝑃𝑃𝑃] =
2𝑏𝑏𝑏𝑏ℎ2

3𝜌𝜌𝜌𝜌
[𝜎𝜎𝜎𝜎] 

 

𝐸𝐸𝐸𝐸1 =
𝑃𝑃𝑃𝑃𝜌𝜌𝜌𝜌

4𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀
 and 𝐸𝐸𝐸𝐸2 =

𝑃𝑃𝑃𝑃𝜌𝜌𝜌𝜌3

48Δ𝐸𝐸𝐸𝐸
 

 

𝑛𝑛𝑛𝑛 =
1
𝑇𝑇𝑇𝑇
⋅ 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

𝐴𝐴𝐴𝐴(𝑡𝑡𝑡𝑡)
𝐴𝐴𝐴𝐴(𝑡𝑡𝑡𝑡 + 𝑇𝑇𝑇𝑇) 

 

𝜎𝜎𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥
𝑥𝑥𝑥𝑥 − 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 

 

(44)

where:	∆xst – displacement of infinitesimal el-
ement dx produced by static action of 
weight of distributed mass in oscillatory 
system; ∆st – displacement of the beam 
center produced by static action of weight 
of concentrated mass (Fig. 11).
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and displacement of the beam center:
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Considering (44) and substituting (45) and 
(46) into (43) results in β = 17/35.

Nevertheless using equivalent model of 
oscillatory system with reduced mass is only 
valid when mass of CC assembly is uniform-
ly distributed and in case of multiple mass or 
single-mass oscillatory systems such approach 
would bring about lowered result in calculation 
of stress and deflection. 

Analysis of simulation results given as graphs 
in Figure 10 verified that value of maximal total 
normal stress in oscillatory systems is that less 
than more distributed their mass is and, on the 
contrary, stress is highest for single-mass oscil-
latory system. Thus, calculation of highest val-
ues of maximal total normal stress through rep-
resentation of single-mass oscillatory system as 
equivalent to any other systems even to oscilla-
tory system with uniformly distributed mass al-
lows strength assessment by using mathematical 
models designed for single-mass oscillatory sys-
tem (16) or (14), whereby possible difference in 
calculation related to using equivalent system in-
stead of original one can be used as safety factor.

Experimental verification

Research objectives were circuit cards rep-
resenting three types of oscillatory systems: 1) 
single-mass oscillatory system with concen-
trated mass centered to the beam; 2) multiple 
mass oscillatory system consisting of 5 masses 
placed uniformly along the beam (Fig. 6); 3) 

Fig. 11. Main mode of oscillation of the beam with uniformly distributed mass
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oscillatory system with uniformly distributed 
mass. Circuit cards were selected on condition 
of equal mass, geometric, elastic and dissipa-
tion characteristics and dynamic force appli-
cation and identical to those in mathematical 
modeling and MatLab simulation.

Actual elastic and dissipation parameters 
were determined by the method of sample param-
eters based on measuring strain and displacement 
in the experimental setup shown in Figure 12.

Young’s module E and descent rate n where 
found by static middle-point bend test of CC sam-
ples under force threshold limit:
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where:	l = 180 mm; b = 50 mm; h = 1,5 mm; 	
[P] = 6.67 N.

During the test the strain was measured by 
strain gauges along with reading force P and de-
flection ∆. Two strain gauges with 10 mm base 
were attached both in the longitudinal (direction 
of maximal normal stress) and in the transverse di-
rections (indicated no strain). For higher accuracy 
the Young’s module E was found in two ways:
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The mean value of E = 14.5 GPa was calcu-
lated over 5 experiments. Tests were conducted 
by using method of acoustic emission reading 
from the sensor attached to PCB surface. Detect-
ing no acoustic emission verified of only elastic 

strain produced during the test and approved 
Hook’s law application. Descent rate n of oscil-
latory system was found by free oscillation graph 
read from vibration sensor attached to the center 
of PCB by the formula:
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where:	A(t) and A(t+T) – amplitudes measured in 
time t and t + T correspondently, T – os-
cillation period.

The mean value of n = 5.48  s-1. The further 
vibration tests were conducted for experimental 
verification of mathematical model. Vibration 
tests were conducted by constant dynamic load 
with amplitude P0 provided by constant vibra-
tion acceleration a0 = 10 m/s2. CCs were installed 
in clamps designed as regular fixtures (Fig. 13) 
mounted on the shaker. Maximal normal stress 

Fig. 12. Experimental setup for three-point 
bend test: 1 – base; 2 – movable bar; 3 – lift-
ing rod; 4 – clock indicator; 5 – circuit card

Fig. 13. Clamp for circuit cards on vibration tests: 1 – rod; 2 – fastening nut; 3 – adjust-
able bar; 4 – springs; 5 – support bars; 6 – top plates; 7 – fixture screws; 8 – stop screws 

holding CCs in their lose holes; 9 – circuit card; 10 – concentrated mass
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was performed by reading strain gauge attached to 
the middle point of CC surface and calculation by 
the Hook’s law. Maximal dynamic stress σdyn was 
calculated by the following formula: 
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where:	σst – static stress produced by gravity 
force and measured by the strain gauge 
attached to unloaded CC before it was set 
on the shaker.

Maximal deflection ∆dyn was measured by vi-
bration sensor set in the center of CC. Second vi-
bration sensor attached to fixtures was reading os-
cillations generated by the shaker. The resonance 
frequencies were detected by method of floating 
frequency [10]. The first critical frequency was 
detected by the sensor in the middle of CC. Stress 
measured on this frequency is considered as max-
imal total normal stress in the critical section of 
the circuit card and calculated by (50) – as maxi-
mal dynamic stress.

Results of vibration experimental tests, sim-
ulation and mathematical modeling of maximal 
dynamic stress and deflection in circuit cards are 
given in Table 2.

Comparing maximal magnitudes of dynamic 
stress and deflection obtained by experimental 
tests with results of simulation and mathematical 
modeling indicates of their similarity and insig-
nificant relative difference from 0.53 to 8.81 %.

Thus, the conducted research approved the 
idea of estimating maximal dynamic normal 
stress by representing single-mass oscillatory 
system as equivalent to multiple mass or even 
uniformly distributed oscillatory systems on con-
dition of their equal mass, geometric, elastic and 

dissipation characteristics in resonance frequency 
correspondent to main mode of oscillation and 
use mathematical model designed for single-mass 
oscillatory system for engineering strength and 
stiffness assessment whereby possible difference 
in determination of stress in equivalent systems 
can used as safety factor. 

CONCLUSIONS

Estimation of maximal dynamic normal stress 
is proposed by representing single-mass oscillato-
ry system as equivalent to multiple mass or even 
uniformly distributed oscillatory systems on con-
dition of their equal mass, geometric, elastic and 
dissipation characteristics in resonance frequency 
correspondent to the main mode of oscillation 
and use mathematical model designed for single-
mass oscillatory system for engineering strength 
and stiffness assessment whereby possible differ-
ence in determination of stress in equivalent sys-
tems can used as safety factor. 

Comparative analysis of mathematical mod-
eling, MatLab simulation and experimental deter-
mination of maximal dynamic stress and deflec-
tion accomplished for three types of oscillatory 
systems verified proximity of obtained results.

Mathematical model has been developed for 
maximal dynamic stress and deflection estima-
tion in circuit card assemblies represented by 
unique single-mass oscillatory system as prismat-
ic beam with concentrated mass set on two os-
cillating supports under inertial resonance excita-
tion generated by constant dynamic force. Since 
dynamic stress is caused by displacement about 
static equilibrium position and is independent on 
linear coordinate of the concentrated mass it pro-
vides strength assessment with no respect to lin-
ear coordinate of the concentrated mass and can 
be recommended for engineering calculations.
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